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Abstract

This paper considers the problem of learning,
from samples, the dependency structure of a
system of linear stochastic differential equa-
tions, when some of the variables are latent.
We observe the time evolution of some vari-
ables, and never observe other variables; from
this, we would like to find the dependency
structure of the observed variables – separat-
ing out the spurious interactions caused by
the latent variables’ time series. We develop
a new convex optimization based method to
do so in the case when the number of latent
variables is smaller than the number of ob-
served ones. For the case when the depen-
dency structure between the observed vari-
ables is sparse, we theoretically establish a
high-dimensional scaling result for structure
recovery. We verify our theoretical result
with both synthetic and real data (from the
stock market).

1. Introduction

Linear stochastic dynamical systems are classic pro-
cesses that are widely used due to their simplicity and
effectiveness in practice to model time series data in a
huge number of fields: financial data (Cochrane, 2005),
biological networks of species (Lawrence et al., 2010)
or genes (Bar-Joseph, 2004), chemical reactions (Gille-
spie, 2007; Higham, 2008), control systems with noise
(Young, 1984), etc. An important task in several of
these domains is learning the model from data which
is often the first step in both data interpretation, pre-
diction of future values or perturbation analysis. Often
one is interested in learning the dependency structure;
i.e., identifying, for each variable, which set of other
variables it directly interacts with.

This paper considers the problem of structure learning
in linear stochastic dynamical systems, in a setting
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where only a subset of the time series are observed,
and others are unobserved/latent. In particular, we
consider a system with state vectors x(t) ∈ R

p and
u(t) ∈ R

r, for t ∈ R
+ and dynamics described by

d

dt

[
x(t)
u(t)

]
=

[
A∗ B∗

C∗ D∗

]

︸ ︷︷ ︸
A∗

[
x(t)
u(t)

]
+

d

dt
w(t), (1)

where, w(t) ∈ R
p+r is an independent standard Brow-

nian motion vector and A∗, B∗, C∗, D∗ are system pa-
rameters. We observe the process x(t) for some time
horizon 0 ≤ t ≤ T , but not the process u(·). We are
interested in learning the matrix A∗ (both for the con-
tinuous and discrete time systems), which captures the
interactions between the observed variables. However,
the presence of latent time series u(·), if not properly
accounted for by the model learning procedure, will re-
sult in the appearance of spurious interactions between
observed variables especially for classic max-likelihood
estimators even over infinite horizon.

Suppose, for illustration, that we are interested in
learning the dependency structure between the prices
of a set of stocks x(·) via model (1). Clearly, stock
prices depend not only on each other, but are also
jointly influenced by several variables u(·) that may
not be observed, for example, currency markets, com-
modity prices, etc. The presence of u(·) means that a
naive learning algorithm (say LASSO) will report sev-
eral spurious interactions; say, e.g. between all stocks
that fluctuate with the price of oil.

Clearly there are several issues with regards to funda-
mental identifiability, and sample and computational
complexity, that need to be defined and resolved. We
do so below in the specific context of our model set-
ting and provide both theoretical guarantees on the
problem, as well as numerical illustrations for both
synthetic and real data extracted from stock market.

2. Related Work

We organize the most directly related work as follows
(recognizing of course that these descriptions overlap).
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Sparse Recovery and Gaussian Graphical
Model Selection: It is now well recognized (Tib-
shirani, 1996; Wainwright, 2009; Meinshausen &
Buhlmann, 2006) that a sparse vector can be tractably
recovered from a small number of linear measurements;
and also that these techniques can be applied to do
model selection (i.e. inferring the Markov graph struc-
ture and parameters) in Gaussian graphical models
(Meinshausen & Buhlmann, 2006; Ravikumar et al.,
2008; d’Aspremont et al., 2007; Friedman et al., 2007;
Yuan & Lin, 2007). Two differences between our set-
ting and these papers are that they do not have any
latent factors, and theoretical guarantees typically re-
quire independent (over time) samples. In particular,
latent factors imply that these techniques will in ef-
fect attempt to find models that are dense, and hence
not be able to have a high-dimensional scaling. Cor-
relation among samples means we cannot directly use
standard concentration results, and also brings in the
interesting issue of the effect of sampling frequency; in
our setting, one can get more samples by finer sam-
pling, but increased correlation means these do not
result in better consistency.

Sparse plus Low-Rank Matrix Decomposition:
Our results are based on the possibility of separating
a low-rank matrix from a sparse one, given their sum
(either the entire matrix, or randomly sub-sampled el-
ements thereof) – see (Chandrasekaran et al., 2011;
Candes et al., 2009; Chen et al., 2011; Zhou et al.,
2010; Candes & Plan, 2010) for some recent results,
as well as its applications in graph clustering (Jalali
et al., 2011; Jalali & Srebro, 2012), collaborative filter-
ing (Srebro & Jaakkola, 2003), image coding (Hazan
et al., 2005), etc. Our setting is different because we
observe correlated linear functions of the sum matrix,
and furthermore these linear functions are generated
by the stochastic linear dynamical system described
by the matrix itself. Another difference is that sev-
eral of these papers focus on recovery of the low-rank
component, while we focus on the sparse one. These
two objectives have a very different high-dimensional
behavior.

Inference with Latent Factors: In real applica-
tions of data driven inference, it is always a concern
that whether or not there exist influential factors that
have never been observed (Loehlin, 1984; West, 2003).
Several approaches to this problem are based on Ex-
pectation Maximization (EM) (Dempster et al., 1977;
Redner & Walker, 1984); while this provides a natural
and potentially general method, it suffers from the fact
that it can get stuck in local optima (and hence is sen-
sitive to initialization), and that it comes with weak
theoretical guarantees. The paper (Chandrasekaran

et al., 2010) takes an alternative, convex optimiza-
tion approach to the latent factor problem in Gaus-
sian graphical models, and is of direct relevance to our
paper. In (Chandrasekaran et al., 2010), the objective
is to find the number of latent factors in a Gaussian
graphical model, given iid samples from the distribu-
tion of observed variables; they also use sparse and
low-rank matrix decomposition. Differences between
our paper and theirs is that we focus on recovering
the support of the “sparse part”, i.e. the interactions
between the observed variables exactly, while they fo-
cus on recovery the rank of the low-rank part (i.e. the
number of latent variables). Our objective requires
O(log p) samples, theirs requires Ω(p). Another major
difference is that our observations are correlated, and
hence sample complexity itself needs a different defi-
nition (viz. it is no more the number of samples, but
rather the overall time horizon over which the linear
system is observed).

System Identification: Linear dynamical system
identification is a central problem in Control Theory
(Ljung, 1999). There is a long line of work on this
problem in that field including expectation maximiza-
tion (EM) methods (Martens, 2010), Subspace Identi-
fication (4SID) methods (Van Overschee & De Moor,
1993), Prediction Error Method (PEM) (Ljung, 2002;
Peeters et al.; Fazel et al., 2011). Our problem can
be considered as a special case of system identification
Ẋ = AX +BU +W with output Y = CX +DU , when
X = [x;u], U = 0 and C is a matrix with identity ma-
trix of size p × p on its diagonal and zero elsewhere.
However, the results in the literature do not provide
high-dimensional guarantees for system identification
and perhaps our paper is an initial step in that direc-
tion. Recently, (Bento et al., 2010) considered a prob-
lem similar to ours, without any latent variables, i.e.,
the matrix C is identity. They implement the LASSO;
the main contribution is characterizing sample com-
plexity in the presence of sample dependence. In our
setting, with latent variables, their method returns
several spurious graph edges caused by marginaliza-
tion of latent variables.

Time-series Forecasting: Motivated by finance ap-
plications, time-series forecasting has got a lot of
attention during the past three decades (Chatfield,
2000). In the model based approaches, it is assumed
that the time-series evolves according to some statis-
tical model such as linear regression model (Bower-
man & O’Connell, 1993), transfer function model (Box
et al., 1990), vector autoregressive model (Wei, 1994),
etc. In each case, researchers have developed differ-
ent methods to learn the parameters of the model for
the purpose of forecasting. In this paper, we focus
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on linear stochastic dynamical systems that are an in-
stance of vector autoregressive models. Previous work
toward estimating this model parameters include ad-
hoc use of neural network (Azoff, 1994) or support
vector machine method (Kim, 2003), all without pro-
viding theoretical guarantees on the performance of
the algorithm. Our work is different from these results
because although our method provides better predic-
tion, our main focus is sparse model selection not pre-
diction. Perhaps, once a sparse model is selected, one
can study the prediction as a separate subject.

3. Problem Setting and Main Idea

Other than the continuous time model (1), we are in-
terested in a similar objective for an analogous dis-
crete time system with parameter 0 < η < 2

σmax(A∗)

for σmax(·) being the maximum singular value:

[
x(n+ 1)
u(n+ 1)

]
−

[
x(n)
u(n)

]
= η

[
A∗ B∗

C∗ D∗

] [
x(n)
u(n)

]
+w(n)

(2)

for all n ∈ N0. Here, w(n) is a zero-mean Gaussian
noise vector with covariance matrix ηI(p+r)×(p+r). The
parameter η can be thought of as the sampling step;
in particular notice that as η → 0, we recover model
(1) from model (2). The upper bound on η ensures
the stability of the discrete time system as required by
our theorem. Intuitively, σmax(A∗) corresponds to the
fastest convergence rate (Nyquist sampling rate).

(A1) Stable Overall System: We only consider
stable systems. In fact, we impose an assumption
slightly stronger than the stability on the overall sys-
tem. For the continuous system (1), we require D :=

−Λmax(
A

∗+A
∗T

2 ) > 0, where Λmax(·) is the maximum
eigenvalue. With slightly abuse of notation in the dis-

crete system (2), we require D :=
1−Σ2

max

η
> 0, where,

Σmax := σmax(I + ηA∗). �

As a consequence of this assumption, by Lyapunov the-
ory, the continuous system (1) has a unique stationary
measure which is a zero-mean Gaussian distribution
with positive definite (otherwise, it is not unique) co-
variance matrix Q∗ ∈ R

(p+r)×(p+r) given by the so-
lution of A∗Q∗ + Q∗A∗T + I = 0. Similarly, for the
discrete time system (2), we have A∗Q∗ + Q∗A∗T +
ηA∗Q∗A∗T + I = 0. This matrix Q∗ has the form
Q∗ = [Q∗ R∗T ; R∗ P ∗], where, Q∗ and P ∗ are the
steady-state covariance matrices of the observed and
latent variables, respectively, and R∗ is the steady-
state cross-covariance between observed and latent
variables. By stability, we have Cmin := Λmin(Q∗) > 0
and Dmax := Λmax(Q∗) < ∞, where, Λmin(·) is the
minimum eigenvalue.

Identifiability: Clearly, the above objective of iden-
tifying A∗ is in general impossible without some ad-
ditional assumptions on the model; in particular, sev-
eral different choices of the overall model (including
different choices of A∗) can result in the same effec-
tive model for the x(·) process. x(·) would then be
statistically identical under both models, and correct
identification would not be possible even over an in-
finite time horizon. Additionally, it would in general
be impossible to achieve identification if the number of
latent variables is comparable to or exceeds the num-
ber of observed variables. Thus, to make the problem
well-defined, we need to restrict (via appropriate as-
sumptions) the set of models of interest.

3.1. Main Idea

Consider the discrete-time system (2) in steady state
and suppose, for a moment, that we ignored the fact
that there may be latent time series; in this case, we
would be back in the classical setting, for which the
(population version of) the likelihood is

L(A) =
1

2η2
E
[
‖x(i+ 1)− x(i)− ηAx(i)‖22

]
.

Lemma 1. For x(·) generated by (2), the the optimum
Ā := maxA L(A) is given by Ā = A∗ +B∗R∗(Q∗)−1.

Thus, the optimal Ā is a sum of the original A∗ (which
we want to recover) and the matrix B∗R∗(Q∗)−1 that
captures the spurious interactions obtained due to the
latent time series. Notice that the matrix B∗R∗(Q∗)−1

has the rank at most equal to number r of latent time
series. We will assume that the number of latent time
series is smaller than the number of observed ones – i.e.
r < p – and hence B∗R∗(Q∗)−1 is a low-rank matrix.

3.2. Identifiability

Besides identifying the effect of the latent time series,
we would need the true model to be such that A∗ is
uniquely identifiable from B∗R∗(Q∗)−1. We choose to
study models that have a local-global structure where
(a) each of the observed time series xi(t) interacts with
only a few other observed series, while (b) each of the
latent series interacts with a (relatively) large number
of observed series. In the stock market example, this
would model the case where the latent series corre-
sponds to macro-economic factors, like currencies or
the price of oil, that affect a lot of stock prices.

In particular, let s be the maximum number of non-
zero entries in any row or column of A∗ ; it is the maxi-
mum number of other observed variables any given ob-
served variable directly interacts with. Note that this
means A∗ is a sparse matrix. Let L∗ := B∗R∗(Q∗)−1

and assume it has SVD L∗ = U∗Σ∗V ∗T , and recall
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that its rank is r. Then, following (Chen et al., 2011),
L∗ is said to be µ-incoherent if µ > 0 is the smallest
real number satisfying

max
i,j

(‖U∗T ei‖, ‖V
∗T ej‖) ≤

√
µr

p
, ‖U∗

V
∗T ‖∞ ≤

√
rµ

p2
,

where, ei’s are standard basis vectors and ‖·‖ is vector
2-norm. Smaller values of µ mean the row/column
spaces make larger angles with the standard bases, and
hence the resulting matrix is more dense.

(A2) Identifiability: We require that the s of the
sparse matrix A∗ and the µ of the low-rank L∗, which

has rank r, satisfy α := 3
√

µrs
p

< 1. �

3.3. Algorithm

Recall that our task is to recover the matrix A∗ given
observations of the x(·) process. We saw that the max-
likelihood estimate (in the population case) was the
sum of A∗ and a low-rank matrix; we subsequently
assumed that A∗ is sparse. It is natural to use the
max-likelihood as the loss function for the sum of a
sparse and low-rank matrix, and separate appropri-
ate regularizers for each of the components. Thus, for
the continuous-time system observed up to time T , we
propose solving

(Â, L̂)=argmin
A,L

1

2T

∫ T

t=0

‖(A+ L)x(t)‖22 dt

−
1

T

∫ T

t=0

x(t)T (A+ L)T dx(t) + λA‖A‖1 + λL‖L‖∗,

(3)

and for the discrete-time system given n samples, we
propose solving

(Â, L̂)=argmin
A,L

1

2η2n

n−1∑

i=0

‖x(i+ 1)−x(i)−η(A+ L)x(i)‖22

+ λA‖A‖1 + λL‖L‖∗.
(4)

Here ‖ · ‖1 is the ℓ1 norm (a convex surrogate for spar-
sity), and ‖ · ‖∗ is the nuclear norm (i.e. sum of sin-
gular values, a convex surrogate for low-rank). The

optimum Â of (4) or (3) is our estimate of A∗, and
our main result provides conditions under which we
recover the support of A∗, as well as a bound on the
error in values ‖Â−A∗‖∞ (maximum absolute value).

We provide a bound on the error ‖L̂− L∗‖2 (spectral
norm) for the low-rank part.

3.4. High-dimensional setting

We are interested in recovering A∗ with a number of
samples n that is potentially much smaller than p (for
small s). In the special case when we are in steady
state and L = 0 (i.e. λL large) the recovery of each row
of A∗ is akin to a LASSO (Tibshirani, 1996) problem

with Q∗ being the covariance of the design matrix. We
thus require Q∗ to satisfy incoherence conditions that
are akin to those in LASSO (see e.g. (Wainwright,
2009) for the necessity of such conditions).

(A3) Incoherence: To control the effect of the irrel-
evant (not latent) variables on the set of relevant vari-
ables, we require θ := 1−maxk ‖Q

∗
Sc
k
Sk

(
Q∗

SkSk

)−1
‖∞,1>

0, where, Sk is the support of the kth row of A∗ and
Sc
k is the complement of that. The norm ‖ · ‖∞,1 is the

maximum of the ℓ1-norm of the rows. �

4. Main Results

In this section, we present our main result for both
Continuous and Discrete time systems. We start by
imposing some assumptions on the regularizers and
the sample complexity.

(A4) Regularizers: Let m be the maximum of
80√
D
‖B∗‖∞,1 and

√
‖x(0)‖22 +‖u(0)‖22 +(

√
η + 1)2 capturing the

effect of initial condition and latent variables through
matrix B∗. We impose the following assumptions on
the regularizers:

(A4-1) λA = 16m(4−θ)

θ
√
D

√
log

(
4((s+2r)p+r2)

δ

)

nη
.

(A4-2) λL

λA
√

p
= 1

1−α

((
3α

√
s

4
+ (8−θ)s

θ(4−θ)

)(
θ
√
p

9s
√
s
+1

)
+ 1

2

)
.

(A5) Sample Complexity: In our setting, the
smaller the η is, the more dependent two subsequent
samples are. Sample complexity is thus governed by
the total time horizon ηn = T over which we observe
the system, and not simply n; indeed finer sampling
(i.e. smaller η) requires a larger number of samples.
For a probability of failure δ, we require

T = nη ≥
K s3

D2θ2C2
min

log

(
4((s+ 2r)p+ r2)

δ

)
.

Here K is a constant independent of any other system
parameter; for example, K ≥ 3× 106 suffices.

Define parameters ν = αθ
2Dmax

+ (8−θ)
√
s

Cmin(4−θ)
and ρ :=

min
(

α
4
, θαλA

5θαλA+16Dmax‖L∗‖2

)
. The following (unified)

theorem states our main result for both discrete and
continuous time systems.

Theorem 1. If assumptions (A1)-(A5) are satisfied,
then with probability 1 − δ, our algorithm outputs a
pair (Â, L̂) satisfying

(a) Sub Support Recovery: Supp(Â) ⊂ Supp(A∗).

(b) Error Bounds:

‖Â−A∗‖∞ ≤ νλA and ‖L̂− L∗‖2 ≤ ρ

1− 5ρ
‖L∗‖2.

(c) Exact Signed Support Recovery: If addition-
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ally the smallest magnitude Amin of a non-zero ele-
ment of A∗ satisfies Amin > νλA, then we obtain full
signed-support recovery Sign(Â) = Sign(A∗).

Note: Note that λA, as defined in (A4-1), depends on
the sample complexity T , and goes to 0 as T becomes
large. Thus it is possible to get exact signed support
recovery by making T large.

Remark 1: Our result shows that, in sparse and low-
rank decomposition for latent variable modeling, re-
covery of only the sparse component seems to be pos-
sible with much fewer samples – O(s3 log p) – as com-
pared to, for example, the recovery of the exact rank
of the low-rank part; the latter was show to require
Θ(p) samples in (Chandrasekaran et al., 2010).

Remark 2: The above theorem shows that, even in
the presence of latent variables, our algorithm requires
a similar number of samples (i.e. upto universal con-
stants) as previous work (Bento et al., 2010) required
in the absence of hidden variables. Of course, this is
true as long as identifiability (A2) holds. Note that
the absence of such identifiability conditions makes
even simple sparse and low-rank matrix decomposition
ill-posed (Chandrasekaran et al., 2011).

Remark 3: Although our theoretical result shows a
scaling of s3 for the sample complexity, the empirical
result suggests that the correct scaling factor is s2. We
suspect our result as well as Bento et al. (2010) can be
tightened.

Illustrative Example: Consider a simple idealized
example that helps give intuition about the above the-
orem. Suppose that we are in the continuous time set-
ting, where each latent variable j depends only on its
own past, updating according to

dxj

dt
= −xj(t) +

dwj

dt

and for each observed variable i depends only on
its own past and a unique latent variable j(i), i.e.,
dxi

dt
= −xi(t) + xj(i)(t) +

dwi

dt
. There are r latent vari-

ables, and assume that each latent variable affects ex-
actly p

r
observed variables in this way.

For this idealized setting, we can exactly evaluate all
the quantities we need. It is not hard to show that
the steady-state covariance matrices are Q∗ = 0.5(I +
B∗B∗T ) and R∗ = B∗T resulting in L∗ = (r/(p +
r))B∗B∗T , which gives U∗ = V ∗ =

√
r/pB∗ and µ =

r. Hence, we need r <
√
p/3 by assumption (A2).

Moreover, we can show that θ = 1
2 for this example and

hence the assumption (A3) is also satisfied. Finally by
evaluating other parameters in the theorem, we get the
error bounds ‖A∗ − Â‖∞ ≤ (3r/(4

√
p) + 25

√
s/7)λA

and ‖L∗ − L̂‖2 ≤ 3rλA/(32
√
p). The details of this

calculations can be found in the appendix available
online.

5. Proof Outline

In this section, we first introduce some notations and
definitions and then, provide a three step proof tech-
nique to prove the main theorem for the discrete time
system. The proof of the continuous time system is
done via a coupling argument in the appendix.

There are two key novel ingredients in the proof en-
abling us to get the low sample complexity result in
our theorem. The first ingredient comes from our new
set of optimality conditions inspired by (Candes et al.,
2009). This optimality conditions enable us to cer-
tify an approximation of L∗ while certifying the exact
sign support of A∗. The second ingredient comes from
the bounds on the Schur complement of the perturba-
tion of positive semi-definite matrices (Stewart, 1995).
This result enables us to get a bound on the Schur com-
plement of a perturbation of a positive semi-definite
matrix of size p with only log(p) samples.

Given a matrix A∗, let Ω be the subspace of matrices
whose their support is a subset of the matrix A∗. The
orthogonal projection of a matrix M to Ω is denoted
by PΩ(M). Denote the orthogonal complement space
with Ωc with orthogonal projection PΩc(M).

For any matrix L ∈ R
p×p, if the SVD is L = UΣV T ,

then let T (L) := {M = UXT + Y V T for some X,Y }
denote the subspace spanned by all matrices that
have the same column space or row space as L.
The orthogonal projection of a matrix N to T is
denoted by PT (N). Denote the orthogonal com-
plement space with T c with orthogonal projection
PT c . We define a metric to measure the close-
ness of two subspaces T1 and T2 as ρ (T1, T2) =

maxN∈Rp×p

‖PT1
(N)−PT2

(N)‖2
‖N‖2 .Finally, let T = T (L∗) to

shorten the notation and L∗ = U∗Σ∗V ∗ be a singular
value decomposition.

We outline the proof in three steps as follows:

STEP 1: Constructing a candidate primal optimal
solution (Ã, L̃) with the desired sparsity pattern using
the restricted support optimization problem, called or-
acle problem:

(Ã, L̃)= arg min
L:ρ(T (L),T )≤ρ

A:PΩc (A)=0

λA‖A‖1+λL‖L‖∗

+
1

2η2n

n−1∑

i=0

‖x(i+ 1)−x(i)−η(A+ L)x(i)‖22 .

(5)

This oracle is similar to the one used in (Chan-
drasekaran et al., 2010). It ensures that the right spar-

sity pattern is chosen for Ã and the tangent spaces L̃
and L∗ come from are close with parameter ρ.
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STEP 2: Writing down a set of sufficient (stationary)

optimality conditions for (Ã, L̃) to be the unique solu-
tion of the (unrestricted) optimization problem (4):

Lemma 2. If Ω ∩ T = {0}, then (Ã, L̃), the solution
to the oracle problem (5), is the unique solution of the

problem (4) if there exists a matrix Z̃ ∈ R
p×p s.t.

(C1) PΩ(Z̃) = λASign
(
Ã
)
. (C2)

∥∥∥PΩc(Z̃)
∥∥∥
∞

< λA.

(C3)
∥∥∥PT (Z̃)− λLU

∗V ∗T
∥∥∥
2
≤ 4ρλL.

(C4)
∥∥∥PT c(Z̃)

∥∥∥
2
< (1− α)λL.

(C5) −
1

ηn

n∑

i=1

(
x(i+ 1)− x(i)− η(Ã+ L̃)x(i)

)
x(i)T+Z̃=0.

STEP 3: Constructing a dual variable Z̃ that satisfies
the sufficient optimality conditions stated in Lemma 2.
For matrices M ∈ Ω and N ∈ T , let

HM = M − PT (M) + PΩPT (M)− PT PΩPT (M) + . . .

GN = N − PΩ(N) + PT PΩ(N)− PΩPT PΩ(N) + . . . .

It has been shown in (Chen et al., 2011) that if α < 1
then both infinite sums converge. Suppose we have
the SVD decomposition L̃ = Ũ Σ̃Ṽ T . Let

Z̃ = H
λASign(Ã) + G

PT (λLŨṼ T ) +∆,

where, ∆ is a matrix such that (C5) is satisfied. As a
result of this construction, we have PΩ(∆) = PT (∆) =

0. Now, we can establish PΩ(Z̃) = λASign(Ã) and

PT (Z̃) = PT (λLŨ Ṽ T ) and consequently the condi-
tions (C1) and (C3) in Lemma 2 are satisfied. It suf-
fices to show that (C2) and (C4) are satisfied with high
probability. This has been shown in Lemma 6.

6. Experimental Results

6.1. Synthetic Data

Motivated by the illustrative example discussed in sec-
tion 4, we simulate a similar (but different) dynamic
system for the purpose of our experiments. Consider
the system where each latent variable only evolves by
itself, i.e., C∗ = 0 and D∗ is a diagonal matrix. More-
over, assume that each latent variable affects 2p/r ob-
served variable and each observed variable is affected
by exactly two latent variable. We randomly select
a support of size s per row for A∗ and draw all the
values of A∗ and B∗ i.i.d. standard Gaussian. To
make the matrix A∗ stable, by Geršgorin disk theo-
rem (Geršgorin, 1931), we put a large-enough negative
value on the diagonals of A∗ and D∗.

We generate the data according to the continuous time
model sub-sampled at points ti = ηi for i = 1, 2, . . . , n,

that is
[

x(i)
u(i)

]
= eηA

[
x(i− 1)
u(i− 1)

]
+

∫ ηi

η(i−1)

eA(ηi−τ)dw(τ)

The stochastic integral can be estimated by binning
the interval and assuming the Brownian motion is con-
stant over the bin and hence, can be estimated by a
standard Gaussian. See Chapter 4 in Shreve (2004).

Using this data, we solve (4) using accelerated proxi-
mal gradient method (Lin et al., 2009). Motivated by
our Theorem, we plot our result with respect to the
control parameter Θ = ηn

s3 log((s+2r)p+r2) .

Figure 5 shows the phase transition of the probability
of success in recovering the exact sign support of the
matrix A∗. We ran three different experiments, each
investigating the effect of one of the three key param-
eters of the system η (sampling frequency), r (num-
ber of latent variables) and s (sparsity of the model).
These three figures show that the probability of suc-
cess curves line up if they are plotted versus the correct
control parameter. The first two curves for η and r line
up versus Θ, indicating that our theorem suggests the
correct scaling law for the sample complexity. How-
ever, from this experiment, it seems that the phase
transition probability lines up with respect to Θs sug-
gesting the scaling of s2 instead of s3.

6.2. Stock Market Data

We take the end-of-the-day closing stock prices for
50 different companies in the period of May 17, 2010
- May 13, 2011 (255 business days). These compa-
nies (among them, Amazon, eBay, Pepsi, etc) are con-
sumer goods companies traded either at NASDAQ or
NYSE in USD. The data is collected from Google Fi-
nance website. Applying our method and pure LASSO
(Bento et al., 2010) to the data, we recover the struc-
ture of the dependencies among stocks. We present
the result as a graph in Fig 6.2; where each company
is a node in this graph and there is an edge between
company i and j if Âij 6= 0. This result shows that
the recovered dependency structure by our algorithm
is order of magnitude sparser than the one recovered
by pure LASSO.

To show the usefulness of our algorithm for prediction
purposes, we apply our algorithm to this data and try
to learn the model using the data for random n (con-
secutive) days. Then, we compute the mean squared
error in the prediction of the following month (25 busi-
ness days). The ratio n

25 is the training/testing ratio
in our experiment.

Figure 3(b) shows the prediction error for both our
and pure LASSO (Bento et al., 2010) methods as
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(a) Effect of η (b) Effect of r (c) Effect of s

Figure 1. Probability of success in recovering the true signed support of A∗ versus the control parameter Θ (rescaled ηn)
with p = 200, r = 10 and s = 20 for different values of η (left), and, with p = 200, s = 20 and η = 0.01 for different
number of latent time series r (middle), and, with p = 200, r = 10 and fixed η = 0.01 for different sparsity sizes s (right).
Notice that (c) is plotted versus Θ× s which means nη scales with s2 not s3.

(a) Pure LASSO (b) Our Algorithm

Figure 2. Comparison of the stock dependencies recovered
by Pure LASSO (Bento et al., 2010) and our algorithm.
This shows that there are latent factors affecting large
number of stocks.

the train/test ratio increases. It can be seen that
our method not only have better prediction, but also
is more robust. Our algorithm requires only three
months of the past data to give a robust estimation
of the next month; in contrast with almost 6 months
requirement of LASSO while the error of our algorithm
is much smaller (by a factor of 6) than LASSO even
in the steady state. Figure 3(a) illustrates that our

estimated Â is order of magnitude sparser than the
one estimated by LASSO. The number of latent vari-
ables our model finds varies from 8 − 12 for different
train/test ratios.
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