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Abstract
Diffusion and propagation of information, influ-
ence and diseases take place over increasingly
larger networks. We observe when a node copies
information, makes a decision or becomes in-
fected but networks are often hidden or unob-
served. Since networks are highly dynamic,
changing and growing rapidly, we only observe
a relatively small set of cascades before a net-
work changes significantly. Scalable network
inference based on a small cascade set is then
necessary for understanding the rapidly evolving
dynamics that govern diffusion. In this article,
we develop a scalable approximation algorithm
with provable near-optimal performance based
on submodular maximization which achieves a
high accuracy in such scenario, solving an open
problem first introduced by Gomez-Rodriguez
et al. (2010). Experiments on synthetic and real
diffusion data show that our algorithm in practice
achieves an optimal trade-off between accuracy
and running time.

1. Introduction
Over the last years, there has been an increasing interest
in understanding diffusion and propagation processes in a
broad range of domains: information propagation (Gomez-
Rodriguez et al., 2010), social networks (Kempe et al.,
2003), viral marketing (Watts & Dodds, 2007), epidemiol-
ogy (Wallinga & Teunis, 2004), and human travels (Brock-
mann et al., 2006).

In the context of diffusion networks, one of the funda-
mental research problems is how to infer the connectivity
of a network based on diffusion traces (Gomez-Rodriguez
et al., 2010; 2011; Myers & Leskovec, 2010; Snowsill et al.,
2011). In information propagation, we note when a blog or
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news site writes about a piece of information. However,
in many cases, the blogger or journalist does not link to
her source and therefore we do not know where she gath-
ered the information from. In viral marketing, we get to
know when customers buy products or subscribe to ser-
vices, but typically cannot observe the trendsetters who in-
fluenced customers’ decisions. Finally, in epidemiology,
we can observe when a person gets ill but cannot tell who
infected her. In all these scenarios, we observe spatiotem-
poral traces of information spread (be it in the form of
a meme, a decision, or a virus) but we do not know the
paths over which information propagates. We note where
and when information emerges but not how or why it does.
In this context, inferring the connectivity of diffusion net-
works is essential to reconstruct and predict the paths over
which information spreads, maximize sales of a product or
stop infections.

Our approach to network inference. We consider that
on a fixed hypothetical network, diffusion processes prop-
agate as directed trees through the network. Since we only
observe the times when nodes are reached by a diffusion
process, there are many possible propagation trees that ex-
plain a set of cascades. Naive computation of the model
takes exponential time since there is a combinatorially large
number of propagation trees. It has been shown that com-
putations over this super-exponential set of trees can be
performed in cubic time (Gomez-Rodriguez et al., 2010).
However, to the best of our knowledge, efficient optimiza-
tion of the model has been an open question to date. Here,
we show that computation over the super-exponential set
of trees can indeed be performed in quadratic time and sur-
prisingly, we show that the resulting objective function is
submodular. Exploiting this natural diminishing property,
we can efficiently optimize the objective function to find
a near-optimal network with provable guarantees that best
explain the observed cascades. Lazy evaluation and the lo-
cal structure of the problem can be used to speed-up our
method. Considering all possible propagation trees enables
us to learn a network from fewer observed cascades. This is
important since social networks are highly dynamic (Back-
strom & Leskovec, 2011), changing and growing rapidly,
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and we can only expect to record a small number of cas-
cades over a fixed network.

Related work. The work most closely related to
ours (Gomez-Rodriguez et al., 2010; 2011; Myers &
Leskovec, 2010) also uses a generative probabilistic model
for inferring diffusion networks. NETINF (Gomez-
Rodriguez et al., 2010) infers the network connectivity us-
ing submodular optimization by considering only the most
probable directed tree supported by each cascade. NET-
RATE (Gomez-Rodriguez et al., 2011) and CONNIE (My-
ers & Leskovec, 2010) infer not only the network connec-
tivity but either prior probabilities of infection or transmis-
sion rates of infection using convex optimization by consid-
ering all possible directed trees supported by each cascade.

The main innovation of this paper is to tackle the network
inference problem as a submodular maximization problem
in which we do not consider only the most probable di-
rected tree as in NETINF but all directed trees supported
by each cascade as in CONNIE and NETRATE. By con-
sidering all trees, we are able to infer a network more ac-
curately than NETINF when the number of observed cas-
cades is small compared to the network size and by using
the greedy algorithm for submodular maximization in con-
trast to convex optimization, we are several order of mag-
nitude faster than CONNIE and NETRATE. Therefore, we
present a network inference algorithm that may be capable
of inferring real networks in the order of hundred of thou-
sands of nodes with a small number of observed cascades.
This comes with a drawback, our algorithm does not infer
prior probabilities of infection nor transmission rates but
only the network connectivity. However, in practice, our
algorithm provides a measure of importance for each edge
of the network through the marginal gain that each edge
provides.

Inferring how diffusion propagates over rapidly changing
networks is crucial for a better understanding of the dynam-
ics that govern processes taking place over information and
social networks. In this context, scalability is a key point
given the increasingly larger size of such networks and cas-
cade data.

The remainder of the paper is organized as follows: in Sec-
tion 2, we describe the model of diffusion and state the
network inference problem. Section 3 shows an efficient
approximation algorithm with provable near-optimal per-
formance. Section 4 evaluates our method using synthetic
and real data and we conclude with a discussion of our re-
sults in Section 5.
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Figure 1. Panel (a) shows a cascade t = {t1, . . . , t5} on network
G, where ti−1 < ti. Panel (b) shows all connected spanning
trees induced by cascade t on G, i.e., all possible ways in which
a diffusion process spreading over G can create the cascade.

2. Problem formulation
In this section, we first describe the diffusion data our al-
gorithm is designed for and continue revisiting the gen-
erative model of diffusion introduced recently by Gomez-
Rodriguez et al. (2010). We conclude with a statement of
the network inference problem.

Data. We observe a set C of cascades {t1, . . . , t|C|} on a
fixed population of N nodes. A cascade tc := (tc1, . . . , t

c
N )

is simply a N-dimensional vector recording when nodes in
the population get infected. We only observe the time tci
when a node i got infected but not who infected the node
neither why it got infected. In each cascade, there are typi-
cally nodes that are never infected, with infection times that
are arbitrarily long. We assume there is an underlying un-
observed networkG that nodes in the population belong to,
and cascades propagate over it. Our aim is to discover this
unknown network over which cascades originally propa-
gated by using only the recorded infection times.

Pairwise transmission likelihood. We assume node j
can infect node i with prior probability of transmission
β. Now, consider that node j gets infected at time tj
and succeeds at infects node i at time ti. We then as-
sume that the infection time ti depends on tj through a
pairwise transmission likelihood f(ti|tj ;αj,i). As in previ-
ous studies of information propagation (Gomez-Rodriguez
et al., 2010; 2011) and epidemiology (Wallinga & Teunis,
2004), we consider two well-known monotonic parametric
models: exponential, f(ti|tj ;αj,i) ∝ e−αj,i·(ti−tj), and
power-law, f(ti|tj ;αj,i) ∝ (ti − tj)−1−αj,i , and one non-
monotonic parametric model: Rayleigh, f(ti|tj ;αj,i) ∝
(ti − tj)e−αj,i·(ti−tj)2 . Although we perform experiments
in networks in which the transmission rate αj,i of each edge
can be different, in the remainder of the paper, for simplic-
ity, we assume all transmission rates to be equal, αj,i = α.
Importantly, our algorithm does not depend on the partic-
ular choice of pairwise transmission likelihood and choos-
ing more complicated parametric or non-parametric likeli-
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hoods does not increase its computational complexity.

Likelihood of a cascade for a given tree. We assume that
diffusion processes propagate as directed trees, i.e., a node
gets infected by action of a single node or parent. Then, for
a given tree T and cascade tc, we can compute the likeli-
hood of the cascade given the tree as follows:

f(tc|T ) =
∏

(u,v)∈ET

f(tv|tu;α), (1)

where ET is the edge set of tree T . Considering a spe-
cific tree T for a cascade tc means to set which edges have
spread successfully the information. Therefore, given the
tree T , we can compute the likelihood of the infection times
of the nodes in the cascade tc by using simply the pairwise
transmission likelihood of each edge of the tree.

Probability of a tree in a given network. In order to com-
pute the likelihood of a cascade tc for a given tree T , we
have considered the tree T to be given. We now compute
the probability of a tree T in a network G as follows:

P (T |G) =
∏

(u,v)∈ET

β
∏

u∈VT ,(u,x)∈E\ET

(1− β)

= βq(1− β)r,

where VT is the vertex set of tree T , ET is the edge set of
tree T , E is the edge set of the network G and q = |ET | =
|VT | − 1 is the number of edges in T and counts the edges
over which the diffusion process successfully propagated.
For a particular cascade tc and tree T , VT is the set of nodes
that belong to tc, i.e., nodes where the infection time ti <
∞. The first product accounts for the active edges in G,
i.e., edges that define the tree T , and the second product
accounts for the inactive edges in G, i.e., edges where the
diffusion process did not spread. For simplicity, we assume
the same prior probability of transmission β for every edge
of the network G.

Likelihood of a cascade in a given network. Now, for
a cascade tc, we consider all possible propagation trees T
that are supported by the network G, i.e., all possible ways
in which a diffusion process spreading over G can create
cascade tc:

f(tc|G) =
∑

T∈Tc(G)

f(tc|T )P (T |G), (2)

where tc is a cascade and Tc(G) is the set of all the directed
connected spanning trees on the subnetwork of G induced
by the nodes that got infected in cascade tc, i.e., ti ∈ tc :
ti <∞. Figure 1 illustrates the notion of a cascade and all
the connected spanning trees T induced by its nodes.

All trees T ∈ Tc(G) employ the same vertex set VT and
P (T |G) depends only the size of the vertex set VT . There-
fore, assuming the same prior probability of transmission

β for every edge of the network, P (T |G) is equal for all
trees T on the subnetwork of G induced by the nodes that
got infected in cascade tc and we simplify Eq. (2):

f(tc|G) ∝
∑

T∈Tc(G)

∏
(u,v)∈ET

f(tv|tu;α). (3)

Now, assuming conditional independence between cas-
cades given the network G, we compute the joint likeli-
hood of a set C of cascades occurring in the network G as
follows:

f(t1, . . . , t|C||G) =
∏
tc∈C

f(tc|G). (4)

Network inference problem. Given a set of cascades
{t1, . . . , tN}, a prior probability of transmission β and
a pairwise transmission likelihood f(tv|tu;α), we aim to
find the network Ĝ such that

Ĝ = argmax
|G|≤k

f(t1, . . . , tN |G), (5)

where the maximization is over all directed networks G of
at most k edges.

3. Proposed algorithm
To the best of our knowledge, the optimization problem
defined by Eq. (5) has been considered intractable in the
past and proposed as an interesting open problem (Gomez-
Rodriguez et al., 2010). We now show how to efficiently
find a solution with provable sub-optimality guarantees by
exploiting a natural diminishing returns property of the net-
work inference problem: submodularity.

To evaluate Eq. (4), we need to compute Eq. (3) for each
cascade tc, i.e., compute a sum of likelihoods over all pos-
sible connected spanning trees T induced by the nodes in-
fected in each cascade. Although the number of trees can
be super-exponential in the number of nodes in the cascade
tc, this super-exponential sum can be performed in time
polynomial in the number n of nodes in tc, by applying
Kirchhoff’s matrix tree theorem:

Theorem 1 (Tutte (1948)). Given a directed graphW with
non negative edge weights wi,j , construct a matrix A such
that ai,j =

∑
k wk,j if i = j and ai,j = −wi,j if i 6= j

and denote the matrix created by removing any row x and
column y from A as Ax,y . Then,

(−1)x+y det(Ax,y) =
∑

T∈T (W )

∏
(i,j)∈T

wi,j , (6)

where T is each directed spanning tree in W that starts in
y.
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Algorithm 1 Our network inference algorithm
Require: C, k
G← K̄;
while |G| < k do

for all (j, i) /∈ G : ∃tc ∈ C with tj < ti do
δj,i = 0, Mj,i ← ∅;
for all tc : tj < ti do
wc(m,n)← weight of (m,n) in G ∪ {(j, i)};
for all tm : tm < ti,m 6= j do
δc,j,i = δc,j,i + wc(m, i);

end for
δj,i = log(δc,j,i + wc(j, i))− log(δc,j,i + 1)

end for
end for
(j∗, i∗)← arg max(j,i)/∈G δj,i;
G← G ∪ {(j∗, i∗)};

end while
return G;

In our case, we compute Eq. (3) by setting wi,j to
f(tj |ti;α) and computing the determinant in Eq. (6). We
then compute Eq. (4) by multiplying the determinants of
|C| matrices, one for each cascade. For a fixed cascade tc,
edges with positive weights form a directed acyclic graph
(DAG) (only edges (i, j) such that ti < tj have positive
weights) and a DAG with a time-ordered labeling of its
nodes has an upper triangular connectivity matrix. Thus,
the matrix Ax,y of Theorem 1, by construction, is also up-
per triangular. Fortunately, the determinant of an upper tri-
angular matrix is simply the product of the elements of its
diagonal and then,

f(tc|G) ∝
∏
tj∈tc

∑
ti∈tc:ti≤tj

f(tj |ti;α).

This means that instead of using super-exponential time,
we are now able to evaluate Eq. 4 in time O(|C| · N2),
where N is the size of the largest cascade, i.e., the time re-
quired to build Ax,y and compute the determinant for each
of the |C| cascades.

Until now, we have ignored the role of missed infec-
tions (Sadikov et al., 2011) or external sources as mass
media (Katz & Lazarsfeld, 1955; Watts & Dodds, 2007)
that can produce disconnected cascades. To overcome this
point, we consider an additional node m that represents an
external source that can infect any node u in a cascade.
Therefore, we connect the external influence source m to
every other node u with an ε-edge. Every node u can get
infected by the external source m with an arbitrarily small
probability ε. It is important to remark that adding the ex-
ternal source results in a tradeoff between false positives
and false negatives when detecting cascades. The higher
the value of ε, the larger the number of nodes that are as-

sumed to be infected by an external source.

Putting it all together, we include the additional node m in
every cascade tc and we set the likelihood of a diffusion
process to spread from m to any node j in the cascade tc

to ε. We assume that ε ≤ f(tj |ti;α) for any (i, j). We
then define the improvement of log-likelihood for cascade
tc under graph G over an empty graph K̄:

F (tc|G) =
∑
tj∈tc

log

 ∑
ti∈tc:ti≤tj

wc(i, j)

 , (7)

where wc(i, j) = ε−1f(tj |ti;α) ≥ 0 for all natural like-
lihoods,

∑
i∈G:tj≥ti wc(i, j) ≥ 1 and we assume that the

ε-edges between m and all nodes in the cascade tc exist
also for the empty graph K̄.

Finally, maximizing Eq. (5) is equivalent to maximizing the
following objective function:

FC(t1, . . . , t|C||G) =
∑
tc∈C

F (tc|G), (8)

where G is the variable.

Efficient optimization. By construction, the empty
graph K̄ has score 0, FC(t1, . . . , t|C||K̄) = 0, and
the objective function FC is non-negative monotonic,
FC(t1, . . . , t|C||G) ≤ FC(t1, . . . , t|C||G′), for any G ⊆
G′. Therefore, adding more edges to G never decreases the
solution quality, and thus the complete graph maximizes
FC . However, in real-world scenarios, we are interested
in inferring sparse graphs with a small number of edges.
Thus, we would like to solve:

G∗ = argmax
|G|≤k

FC(t1, . . . , t|C||G), (9)

where the maximization is over all directed networks G of
at most k edges. Naively searching over all k edge graphs
would take time exponential in k, which is intractable.
Moreover, finding the optimal solution to Eq. 9 is NP-hard:

Theorem 2. The diffusion network inference problem de-
fined by Eq. 9 is NP-hard.

Proof. By reduction from the MAX-k-COVER pro-
blem (Khuller et al., 1999).

While finding the optimal solution is hard, we will now
show that FC satisfies submodularity on the set of directed
edges in G, a natural diminishing returns property, which
will allow us to efficiently find a provable near-optimal so-
lution to the optimization problem.

A set function F : 2W → R mapping subsets of a finite
set W to the real numbers is submodular if whenever A ⊆
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Figure 2. Panels (a-c) plot precision against recall (PR); panels (d-f) plot accuracy. To control the solution sparsity or precision-recall
tradeoff, we sweep over k (number of edges) in our method and NETINF and over ρ (penalty factor) in CONNIE. NETRATE has no
tunable parameters and therefore outputs a unique solution. (a,d): 1,024 node random Kronecker network with Rayleigh (RAY) model.
(b,e): 1,024 node hierarchical Kronecker network with power-law (POW) model. (c,f): 1,024 node core-periphery Kronecker network
with exponential (EXP) model. In all three networks, we recorded 200 cascades.

B ⊆W and s ∈W \B, it holds that F (A∪{s})−F (A) ≥
F (B ∪ {s}) − F (B), i.e., adding s to the set A increases
the score more than adding s to the set B. We have the
following result:

Theorem 3. Let V be a set of nodes, and C be a collection
of cascades hitting the nodes V . Then FC(t1, . . . , t|C||G)
is a submodular function FC : 2W → R defined over sub-
sets W ⊆ V × V of directed edges.

Proof. Fix a cascade tc, graphs G ⊆ G′ and an edge
e = (r, s) not contained in G′. We will show that
F (tc|G ∪ {e})− F (tc|G) ≥ F (tc|G′ ∪ {e})− F (tc|G′).
Let wi,j be the weight of edge (i, j) in G, and w′i,j in
G′. Since G ⊆ G′, it holds that w′i,j ≥ wi,j ≥ 0. If
(i, j) is contained in G and G′, then wi,j = w′i,j . Let
TA,e =

∑
i∈A\{r}:tj≥ti wc(i, s). It holds that TG′,e ≥

TG,e. Hence,

F (tc|G ∪ {e})− F (tc|G) = log

(
TG,e + wc(r, s)

TG,e

)
≥ log

(
TG′,e + wc(r, s)

TG′,e

)
= F (tc|G′ ∪ {e})− F (tc|G′),

proving submodularity of F (tc|G). Now, since nonnega-
tive linear combinations of submodular functions are sub-

modular, the function

FC(t1, . . . , t|C||G) =
∑
c∈C

F (tc|G)

is submodular as well.

We now optimize FC(G) by using the greedy algorithm, a
well-known efficient heuristic with provable performance
guarantees. The algorithm starts with an empty graph K̄
and it adds edges that maximize the marginal gain se-
quentially. That means, at iteration i we choose the edge
ei = argmaxe∈G\Gi−1

FC(Gi−1 ∪ {e})− FC(Gi−1).

The algorithm stops once it has selected k edges, and re-
turns the solution Ĝ = {e1, . . . , ek}. The greedy algo-
rithm is guaranteed to find a set Ĝ which achieves at least
a constant fraction (1− 1/e) (of the optimal value achiev-
able using k edges (Nemhauser et al., 1978). Starting from
the near-optimal solution given by the greedy algorithm,
we could possibly improve the solution by applying a local
search procedure.

As in the original NETINF formulation, our algorithm also
allows for two speeds-up: localized updates and lazy eval-
uation (Algorithm 1). We can also obtain an on-line bound
based simply on the submodularity of the objective func-
tion (Leskovec et al., 2007).
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Figure 3. Gain in Area Under the ROC curve (AUC) of our method compared to NETINF vs number of cascades for (a) a random
Kronecker network, (b) a hierarchical Kronecker network and (c) a core-periphery Kronecker network with 1,024 nodes and 1,024 edges
for all three transmission models. Our method is able to more accurately infer a network for small number of cascades and it exhibits
similar performance to NETINF for larger number of cascades.

4. Experimental evaluation
We evaluate our network inference algorithm in both syn-
thetic and real networks. We use synthetic networks that
aim to mimic the structure of social networks, and real
information networks that are based on the MemeTracker
dataset1. We compare our method in terms of precision,
recall, accuracy and scalability with several state-of-the-
art algorithms: NETINF, CONNIE and NETRATE. For the
comparisons, we use the public domain implementations of
these algorithms.

4.1. Experiments on synthetic data

Experimental setup. We first generate synthetic networks
using two different well-known models of social networks:
the Forest Fire (scale free) model (Barabási & Albert,
1999) and the Kronecker model (Leskovec et al., 2010),
and set the pairwise transmission rates of the edges of the
networks by drawing samples from α ∼ U(0.5, 1.5). We
then simulate and record a relatively small set of prop-
agating cascades over each network using three different
pairwise transmission likelihoods: exponential, power-law
and Rayleigh. There are several reasons why we consider
small set of cascades in comparison to the network size.
First, all methods (including ours) assume that cascades
propagate over a fixed network. Since social networks are
highly dynamic (Backstrom & Leskovec, 2011), changing
and growing rapidly, we can only expect to record a small
number of cascades over a fixed network. Second, track-
ing and recording cascades is a difficult and expensive pro-
cess (Leskovec et al., 2009). Therefore, it is desirable to
develop network inference methods that work well with a
small number of observed cascades.

Accuracy. We compare the inferred and true networks via
three measures: precision, recall and accuracy. Precision

1Data available at http://memetracker.org

is the fraction of edges in the inferred network Ĝ present
in the true network G∗ . Recall is the fraction of edges
of the true network G∗ present in the inferred network Ĝ.
Accuracy is 1 −

∑
i,j |I(α

∗
i,j)−I(α̂i,j)|∑

i,j I(α
∗
i,j)+

∑
i,j I(α̂i,j)

, where I(α) = 1

if α > 0 and I(α) = 0 otherwise. Inferred networks with
no edges or only false edges have zero accuracy.

Figure 2 compares our method the precision, recall and
accuracy of our method with for three different 1,024
node Kronecker networks: a random network (Erdős &
Rényi, 1960) (parameter matrix [0.5, 0.5; 0.5, 0.5]), a hier-
archical network (Clauset et al., 2008) ([0.9, 0.1; 0.1, 0.9])
and a core-periphery network (Leskovec et al., 2008)
([0.9, 0.5; 0.5, 0.3]), and 200 observed cascades. In terms
of precision-recall, our method is able to reach higher re-
call values than NETINF, CONNIE and NETRATE, i.e., it
is able to discover more true edges from a small number
of cascades than other methods. For recall values that are
reachable using NETINF, our method and NETINF offer
a very similar precision value. Our methods allows for
higher recall in comparison with NETINF because it gets
exhausted2 later for considering all possible trees per cas-
cade instead of only the most probable one. In terms of
accuracy, our method outperforms NETINF for more than
half of their outputted solutions, and matches the remain-
ing ones. CONNIE and NETRATE’s accuracy is typically
significantly lower. However, NETRATE is able to beat
all other methods for the hierarchical Kronecker network.
If we compare with previous studies (Myers & Leskovec,
2010), the performance of CONNIE seem to degrade the
most due to the limited availability in cascades and perhaps
the variable transmission rates across the networks (as re-
ported previously in Gomez-Rodriguez et al. (2011)).

Performance vs. cascade coverage. Intuitively, the more

2A greedy method (ours and NETINF) gets exhausted at iter-
ation k when there are not any more edges with marginal gain
larger than zero.

http://memetracker.org
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Figure 4. Average running time per edge added against number of
cascades. We used a 1,024 node random Kronecker with expo-
nential transmission model.

cascades we observe, the more accurately any algorithm
infers a network. Actually, when the number of cascades
is large in comparison to the network size, we expect dif-
ferences in performance among methods become negli-
gible. Figure 3 plots the gain in Area Under the ROC
curve (AUC) for our method in comparison with NET-
INF, (AUCour method− AUCNETINF)/AUCNETINF, against num-
ber of observed cascades for several Kronecker networks
and transmission models (β = 0.5 and α ∼ U(0.5, 1.5) in
all models). We observe that the difference in performance
between our method and NETINF is greater for small num-
ber of cascades and for a large enough number of cascades,
both methods perform similarly or NETINF slightly outper-
forms our method.

Scalability. Figure 4 plots the average computation time
per edge added against number of cascades. Since NET-
RATE is not greedy and instead solve a convex program for
each node in the network, we divided their total running
times by the number of edges that our method added until
getting exhausted (until no edge has marginal gain greater
than zero). We used the publicly available implementations
of our algorithm and NETINF, both coded in C++. To carry
out a fair comparison with NETRATE, we have developed
a projected full gradient descend C++ implementation of
NETRATE, which is considerably faster than the publicly
available Matlab implementation (that uses the CVX con-
vex solver), and we run 10 and 20 iterations of full gra-
dient descend (remarkably, even running one single itera-
tion was slower than NETINF and our method). We do not
report running times for CONNIE since the publicly avail-
able code is a Matlab implementation (that uses the SNOPT
solver) and probably slower than a C++ implementation.
Our method and NETINF are approximately one order of
magnitude faster than NETRATE. Finally, note that the run-
ning time of our algorithm does not depend on the network
size but the number of cascades and cascade size. As an
experimental validation, we run our algorithm in two net-
works with 100, 000 and 200, 000 nodes and an average of
two edges per node using 10, 000 cascades and our algo-
rithm took only 10.12 ms and 12.14 ms per edge added.
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Figure 5. Real data. Panel (a) plots precision-recall and panel (b)
accuracy on a 1,000 node hyperlink network with 10,000 edges
using 1,000 cascades and a power-law model. To control the so-
lution sparsity or precision-recall tradeoff, we sweep over k (num-
ber of edges) in our method and NETINF and over ρ (penalty fac-
tor) in CONNIE. Our method beats others for the majority of their
outputted solutions.

4.2. Experiments on real data

Experimental setup. We use the publicly available
MemeTracker dataset, which contains more than 172 mil-
lion news articles and blog posts from 1 million online
sources (Leskovec et al., 2009). Sites publish pieces of
information and use hyperlinks to refer to their sources,
which are other sites that published the same or closely
related pieces of information. Therefore, we use hyper-
links to trace information propagation over blogs and media
sites. A hyperlink cascade is simply a collection of time-
stamped hyperlinks between sites (in blog or news media
posts) that refer to the same or closely related pieces of
information. We record one hyperlink cascade per piece
or closely related pieces of information. We extract the top
1,000 media sites and blogs with the largest number of doc-
uments, 10,000 hyperlinks and 500 longest hyperlink cas-
cades. We create a ground truth network G which contains
an edge between a site u and a site v if there is at least a site
post in the site u that links to a post on the site v. We then
infer a network Ĝ from the hyperlink cascades and evaluate
precision, recall and accuracy with respect to G. We con-
sider a power law pairwise transmission likelihood. Note
that we trace the flow of information and create a ground
truth network using hyperlinks because we are interested in
a quantitative evaluation of our method in comparison with
the state of the art. For richer qualitative insights, cascades
based on short textual phrases should be considered, but
that goes beyond the scope of this paper.

Accuracy. Figure 5 shows precision, recall and accuracy
of our method in comparison with NETINF, CONNIE and
NETRATE. Our method reaches higher recall values than
any other methods. In terms of accuracy, it beats others for
the majority of their outputted solutions. As in the synthetic
experiments, the shortage of recorded cascades degrades
CONNIE’s performance dramatically.
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5. Conclusions
We have developed an efficient approximation algorithm
with provable near-optimal performance that solves an
open problem on network inference from diffusion traces
(or cascades) first introduced by Gomez-Rodriguez et al.
(2010). In our work, for each observed cascade we consider
all possible ways in which a diffusion process spreading
over the network can create the cascade, in contrast with
NETINF, that considers only the most probable way (tree).

Perhaps surprisingly, despite considering all trees, we show
experimentally that the running time of our method and
NETINF are similar, and they are several orders of mag-
nitude faster than alternative network inference methods
based on convex programming as NETRATE and CONNIE.
Moreover, our algorithm typically outperforms NETINF,
NETRATE and CONNIE in terms of precision, recall and
accuracy in highly dynamic networks in which we only ob-
serve a relatively small set of cascades before they change
significantly.
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