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Abstract

In recent years, total variation (TV) and Eu-
ler’s elastica (EE) have been successfully ap-
plied to image processing tasks such as de-
noising and inpainting. This paper inves-
tigates how to extend TV and EE to the
supervised learning settings on high dimen-
sional data. The supervised learning problem
can be formulated as an energy functional
minimization under Tikhonov regularization
scheme, where the energy is composed of a
squared loss and a total variation smooth-
ing (or Euler’s elastica smoothing). Its so-
lution via variational principles leads to an
Euler-Lagrange PDE. However, the PDE is
always high-dimensional and cannot be di-
rectly solved by common methods. Instead,
radial basis functions are utilized to approxi-
mate the target function, reducing the prob-
lem to finding the linear coefficients of basis
functions. We apply the proposed methods
to supervised learning tasks (including binary
classification, multi-class classification, and
regression) on benchmark data sets. Exten-
sive experiments have demonstrated promis-
ing results of the proposed methods.

1. Introduction

Supervised learning (Bishop, 2006; Hastie T., 2009) in-
fers a function that maps inputs to desired outputs
under the guidance of training data. Two main tasks
in supervised learning are classification and regres-
sion. A huge number of supervised learning methods
have been developed in several decades (see a com-
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Figure 1. Results on two moon data by the EE classifier:
(Left) decision boundary; (Right) learned target function.

prehensive empirical comparison of these methods in
(Caruana & Niculescu-Mizil, 2006)). Existing meth-
ods can be roughly divided into statistics based and
function learning based (Kotsiantis et al., 2006). One
advantage of function learning methods is that pow-
erful mathematical theories in functional analysis can
be utilized rather than doing optimizations on discrete
data points.

Most function learning methods can be derived from
Tikhonov regularization, which minimizes a loss term
plus a smoothing regularizer. The most successful
classification and regression method is SVM (Bishop,
2006; Hastie T., 2009; Shawe-Taylor & Cristianini,
2000), whose cost function is composed of a hinge
loss and a RKHS norm determined by a kernel. Re-
placing the hinge loss by a squared loss, the modified
algorithm is called Regularized Least Squares (RLS)
method (Rifkin, 2002). In addition, manifold regu-
larization (Belkin et al., 2006) introduced a regular-
izer of squared gradient magnitude on manifolds. Its
discrete version amounts to graph Laplacian regular-
ization (Nadler et al., 2009; Zhou & Schölkopf, 2005),
which approximates the original energy functional. A
most recent work is the geometric level set (GLS)
classifier (Varshney & Willsky, 2010), with an energy
functional composed of a margin-based loss and a ge-
ometric regularization term based on the surface area
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of the decision boundary. Experiments showed that
GLS is competitive with SVM and other state-of-the-
art classifiers.

In this paper, the supervised learning problem is for-
mulated as an energy functional minimization un-
der Tikhonov regularization scheme, with the en-
ergy composed of a squared loss and a total varia-
tion (TV) penalty or an Euler’s elastica (EE) penalty.
Since the TV and EE models have achieved great
success in image denoising and image inpainting
(Aubert & Kornprobst, 2006; Barbero & Sra, 2011;
Chan & Shen, 2005), a natural question is whether the
success of TV and EE models on image processing ap-
plications can be transferred to high dimensional data
analysis such as supervised learning. This paper inves-
tigates the question by extending TV and EE models
to supervised learning settings, and evaluating their
performance on benchmark data sets against state-of-
the-art methods. Figure 1 shows the classification re-
sult on the popular two moon data by the EE clas-
sifier, and the learned target function. Interestingly,
the GLS classifier (Varshney & Willsky, 2010) is also
motivated by image processing techniques, and its gra-
dient descent time marching leads to a mean curvature
flow.

The paper is organized as follows. We begin with a
brief review of TV and EE in Section 2. In Section
3 the proposed models are described, and numerical
solutions are developed in Section 4. Section 5 presents
the experimental results, and Section 6 concludes this
paper.

2. Preliminaries

We briefly introduce total variation and Euler’s elas-
tica from an image processing perspective, and point
out connections with prior work in the machine learn-
ing literature.

2.1. Total Variation (TV)

The total variation of a 1D real-valued function f is
defined as

V a
b (f) = sup

np−1∑
i=0

|f(xi+1)− f(xi)|,

where the supremum runs over all partitions of given
interval [a, b]. If f is differentiable, the total variation
can be written as

V a
b (f) =

∫ b

a

|f ′(x)|dx.

Simply, it is a measure of the total quantity of the
change of a function. Notice that if f ′(x) > 0, x ∈
[a, b], it is exactly f(b)− f(a) by the basic theorem of
calculus. Total variation has been widely used for im-
age processing tasks such as denoising and inpainting.
The pioneering work is Rudin, Osher, and Fatemi’s
image denoising model (Rudin et al., 1992):

J =

∫
Ω

((I − I0)
2 + λ|∇I|)dx,

where I0 is the input image with noise, I the desired
output image, λ a regulation parameter that balances
two terms, and Ω a 2D image domain. The first fitting
term measures the fidelity to the input, while the sec-
ond is a p-Sobolev regularization term (p = 1) where
∇I is understood in the distributional sense. The main
merit is to preserve significant image edges during
denoising (Aubert & Kornprobst, 2006; Chan & Shen,
2005). Note that TV may have different definitions
(Barbero & Sra, 2011).

In the machine learning literature, p-Sobolev regular-
izer can be found in nonparametric smoothing splines,
generalized additive models, and projection pursuit re-
gression models (Hastie T., 2009). Specifically, Belkin
et al. proposed the manifold regularization term∫

x∈M

|∇Mf |2dx,

on a manifold M (Belkin et al., 2006). On the other
hand, discrete graph Laplacian regularization was dis-
cussed in (Zhou & Schölkopf, 2005) as∑

v∈V

|∇vf |p,

where v is a vertex from V , and p is an arbitrary num-
ber. This penalty measures the roughness of f over a
graph.

2.2. Euler’s Elastica (EE)

Euler (1744) first introduced the elastica energy for
a curve on modeling torsion-free elastic rods. Then
Mumford (Mumford, 1991) reintroduced elastica into
computer vision. Later, elastica based image inpaint-
ing methods were developed in (Chan et al., 2002;
Masnou & Morel, 1998).

A curve γ is said to be Euler’s elastica if it is the
equilibrium curve of the elasticity energy:

E[γ] =

∫
γ

(a+ bκ2)ds, (1)

where a and b stand for two positive constant weights,
κ denotes the scalar curvature, and ds is the arc length
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element. Euler obtained the energy in studying the
steady shape of a thin and torsion-free rod under ex-
ternal forces. The curve implies the lowest elastica en-
ergy, thus getting its name. According to (Mumford,
1991), the key link between the elastica and image
inpainting relies on the the interpolation capability
of elastica. That is, elastica can comply to the con-
nectivity principle better than total variation. Such
kinds of ”nonlinear splines”, like classical polynomial
splines, are natural tools for completing the missing or
occluded edges.

The Euler’s elastica based inpainting model was pro-
posed as (Chan & Shen, 2005)

J =

∫
Ω\D

(I − I0)
2dx+ λ

∫
Ω

(a+ bκ2)|∇I|dx, (2)

where D is the region to be inpainted, Ω the whole
image domain, and κ the curvature of the associated
level set curve with

κ = ∇ · ( ∇I

|∇I|
). (3)

By using calculus of variation, its minimization is re-
duced to an nonlinear Euler-Lagrange equation. The
finite difference scheme can be used to give numerical
implementation, and experimental results show that
the EE based inpainting performs better than its TV
version.

Elastica can be regarded as an extension of total vari-
ation, since elastica degenerates to total variation if
set a = 1 and b = 0. In fact, elastica is a combination
of total variation suppressing oscillations in the gradi-
ent direction, and a curvature regularization term that
penalizes non-smooth level set curves (see Figure 1).

3. The Proposed Framework

3.1. Problem Setup

The general supervised learning problem can be
described as follows: given a training data
{(x1, y1), ...(xn, yn)} with data points xi ∈ Ω ⊂ Rd

and corresponding target varibles yi, the goal is to
estimate an unknown function u(x) for a new point
x. The difference between classification and regres-
sion lies only in the corresponding target values, with
one discrete and the other continuous. The widely
used Tikhonov regularization framework for super-
vised learning can be formulated as:

min
n∑

i=1

L(u(xi), yi) + λS(u), (4)

where L denotes a loss function and S(u) is a smooth-
ing term. A variety of loss functions L have been pro-

posed in the literature: hinge loss for SVM, squared
loss for RLS, logistic loss for logistic regression, Huber
loss, exponential loss, and among others. Throughout
the paper, squared loss is used in all models due to its
rather simpler differential form.

3.2. Laplacian Regularization (LR)

A commonly used model using squared loss can be
written as

min
n∑

i=1

(u(xi)− yi)
2 + λS(u). (5)

If the RKHS norm is used for the smoothing term,
the model is called regularized least squares (RLS)
(Rifkin, 2002). Another natural choice is the squared
L2-norm of the gradient: S(u) = |∇u|2, as proposed in
(Belkin et al., 2006). Under a continuous setting, we
get the following Laplacian regularization (LR) model:

JLR[u] =

∫
Ω

((u− y)2 + λ|∇u|2)dx. (6)

This LR model has been widely used in the image pro-
cessing literatures. Using calculus of variations, the
minimization can be reduced to the following Euler-
Lagrange partial differential equation (PDE) with a
natural boundary condition along ∂Ω:{

−λ△u+ (u− y) = 0
∂u
∂n |∂Ω = 0

, (7)

where △u is the Laplacian of u, and n denotes the nor-
mal vector along the boundary ∂Ω. This PDE is rela-
tively simple and can be solved using common methods
in two and three dimensions. The next Section pro-
vides a function approximation method for solving the
PDE in high dimensions.

3.3. Total Variation (TV) based Smoothing

Our goal is to explore how TV and EE can be ap-
plied to classification and regression problems on high
dimensional data sets. A typical procedure has three
steps: (a) Set the function learning problem under a
continuous setting and design a proper energy func-
tional; (b) Derive the Euler-Lagrange PDE via the cal-
culus of variations; (c) Solve the PDE on discrete data
points.

Similar to image denoising, total variation (TV) based
supervised learning can be formulated as

JTV [u] =

∫
Ω

(u− y)2dx+ λ

∫
Ω

|∇u|dx. (8)

Note that for binary classification the zero level set
of u serves as the final decision boundary. The only
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difference between LR and TV is just the p-Sobolev
regularizer with p = 2 for LR and p = 1 for TV. In-
tuitively, LR penalizes too much gradients on edges,
while TV can permit sharper edges near the decision
boundaries between two classes.

3.4. Euler’s Elastica (EE) based Smoothing

Elastica based supervised learning can be formulated
as

JEE [u] =

∫
Ω

(u− y)2dx+ λ

∫
Ω

(a+ bκ2)|∇u|dx, (9)

where

κ = ∇ · ∇u

|∇u|
. (10)

Due to the elastica regularizer, the resulting decision
boundary of this model can have the lowest elastica
energy. If set a = 1 and b = 0, this model degenerates
to be the TV model. Therefore, an unified solution can
be implemented for both TV model and EE model, as
described in the next Section.

Here we have remarks on the curvature in high di-
mensional spaces. For a 1-D curve such as in im-
age inpainting tasks, u(x, y) = 0 determines a level
set curve according to the implicit function theo-
rem. For a 2-D surface, the curvature given by (3)
amounts to the mean curvature of this surface. From
(Spivak & Spivak, 1979), the mean curvature can be
defined as the average of principal curvatures. Ab-
stractly, it can be expressed as the trace of the second
fundamental form divided by the intrinsic dimension
d. Table 1 summarizes curvature expressions in 1-
D, 2-D, and high dimensional spaces. Hence the same
expression(10) can be used for high dimensional situ-
ations since the constant 1

d−1 can be transferred to b
or λ.

Table 1. Curvature expressions.

Expression Implicit function Curvature

u(x, y) = 0
Planar curve

κ = ∇ · ∇u
|∇u|y = f(x)

u(x, y, z) = 0
Surface

κ = 1
2
∇ · ∇u

|∇u|z = f(x, y)

u(x1...xd) = 0
Hypersurface

κ = 1
d−1

∇ · ∇u
|∇u|xd = f(x1...xd−1)

4. Algorithms

In contrast to discrete methods such as SVM and
graph Laplacian, the proposed framework operates in a

continuous fashion where powerful mathematical anal-
ysis tools can make a sense. Specifically, the calculus
of variations can be exploited to minimize the energy
functional, leading to the Euler-Langrange PDE.

As we have mentioned in section 3, the LR functional
minimization can be transformed to solving the PDE
(7). Similarly, we get the following PDE for the TV
model

λ∇ ·
( ∇u

|∇u|
)
− (u− y) = 0, (11)

and the PDE for the EE model

λ∇ ·V − (u− y) = 0, (12)

where

V = ϕ(κ)n− 1

|∇u|
∇(ϕ′(κ)|∇u|)

+
1

|∇u|3
∇u(∇uT∇(ϕ′(κ)|∇u|)), (13)

and ϕ(κ) := 1+bκ2 by fixing a = 1 for simplicity. One
can refer to (Chan et al., 2002) for details about the
calculus of variations.

Due to the nonlinearity of the regularizer in TV and
EE model, the corresponding PDE is too complicated
to be efficiently solved. Even though the PDE in (7)
associated with the LR model can be solved by Finite
Difference Method (FDM) or Finite Element Method
(FEM) in 2-D or 3-D spaces, currently we have no PDE
tools to deal with high dimensional data. Therefore
we take a function approximation idea by using radial
basis functions (RBF), similar to the treatment in GLS
(Varshney & Willsky, 2010).

4.1. Radial Basis Function Approximation

The function approximation idea relies on the fact that
a function u(x) can be expressed as a sum of weighted
basis function {φi(x)}. For example, Taylor expansion
represents a function by using polynomials. The most
widely used is Radial Basis Function(RBF), which is
simple in expressions but has powerful fitting ability.
The target function u can be expressed by

u(x) =

n∑
i=1

wiφi(x) (14)

with a set of Gaussian RBF

φi(x) = exp(−c|x− xi|2),

where {xi} are the training samples in supervised
learning, and c is a parameter. By using RBF ap-
proximation, the problem can be reduced to finding
the coefficient {wi}.
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Here are some analytical expressions that will be used
later:

∇u =
∑
i

wi∇φi = −c
∑
i

wi(x− xi)φi,

n =
∇u

|∇u|
= − g

|g|
, g :=

∑
i

wi(x− xi)φi,

△u =
∑
i

wj△φi = −c
∑
i

wi(d− c|x− xi|2)φi,

κ = ∇ · ∇u

|∇u|
= − 1

|∇u|3
∇uTH(u)∇u+

△u

|∇u|

=
1

|g|
∑
i

wiφif,

where H(u) is the Hessian matrix of u, and

f := 1− d+ c|x− xi|2 − c
gT (x− xi)(x− xi)

Tg

gTg
.

4.2. Algorithm for LR

First of all, let’s consider how to deal with the LR
model by solving the linear elliptic PDE (7): −λ△u+
(u − y) = 0. By replacing (14) into the PDE and
exploiting the linearity of the Laplacian operator, the
goal is to find a set of weights {wi}:∑

i

[wi(φi − λ△φi)] = y.

Let w := (w1, w2, ..., wm)T and y := (y1, y2, ...yn)
T ,

where m is the number of the basis functions and n is
the number of the training samples. Then we have the
following linear equation system:

Ψw = y, Ψij = φj(xi)− λ△φj(xi).

Numerically, the following regularized least squares so-
lution is considered in practise to avoid ill-posed prob-
lems:

min
w

|Ψw − y|2 + η|w|2.

The solution is simply given byw = (ΨTΨ+ηI)−1ΨTy
with a very fast speed.

4.3. Algorithm for TV and EE models

As the TV model is one special case of the EE model,
we describe solutions for the more complicated EE
model in this section. Here two algorithms are devel-
oped to tackle the nonlinearity: (1) gradient Descent
time marching, and (2) Lag-Linear Equation iteration.

4.3.1. Gradient Descent Time Marching

Using the calculus of variations, we can get the de-
scent gradient for the desired function. With a matrix
notation u(x) = Φw where Φij = φj(xi), the gradient
of u is given as follows when Φ is fixed:

Φ
∂w

∂t
=


∂u
∂t |x=x1

...
∂u
∂t |x=xn

 .

Then each iteration can be written as

w(k+1) = w(k)−τ
∂w

∂t
= w(k)−τΦ−1


∂u(k)

∂t |x=x1

...
∂u(k)

∂t |x=xn

 ,

where τ is a small time step, and u(k) renews from
w(k). The coefficients w is initialized as w(0) =
(ΦTΦ + ηI)−1ΦTy. Then the gradient ∂u

∂t must be
figured out first.

From the PDE (11), the gradient of u for the TV model
is simply given by:

∂u

∂t
= λ∇ ·

( ∇u

|∇u|
)
− (u− y).

From (12) and (13), the gradient of u for the EE model
can be written as:

∂u

∂t
= λ∇ ·V − (u− y).

Through several steps of calculations by leaving out
three and higher order terms, ∇ ·V can be expanded
into the following expression:

∇ ·V = κ− 4bκ△u

|∇u|4 ∇uTH(u)∇u+ bκ3 + 2b
( 2△u

|∇u|3+

κ

|∇u|4
)
(∇uTH(u))(∇uTH(u))T + 2b

{ △u

|∇u|3−

3

|∇u|5∇uTH(u)∇u
}(

− 2△u

|∇u|2 +
κ

|∇u|

)
∇uTH(u)∇u,

where H(u) is the Hessian matrix of u, and

κ = ∇ · ∇u

|∇u|
=

△u

|∇u|
− 1

|∇u|3
∇uTH(u)∇u.

We can see that if setting b = 0 the expression is de-
graded to ∇ ·V = κ = ∇ · ∇u

|∇u| , which is exactly the

same expression for the TV model. The time complex-
ity in each iteration is O(n2d), where n is the number
of data points and d is the dimension. We set the maxi-
mal number of iterations as 40. There are 3 parameters
in the algorithm: the RBF parameter c, the regular-
ization parameter λ, and the elastica weight parameter
b. Note that we set a = 1 since a can be absorbed into
λ.
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4.3.2. Lagged Linear Equation Iteration

Following the spirit of the lagged diffusivity fixed-
point iteration method in (Chan & Shen, 2005), we
develop the following lagged linear equation iteration
method. Empirically, the original lagged diffusivity
fixed-point iteration often yields poor performance due
to its brute-force linearization on the nonlinear PDE.

For the simpler TV model, by expanding the nonlinear
term ∇ · (∇u/|∇u|) we have

− λ

|∇u|
(
△u− ∇uTH(u)∇u

∇uT∇u

)
+ (u− y) = 0,

where H(u) is the Hessian of function u. Then plug-
ging the RBF approximation into above PDE, we get
the following system∑

i

wi(
|g|
λ

− f)φi = |g|y, (15)

where
g :=

∑
i

wi(x− xi)φi,

f := 1− d+ c|x− xi|2 − c
gT (x− xi)(x− xi)

Tg

gTg
,

and d is the data dimension. Using the lagged idea, we
obtain the lagged linear equation iteration algorithm:
1) By fixing g, solve the system of linear equations
with respect to w to get a new w; 2) Compute g with
updated w; 3) Iterate until convergence or maximal
iteration number.

For the more complicated EE model, we have∑
i

wi(
|g|
λK

− f)φi = |g|y, (16)

where

K := a+ bκ2 = a+ b
( 1

|g|
∑
i

wiφif
)2
.

Similarly, a two-step lagged iteration procedure can
be developed for the EE model: 1) By fixing g and K,
solve the linear system with respect to w; 2) Compute
g and K with updated w; 3) Iterate until convergence
or maximal iteration number. There are three parame-
ters: c, λ, and regularization parameter η (empirically
chosen in experiments) in the least squares problems.

5. Experimental Results

The proposed two approaches (TV and EE) are com-
pared with LR, SVM (with RBF kernels), and Back-
Propagation Neural Networks (BPNN) for binary clas-
sification, multi-class classification, and regression on
benchmark data sets.

5.1. Binary Classification

The test data sets for binary classification are from
the libsvm website. Originally, these data sets are
scaled to [0,1] and serve as benchmark to test the lib-
svm implementation. Here we downloaded seven data
sets to evaluate performance of our methods (TV and
EE) with two kinds of implementations of Gradient
Descent method (GD) and Lagged Linear Equation
method (lagLE).

The optimal parameters for each algorithm are se-
lected by grid search using 5-fold cross-validation. To
make the grid search more practical, only the two com-
mon parameters (c and λ) are searched for SVM, LR,
TV, and EE except BPNN. Empirically, the parame-
ter η is set as 1 for LR, and the parameter b is fixed as
0.01 for EE. Then excluding BPNN, the two common
parameters are searched from logarithm from −10 : 10
with step 2. For each data set, we randomly run the
5-fold cross validation ten times to reduce the influ-
ence of data partition. Table 2 shows the average
classification accuracies for the five methods.

From the table we can see that BPNN performs worst,
while the LagLE solution of EE outperforms others on
5 data sets. The GD implementation of TV and EE
is competitive with SVM. And similar accuracies are
achieved by TV and EE partially because of their close
connections.

5.2. Multi-class Classification

For multi-class tests, we collected data sets from lib-
svm website and UCI Machine Learning Repository,
including frequently used small data sets and the
USPS handwritten digital set. For USPS data, PCA is
used to reduce the dimension to 30 and we randomly
select 1000 samples for experiments.

Except for BPNN that has a built-in ability for multi-
class tasks, almost all function learning approaches
are originally designed for binary classification. In or-
der to handle multi-class situations, usually one ver-
sus all or one versus one strategies can be adopted.
If using one vs all, one needs to learn M functions
to fulfill the multi-class task, where M is the number
of classes. Recently in (Varshney & Willsky, 2010),
an efficient binary encoding strategy was proposed to
represent the decision boundary by only log2M func-
tions. In our experiments the one vs all strategy is
used. Same as the binary problems, we use the 5-fold
cross-validation to choose the optimal parameters for
each method. Except BPNN, all other methods have
2 common parameters which are searched from loga-
rithm from−10 : 10 with step 1. The results of average
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Table 2. Average accuracies (%) for binary classification using 5-fold cross-validation.

Data Dim Num SVM BPNN LR
TV EE

GD lagLE GD lagLE

liver-disorders 6 345 73.96 71.52 73.20 74.81 73.62 74.32 73.91
diabetes 8 768 78.07 76.85 77.96 77.50 77.81 77.23 78.10
breast-cancer 10 683 97.22 96.23 97.60 97.13 97.72 97.13 97.83
heart 13 270 84.85 81.76 84.26 80.05 84.58 80.00 84.96
australian 14 690 86.41 86.34 87.04 86.99 87.01 86.54 87.10
german-number 24 1000 76.94 74.16 77.10 76.19 77.10 76.50 77.22
sonar 60 208 88.80 82.99 90.88 90.30 89.27 90.07 90.50

Table 3. Average accuracies (%) for multi-class classification using 5-fold cross-validation.

Data Classes Dim Num SVM BPNN LR
TV EE

GD lagLE GD lagLE

iris 3 4 150 96.00 96.00 95.33 96.00 96.00 96.00 96.00
balance 3 4 625 99.68 92.48 89.44 90.88 89.92 90.40 90.01
hayes 3 5 132 80.30 74.26 71.57 77.87 73.08 77.87 76.15
tae 3 5 151 62.25 56.63 59.47 64.18 66.00 61.41 66.00
wine 3 13 178 99.44 97.78 99.44 99.44 99.43 99.44 98.86
vehicle 4 18 846 85.70 79.18 82.75 85.00 82.25 85.00 82.84
glass 6 9 214 72.43 63.99 73.81 69.59 76.19 67.72 75.71
segment 7 19 500 92.40 90.60 91.80 90.80 93.55 91.20 95.89
flag 8 29 194 52.06 46.90 53.13 49.50 52.10 50.55 52.10
yeast 10 8 1484 61.19 54.49 58.22 57.95 57.91 57.95 57.97
USPS 10 30 1000 93.90 82.60 94.90 94.40 94.80 94.40 95.00

accuracies are shown in table 3.

The accuracy results demonstrate that BPNN per-
forms the worst, while TV and EE are comparable to
SVM on the 11 test data sets. Compared with TV/EE,
SVM achieves higher accuracies on 4 data sets, per-
forms worse on 4 data sets, and offers the same best
accuracies on 2 data sets. One reason might be that
very complex and even wiggly decision boundaries are
preferred for some multi-class data sets. Due to the
strong regularization on the geometric shapes, TV/EE
can not adapt to yield complex decision hypersurfaces
for these data sets.

5.3. Regression

We use seven regression data sets from UCI Machine
Learning Repository to validate the proposed methods
compared with SVM, BPNN, and LR. All data sets are
scaled to [0,1]. Note that here the Gradient Descent
(GD) method is used for TV and EE. We take the
same experimental settings by running ten times of 5-
fold cross-validation for each data set. Table 4 shows
the regression results using mean square errors (MSE).
Clearly, we can see that both TV and EE achieve lower

MSE than SVM and LR on 6 data sets. Also TV
and EE outperform BPNN on 5 data sets. The results
demonstrated superb regression ability of our proposed
methods.

6. Conclusion

Regularization framework and function learning ap-
proaches have become very popular in the recent ma-
chine learning literature. Due to the great success of
total variation and Euler’s elastica models in image
processing area, we extend these two models for su-
pervised classification and regression on high dimen-
sional data sets. The TV regularizer permits steeper
edges near the decision boundaries, while the elas-
tica smoothing term penalizes non-smooth level set
hypersurfaces of the target function. Compared with
SVM and BPNN, our proposed methods have demon-
strated the competitive performance on commonly
used benchmark data sets. Specifically, TV and EE
models achieve better performance on most data sets
for binary classification and regression. Currently one
main disadvantage is the slow convergence speed of it-
eration procedures. The future work is to explore other
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Table 4. Regression results measured by MSE (10−3) using 5-fold cross-validation.

Data Dim Num SVM BPNN LR TV EE

servo 4 167 10.856 5.623 7.290 8.339 7.860
machinecpu 6 209 3.341 5.175 1.782 1.907 1.754
autompg 7 392 6.958 5.633 6.072 5.620 5.686
concrete 8 1030 6.124 4.884 6.019 5.432 5.236
housing 13 506 6.200 7.540 5.130 4.897 4.951
pyrim 27 74 9.911 23.058 6.590 5.766 6.005
triazines 60 186 19.712 41.902 20.734 20.515 20.947

fitting loss term such as hinge loss, to study other pos-
sibilities of basis functions, to investigate the existence
and uniqueness of the PDE solutions, and to reduce
the running time.
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