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Abstract
We study the stability vis a vis adversarial
noise of matrix factorization algorithm for
matrix completion. In particular, our results
include: (I) we bound the gap between the
solution matrix of the factorization method
and the ground truth in terms of root mean
square error; (II) we treat the matrix factor-
ization as a subspace fitting problem and an-
alyze the difference between the solution sub-
space and the ground truth; (III) we analyze
the prediction error of individual users based
on the subspace stability. We apply these
results to the problem of collaborative filter-
ing under manipulator attack, which leads to
useful insights and guidelines for collabora-
tive filtering system design.

1. Introduction

Collaborative prediction of user preferences has at-
tracted fast growing attention in the machine learning
community, best demonstrated by the million-dollar
Netflix Challenge. Among various models proposed,
matrix factorization is arguably the most widely ap-
plied method, due to its high accuracy, scalability (Su
& Khoshgoftaar, 2009) and flexibility to incorporat-
ing domain knowledge (Koren et al., 2009). Hence,
not surprisingly, matrix factorization is the centerpiece
of most state-of-the-art collaborative filtering systems,
including the winner of Netflix Prize (Bell & Koren,
2007). Indeed, matrix factorization has been widely
applied to tasks other than collaborative filtering, in-
cluding structure from motion, localization in wireless
sensor network, DNA microarray estimation and be-
yond. Matrix factorization is also considered as a fun-
damental building block of many popular algorithms
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in regression, factor analysis, dimension reduction, and
clustering (Singh & Gordon, 2008).

Despite the popularity of factorization methods, not
much has been done on the theoretical front. In this
paper, we fill the blank by analyzing the stability vis a
vis adversarial noise of the matrix factorization meth-
ods, in hope of providing useful insights and guide-
lines for practitioners to design and diagnose their al-
gorithm efficiently.

Our main contributions are three-fold: In Section 3
we bound the gap between the solution matrix of the
factorization method and the ground truth in terms of
root mean square error. In Section 4, we treat the ma-
trix factorization as a subspace fitting problem and an-
alyze the difference between the solution subspace and
the ground truth. This facilitates an analysis of the
prediction error of individual users, which we present
in Section 5. To validate these results, we apply them
to the problem of collaborative filtering under manip-
ulator attack in Section 6. Interestingly, we find that
matrix factorization are robust to the so-called “tar-
geted attack”, but not so to the so-called “mass at-
tack” unless the number of manipulators are small.
These results agree with the simulation observations.

We briefly discuss relevant literatures. Azar et al.
(2001) analyzed asymptotic performance of matrix fac-
torization methods, yet under stringent assumptions
on the fraction of observation and on the singular val-
ues. Drineas et al. (2002) relaxed these assumptions
but it requires a few fully rated users – a situation
that rarely happens in practice. Srebro (2004) consid-
ered the problem of the generalization error of learning
a low-rank matrix. Their technique is similar to the
proof of our first result, yet applied to a different con-
text. Specifically, they are mainly interested in binary
prediction (i.e., “like/dislike”) rather than recovering
the real-valued ground-truth matrix (and its column
subspace). In addition, they did not investigate the
stability of the algorithm under noise and manipula-
tors.
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Recently, some alternative algorithms, notably Sta-
bleMC (Candes & Plan, 2010) based on nuclear norm
optimization, and OptSpace (Keshavan et al., 2010b)
based on gradient descent over the Grassmannian,
have been shown to be stable vis a vis noise (Can-
des & Plan, 2010; Keshavan et al., 2010a). However,
these two methods are less effective in practice. As
documented in Mitra et al. (2010); Wen (2010) and
many others, matrix factorization methods typically
outperform these two methods. Indeed, our theoret-
ical results reassure these empirical observations, see
Section 3 for a detailed comparison of the stability re-
sults of different algorithms.

2. Formulation

2.1. Matrix Factorization with Missing Data

Let the user ratings of items (such as movies) form a
matrix Y , where each column corresponds to a user
and each row corresponds to an item. Thus, the ijth

entry is the rating of item-i from user-j. The valid
range of the rating is [−k,+k]. Y is assumed to be
a rank-r matrix1, so there exists a factorization of
this rating matrix Y = UV T , where Y ∈ Rm×n,
U ∈ Rm×r, V ∈ Rn×r. Without loss of generality,
we assume m ≤ n throughout the paper.

Collaborative filtering is about to recover the rating
matrix from a fraction of entries possibly corrupted by
noise or error. That is, we observe Ŷij for (ij) ∈ Ω the
sampling set (assumed to be uniformly random), and

Ŷ = Y +E being a corrupted copy of Y , and we want
to recover Y . This naturally leads to the optimization
program below:

min
U,V

1

2

∥∥∥PΩ(UV T − Ŷ )
∥∥∥2

F

subject to
∣∣[UV T ]i,j

∣∣ ≤ k, (1)

where PΩ is the sampling operator defined to be:

[PΩ(Y )]i,j =

{
Yi,j if (i, j) ∈ Ω;
0 otherwise.

(2)

We denote the optimal solution Y ∗ = U∗V ∗T and the
error ∆ = Y ∗ − Y.

2.2. Matrix Factorization as Subspace Fitting

As pointed out in Chen (2008), an alternative interpre-
tation of collaborative filtering is fitting the optimal
r-dimensional subspace N to the sampled data. That

1In practice, this means the user’s preference of movies
are influenced by no more than r latent factors.

is, one can reformulate (1) into an equivalent form2:

min
N

f(N) =
∑
i

‖(I −Pi)yi‖2 =
∑
i

yTi (I −Pi)yi, (3)

where yi is the observed entries in the ith column of
Y , N is an m× r matrix representing an orthonormal
basis3 of N , Ni is the restriction of N to the observed
entries in column i, and Pi = Ni(N

T
i Ni)

−1NT
i is the

projection onto span(Ni).

After solving (3), we can estimate the full matrix in
a column by column manner via (4). Here y∗i denotes
the full ith column of recovered rank-r matrix Y ∗.

y∗i = N(NT
i Ni)

−1NT
i yi = Npinv(Ni)yi. (4)

Due to error term E, the ground truth subspace N gnd

can not be obtained. Instead, denote the optimal
subspace of (1) (equivalently (3)) by N ∗, and we
bound the gap between these two subspaces using
Canonical angle. The canonical angle matrix Θ is
an r × r diagonal matrix, with the ith diagonal entry
θi = arccosσi((N

gnd)TN∗).

The error of subspace recovery is measured by ρ =
‖ sin Θ‖2, justified by the following properties adapted
from Chapter 2 of Stewart & Sun (1990):

‖Pgnd − PN
∗
‖F =

√
2‖ sin Θ‖F ,

‖Pgnd − PN
∗
‖2 =‖ sin Θ‖2 = sin θ1.

(5)

2.3. Algorithms

We focus on the stability of the global optimal solution
of Problem (1). As Problem (1) is not convex, finding
the global optimum is non-trivial in general. While
this is certainly an important question, it is beyond
the scope of this paper. Instead, we briefly review
some results on this aspect.

The simplest algorithm for (1) is perhaps the alter-
nating least square method (ALS) which alternatingly
minimizes the objective function over U and V until
convergence. More sophisticatedly, second-order algo-
rithms such as Wiberg, Damped Newton and Leven-
berg Marquadt are proposed with better convergence
rate, as surveyed in Okatani & Deguchi (2007). Spe-
cific variations for CF are investigated in Takács et al.
(2008) and Koren et al. (2009).

From an empirical perspective, Mitra et al. (2010) re-
ported that the global optimum is often obtained in
simulation and Chen (2008) demonstrated satisfactory
percentage of hits to global minimum from randomly
initialized trials on a real data set.

2Strictly speaking, this is only equivalent to (1) without
the box constraint. See the discussion in Supplementary
Material for our justifications.

3It is easy to see N = ortho(U) for U in (1)
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3. Stability

We show in this section that when sufficiently many
entries are sampled, the global optimal solution of fac-
torization methods is stable vis a vis noise – i.e., it
recovers a matrix “close to” the ground-truth. This is
measured by the root mean square error (RMSE):

RMSE =
1√
mn
‖Y ∗ − Y ‖ (6)

Theorem 1. There exists an absolute constant C,
such that with probability at least 1− 2 exp(−n),

RMSE ≤ 1√
|Ω|
‖PΩ(E)‖F+

‖E‖F√
mn

+Ck

(
nr log(n)

|Ω|

) 1
4

.

Notice that when |Ω| � nr log(n) the last term di-
minishes, and the RMSE is essentially bounded by the
“average” magnitude of entries of E, i.e., the factor-
ization methods are stable.

Comparison with related work

We recall similar RMSE bounds for StableMC of Can-
des & Plan (2010) and OptSpace of Keshavan et al.
(2010a):

StableMC: RMSE

≤

√
32 min (m,n)

|Ω|
‖PΩ(E)‖F +

1√
mn
‖PΩ(E)‖F .

(7)

OptSpace: RMSE ≤ Cκ2n
√
r

|Ω|
‖PΩ(E)‖2. (8)

Albeit the fact that these bounds are for different al-
gorithms and under different assumptions (see Table 1
for details), it is still interesting to compare the re-
sults with Theorem 1. We observe that Theorem 1 is
tighter than (7) by a scale of

√
min (m,n), and tighter

than (8) by a scale of
√
n/ log(n) in case of adversarial

noise. However, the latter result is stronger when the
noise is stochastic, due to the spectral norm used.

Compare with an Oracle

We next compare the bound with an oracle, introduced
in Candes & Plan (2010), that is assumed to know the
ground-truth column space N a priori and recover the
matrix by projecting the observation to N in the least
square sense column by column via (4). It is shown
that RMSE of this oracle satsifies,

RMSE ≈
√

1/|Ω|‖PΩ(E)‖F . (9)

Notice that Theorem 1 matches this oracle bound, and
hence it is tight up to a constant factor.

3.1. Proof of Stability Theorem

We briefly explain the proof idea first. By definition,
the algorithm finds the optimal rank-r matrices, mea-
sured in terms of the root mean square (RMS) on the
sampled entries. To show this implies a small RMS on
the entire matrix, we need to bound their gap

τ(Ω) ,
∣∣∣ 1√
|Ω|
‖PΩ(Ŷ − Y ∗)‖F −

1√
mn
‖Ŷ − Y ∗‖F

∣∣∣.
To bound τ(Ω), we require the following theorem.

Theorem 2. Let L̂(X) = 1√
|Ω|
‖PΩ(X − Ŷ )‖F and

L(X) = 1√
mn
‖X−Ŷ ‖F be the empirical and actual loss

function respectively. Furthermore, assume entry-wise
constraint maxi,j |Xi,j | ≤ k. Then for all rank-r ma-
trices X, with probability greater than 1 − 2 exp(−n),
there exists a fixed constant C such that

sup
X∈Sr

|L̂(X)− L(X)| ≤ Ck
(nr log(n)

|Ω|

) 1
4

.

Indeed, Theorem 2 easily implies Theorem 1.

Proof of Theorem 1. The proof makes use of the fact
that Y ∗ is the global optimal of (1).

RMSE =
1√
mn
‖Y ∗ − Y ‖F =

1√
mn
‖Y ∗ − Ŷ + E‖F

≤ 1√
mn
|Y ∗ − Ŷ ‖F +

1√
mn
‖E‖F

(a)

≤ 1√
|Ω|
‖PΩ(Y ∗ − Ŷ )‖F + τ(Ω) +

1√
mn
‖E‖F

(b)

≤ 1√
|Ω|
‖PΩ(Y − Ŷ )‖F + τ(Ω) +

1√
mn
‖E‖F

=
1√
|Ω|
‖PΩ(E)‖F + τ(Ω) +

1√
mn
‖E‖F .

Here, (a) holds from definition of τ(Ω), and (b) holds
because Y ∗ is optimal solution of (1). Since Y ∗ ∈ Sr,
applying Theorem 2 completes the proof.

The proof of Theorem 2 is deferred to Appendix A due
to space constraints. The main idea, briefly speaking,
is to bound, for a fixed X ∈ Sr,∣∣(L̂(X))2 − (L(X))2

∣∣
=
∣∣ 1

|Ω|
‖PΩ(X − Ŷ )‖2F −

1

mn
‖X − Ŷ ‖2F

∣∣,
using Hoeffding’s inequality for sampling without re-
placement; then bound

∣∣L̂(X)− L(X)
∣∣ using∣∣L̂(X)− L(X)

∣∣ ≤√∣∣(L̂(X))2 − (L(X))2
∣∣;

and finally, bound supX∈Sr
|L̂(X) − L(X)| using an

ε−net argument.
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Rank constraint Yi,j constraint σ constraint incoherence global optimal
Theorem 1 fixed rank box constraint no no assumed
OptSpace fixed rank regularization condition number weak not necessary
NoisyMC Relaxed to trace implicit no strong yes

Table 1. Comparison of assumptions between stability results in our Theorem 1, OptSpace and NoisyMC

4. Subspace Stability

In this section we investigate the stability of recovered
subspace using matrix factorization methods. Recall
that matrix factorization methods assume that, in the
idealized noiseless case, the preference of each user be-
longs to a low-rank subspace. Therefore, if this sub-
space can be readily recovered, then we can predict
preferences of a new user without re-run the matrix
factorization algorithms. We analyze the latter, pre-
diction error on individual users, in Section 5.

To illustrate the difference between the stability of the
recovered matrix and that of the recovered subspace,
consider a concrete example in movie recommendation,
where there are both honest users and malicious ma-
nipulators in the system. Suppose we obtain an output
subspace N∗ by (3) and the missing ratings are filled in
by (4). If N∗ is very “close” to ground truth subspace
N , then all the predicted ratings for honest users will
be good. On the other hand, the prediction error of
the preference of the manipulators – who do not follow
the low-rank assumption – can be large, which leads to
a large error of the recovered matrix. Notice that we
are only interested in predicting the preference of the
honest users. Hence the subspace stability provides a
more meaningful metric here.

4.1. Subspace Stability Theorem

Let N ,M and N ∗,M∗ be the r-dimensional column
space-row space pair of matrix Y and Y ∗ respec-
tively. We’ll denote the corresponding m × r and
n × r orthonormal basis matrix of the vector spaces
using N ,M ,N∗,M∗. Furthermore, Let Θ and Φ de-
note the canonical angles ∠(N ∗,N ) and ∠(M∗,M)
respectively.

Theorem 3. When Y is perturbed by additive error
E and observed only on Ω, then there exists a ∆ sat-

isfying ‖∆‖ ≤
√

mn
|Ω| ‖PΩ(E)‖F + ‖E‖F +

√
mn |τ(Ω)|,

such that:

‖ sin Θ‖ ≤
√

2

δ
‖(PN

⊥
∆)‖; ‖ sin Φ‖ ≤

√
2

δ
‖(PM

⊥
∆T )‖,

where ‖·‖ is either the Frobenious norm or the spectral
norm, and δ = σ∗r , i.e., the rth largest singular value
of the recovered matrix Y ∗.

Furthermore, we can bound δ by:
σr − ‖∆‖2 ≤ δ ≤ σr + ‖∆‖2

σỸNr − ‖PN⊥∆‖2 ≤ δ ≤ σỸNr + ‖PN⊥∆‖2
σỸMr − ‖PM⊥∆T ‖2 ≤ δ ≤ σỸMr + ‖PM⊥∆T ‖2

where ỸN = Y + PN∆ and ỸM = Y + (PM∆T )T .

Notice that in practice, as Y ∗ is the output of the al-
gorithm, its rth singular value δ is readily obtainable.
Intuitively, Theorem 3 shows that the subspace sen-
sitivity vis a vis noise depends on the singular value
distribution of original matrix Y . A well-conditioned
rank-r matrix Y can tolerate larger noise, as its rth sin-
gular value is of the similar scale to ‖Y ‖2, its largest
singular value.

4.2. Proof of Subspace Stability

Proof of Theorem 3. In the proof, we use ‖ · ‖ when a
result holds for both Frobenious norm and for spectral
norm. We prove the two parts separately.

Part 1: Canonical Angles.

Let ∆ = Y ∗ − Y . By Theorem 1, we have ‖∆‖ ≤√
mn
|Ω| ‖PΩ(E)‖F +‖E‖F +

√
mn |τ(Ω)|. The rest of the

proof relates ∆ with the deviation of spaces spanned
by the top r singular vectors of Y and Y ∗ respectively.
Our main tools are Weyl’s Theorem and Wedin’s The-
orem (Lemma F.1 and F.2 in Appendix F).

We express singular value decomposition of Y and Y ∗

in block matrix form as in (F.1) and (F.2) of Ap-
pendix F, and set the dimension of Σ1 and Σ̂1 to be
r × r. Recall, rank(Y ) = r, so Σ1 = diag(σ1, ..., σr),

Σ2 = 0, Σ̂1 = diag(σ
′

1, ..., σ
′

r). By setting Σ̂2 to 0 we
obtained Y ′, the nearest rank-r matrix to Y ∗. Observe
that N∗ = L̂1, M∗ = (R̂1)T .

To apply Wedin’s Theorem (Lemma F.2), we have the
residual Z and S as follows:

Z = YM∗ −N∗Σ̂1,

S = Y TN∗ −M∗Σ̂1,

which leads to

‖Z‖ = ‖(Ŷ −∆)M∗ −N∗Σ̂1‖ = ‖∆M∗‖,
‖S‖ = ‖(Ŷ −∆)TN∗ −M∗Σ̂1‖ = ‖∆TN∗‖.
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Substitute this into the Wedin’s inequality, we have

√
‖ sin Φ‖2 + ‖ sin Θ‖2 ≤

√
‖∆TN ′‖2 + ‖∆M ′‖2

δ
,

(10)
where δ satisfies (F.3) and (F.4). Specifically, δ = σ∗r .
Observe that Equation (10) implies

‖ sin Θ‖ ≤
√

2

δ
‖∆‖; ‖ sin Φ‖ ≤

√
2

δ
‖∆‖.

To reach the equations presented in the theorem, we
can tighten the above bound by decomposing ∆ into
two orthogonal components.

Y ∗ = Y + ∆ = Y + PN∆ + PN
⊥

∆ := Ỹ N + PN
⊥

∆.
(11)

It is easy to see that column space of Y and ỸN are
identical. So the canonical angle Θ between Y ∗ and Y
are the same as that between Y ∗ and ỸN . Therefore,

we can replace ∆ by PN⊥∆ to obtain the equation
presented in the theorem. The corresponding result
for row subspace follows similarly, by decomposing ∆T

to its projection on M and M⊥.

Part 2: Bounding δ.

We now bound δ, or equivalently σ∗r . By Weyl’s theo-
rem (Lemma F.1), we have

|δ − σr| < ‖∆‖2.

Moreover, Applying Weyl’s theorem on Equation (11),
we have

|δ − σỸNr | ≤ ‖PN⊥∆‖2.

Similarly, we have

|δ − σỸMr | ≤ ‖PM⊥∆T ‖2.

This establishes the theorem.

5. Prediction Error of individual user

In this section, we analyze how confident we can pre-
dict the ratings of a new user y ∈ N gnd, based on the
subspace recovered via matrix factorization methods.
In particular, we bound the prediction ‖ỹ∗−y‖, where
ỹ∗ is the estimation from partial rating using (4), and
y is the ground truth.

Without loss of generality, if the sampling rate is p,
we assume observations occur in first pm entries, such

that y =

(
y1

y2

)
with y1 observed and y2 unknown.

5.1. Prediction of y With Missing data

Theorem 4. With all the notations and definitions
above, and let N1 denote the restriction of N on the

observed entries of y. Then the prediction for y ∈
N gnd has bounded performance:

‖ỹ∗ − y‖ ≤
(

1 +
1

σmin

)
ρ‖y‖,

where ρ = ‖ sin Θ‖ (see Theorem 3), σmin is the small-
est non-zero singular value of N1 (rth when N1 is non-
degenerate).

Proof. By (4), and recall that only the first pm entries
are observed, we have

ỹ∗ = N · pinv(N1)y1 :=

(
y1 − ẽ1

y2 − ẽ2

)
:= y + ẽ.

Let y∗ be the vector obtained by projecting y onto sub-

space N , and denote y∗ =

(
y∗1
y∗2

)
=

(
y1 − e1

y2 − e2

)
=

y − e, we have:

ỹ∗ =N · pinv(N1)(y∗1 + e1)

=N · pinv(N1)y∗1 +N · pinv(N1)e1

=y∗ +N · pinv(N1)e1.

Then

‖ỹ∗ − y‖ =‖y∗ − y +N · pinv(N1)e1‖

≤‖y∗ − y‖+
1

σmin
‖e1‖

≤ρ‖y‖+
1

σmin
‖e1‖.

Finally, we bound e1 as follows

‖e1‖ ≤ ‖e‖ = ‖y − y∗‖ ≤ ‖(Pgnd − PN )y‖ ≤ ρ‖y‖,

which completes the proof.

Suppose y 6∈ N gnd and y = Pgndy + (I − Pgnd)y :=

ygnd + ygnd
⊥

, then we have

‖e1‖ ≤ ‖(Pgnd − PN )y‖+ ‖ygnd
⊥
‖ ≤ ρ‖y‖+ ‖ygnd

⊥
‖,

which leads to

‖ỹ∗ − ygnd‖ ≤
(

1 +
1

σmin

)
ρ‖y‖+

‖ygnd⊥‖
σmin

.

5.2. Bound on σmin

To complete the above analysis, we now bound σmin.
Notice that in general σmin can be arbitrarily close to
zero, if N is “spiky”. Hence we impose the strong inco-
herence property introduced in Candes & Tao (2010)
(see Appendix C for the definition) to avoid such sit-
uation. Due to space constraint, we defer the proof of
the following to the Appendix C.
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Proposition 1. If matrix Y satisfies strong incoher-
ence property with parameter µ, then:

σmin(N1) ≥ 1−
( r
m

+ (1− p)µ
√
r
) 1

2

.

For Gaussian Random Matrix

Stronger results on σmin is possible for randomly gen-
erated matrices. As an example, we consider the case
that Y = UV where U , V are two Gaussian ran-
dom matrices of size m × r and r × n, and show that
σmin(N1) ≈ √p.
Proposition 2. Let G ∈ Rm×r have i.i.d. zero-mean
Guassian random entries. Let N be its orthonormal
basis4. Then there exists an absolute constant C such
that with probability of at least 1− Cn−10,

σmin(N1) ≥
√
k

m
− 2

√
r

m
− C

√
logm

m
.

Due to space limit, the proof of Proposition 2 is de-
ferred to the Supplementary material. The main idea
is to apply established results about the singular val-
ues of Gaussian random matrix G (e.g., Rudelson &
Vershynin, 2009; Silverstein, 1985; Davidson & Szarek,
2001), then show that the orthogonal basis N of G is
very close to G itself.

We remark that the bound on singular values we used
has been generalized to random matrices following
subgaussian (Rudelson & Vershynin, 2009) and log-
concave distributions (Litvak et al., 2005). As such,
the the above result can be easily generalized to a much
larger class of random matrices.

6. Robustness against manipulators

In this section, we apply our results to study the
”profile injection” attacks on collaborative filtering.
According to the empirical study of Mobasher et al.
(2006), matrix factorization, as a model-based CF al-
gorithm, is more robust to such attacks compared to
similarity-based CF algorithms such as kNN. However,
as Cheng & Hurley (2010) pointed out, it may not be
a conclusive argument that model-based recommenda-
tion system is robust. Rather, it may due to the fact
that that common attack schemes, effective to similar-
ity based-approach, do not exploit the vulnerability of
the model-based approach.

Our discovery is in tune with both Mobasher et al.
(2006) and Cheng & Hurley (2010). Specifically, we
show that factorization methods are resilient to a class
of common attack models, but are not so in general.

4 Hence N is also the orthonormal basis of any Y gen-
erated with G being its left multiplier.

6.1. Attack models

Depending on purpose, attackers may choose to in-
ject ”dummy profiles” in many ways. Models of differ-
ent attack strategies are surveyed in Mobasher et al.
(2007). For convenience, we propose to classify the
models of attack into two distinctive categories: Tar-
geted Attack and Mass Attack.

Targeted Attacks include average attack (Lam &
Riedl, 2004), segment attack and bandwagon attack
(Mobasher et al., 2007). The common characteristic of
targeted attacks is that they pretend to be the honest
users in all ratings except on a few targets of interest.
Thus, each dummy user can be decomposed into:

e = egnd + s,

where egnd ∈ N and s is sparse.

Mass Attacks include random attack, love-hate at-
tack (Mobasher et al., 2007) and others. The com-
mon characteristic of mass attacks is that they insert
dummy users such that many entries are manipulated.
Hence, if we decompose a dummy user,

e = egnd + egnd
⊥
,

where egnd = PN e and egnd
⊥

= (I−PN )e ∈ N⊥, then
both components can have large magnitude. This is a
more general model of attack.

6.2. Robustness analysis

By definition, injected user profiles are column-wise:
each dummy user corresponds to a corrupted column
in the data matrix. For notational convenience, we
re-arrange the order of columns into [Y |E ], where
Y ∈ Rm×n is of all honest users, and E ∈ Rm×ne

contains all dummy users. As we only care about the
prediction of honest users’ ratings, we can, without
loss of generality, set ground truth to be [Y |Egnd ]

and the additive error to be [ 0 |Egnd⊥ ]. Thus, the
recovery error Z = [Y ∗ − Y |E∗ − Egnd ].

Proposition 3. Assume all conditions of Theorem 1
hold. Under ”Targeted Attacks”, there exists an abso-
lute constant C, such that

RMSE ≤ 4k

√
smaxne
|Ω|

+Ck

(
(n+ ne)r log(n+ ne)

|Ω|

) 1
4

.

(12)
Here, smax is maximal number of targeted items of
each dummy user.

Proof. In the case of “Targeted Attacks”, we have (re-
call that k = max(i,j) |Yi,j |)

‖Egnd
⊥
‖F <

∑
i=1,...,ne

‖si‖ ≤
√
nesmax(2k)2.
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Substituting this into Theorem 1 establishes the
proposition.

Remark 1. Proposition 3 essentially shows that ma-
trix factorization approach is robust to the targeted
attack model due to the fact that smax is small. In-
deed, if the sampling rate |Ω|/(m(n + ne)) is fixed,
then RMSE converges to zero as m increases. This co-
incides with empirical results on Netflix data (Bell &
Koren, 2007). In contrast, similarity-based algorithms
(kNN) are extremely vulnerable to such attacks, due to
the high similarity between dummy users and (some)
honest users.

It is easy to see that the factorization method is less ro-

bust to mass attacks, simply because ‖Egnd⊥‖F is not
sparse, and hence smax can be as large as m. Thus,
the right hand side of (12) may not diminish. Nev-
ertheless, as we show below, if the number of ”Mass
Attackers” does not exceed certain threshold, then the
error will mainly concentrates on the E block. Hence,
the prediction of the honest users is still acceptable.

Proposition 4. Assume sufficiently random sub-
space N (i.e., Propostion 2 holds), above definition of
“Mass Attacks”, and condition number κ. If ne <√
n

κ2r (
E|Yi,j |2
k2 ) and |Ω| = pm(n + ne) satisfying p >

1/m1/4, furthermore individual sample rate of each
users is bounded within [p/2, 3p/2],5 then with prob-
ability of at least 1 − cm−10, the RMSE for honest
users and for manipulators satisfies:

RMSEY ≤ C1κk

(
r3 log(n)

p3n

)1/4

, RMSEE ≤
C2k√
p
,

for some universal constant c, C1 and C2.

The proof of Proposition 4, deferred in the supplemen-
tary material, involves bounding the prediction error
of each individual users with Theorem 4 and sum over
Y block and E block separately. Subspace difference ρ
is bounded with Theorem 1 and Theorem 3 together.
Finally, σmin is bounded via Proposition 2.

6.3. Simulation

To verify our robustness paradigm, we conducted sim-
ulation for both models of attacks. Y is generated by
multiplying two 1000×10 gaussian random matrix and
ne attackers are appended to the back of Y . Targeted
Attacks are produced by randomly choosing from a
column of Y and assign 2 “push” and 2 “nuke” tar-
gets to 1 and -1 respectively. Mass Attacks are gener-
ated using uniform distribution. Factorization is per-
formed using ALS. The results of the simulation are

5This assumption is made to simplify the proof. It easily
holds under i.i.d sampling.

summarized in Figure 1 and 2. Figure 1 compares
the RMSE under two attack models. It shows that
when the number of attackers increases, RMSE under
targeted attack remains small, while RMSE under ran-
dom attack significantly increases. Figure 2 compares
RMSEE and RMSEY under random attack. It shows
that when ne is small, RMSEY � RMSEE . How-
ever, as ne increases, RMSEY grows and eventually is
comparable to RMSEE . Both figures agree with our
theoretic prediction.

Figure 1. Comparison of two attack models.

Figure 2. Comparison of RMSEY and RMSEE under ran-
dom attack.

7. Concluding discussions

This paper presented a comprehensive study of the
stability of matrix factorization methods. The key re-
sults include a near-optimal stability bound, a sub-
space stability bound and a worst-case bound for indi-
vidual columns. Then the theory is applied to the no-
torious manipulator problem in collaborative filtering,
which leads to an interesting insight of MF’s inherent
robustness.

Matrix factorization is an important tool both for ma-
trix completion task and for PCA with missing data.
Yet, its practical success hinges on its stability – the
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ability to tolerate noise and corruption. This paper is
a first attempt to understand the stability of matrix
factorization, which we hope will help to guide the ap-
plication of matrix factorization methods.

We list some possible directions to extend this research
in future. In the theoretical front, the arguably most
important open question is that under what conditions
matrix factorization can reach a solution near global
optimal. In the algorithmic front, we showed here that
matrix factorization methods can be vulnerable to gen-
eral manipulators. Therefore, it is interesting to de-
velop a robust variation of MF that provably handles
arbitrary manipulators.
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