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Abstract

The kernel method is a popular approach
to analyzing structured data such as se-
quences, trees, and graphs; however, un-
ordered trees have not been investigated ex-
tensively. Kimura et al. (2011) proposed a
kernel function for unordered trees on the
basis of their subpaths, which are vertical
substructures of trees responsible for hier-
archical information in them. Their ker-
nel exhibits practically good performance in
terms of accuracy and speed; however, linear-
time computation is not guaranteed theoret-
ically, unlike the case of the other unordered
tree kernel proposed by Vishwanathan and
Smola (2003). In this paper, we propose
a theoretically guaranteed linear-time kernel
computation algorithm that is also practi-
cally fast, and we present an efficient predic-
tion algorithm whose running time depends
only on the size of the input tree. Experimen-
tal results show that the proposed algorithms
are quite efficient in practice.

1. Introduction

1.1. Kernels for structured data

Numerous studies on the research in machine learning
are concerned with real-valued vectors. However, a
considerable part of real world data is represented not
as vectors, but as sequences, trees, and graphs. For ex-
ample, we can represent biological sequences and natu-
ral language texts as sequences, parsed texts and semi-
structured data, such as HTML and XML, as trees,
and chemical compounds as graphs. Extensive stud-
ies have been conducted to analyze structured data
such as sequences, trees, and graphs, owing to their

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

widespread use in recent years. Among the various
existing approaches, a popular approach to such anal-
ysis is the kernel method (Schölkopf & Smola, 2002)
because it can efficiently work with high-dimensional
(possibly, infinite-dimensional) feature vectors if ap-
propriate kernel functions are provided to access data.
A framework called the convolution kernel (Haussler,
1999) is widely used for designing kernel functions for
structured data, where the structured data are (im-
plicitly) decomposed into substructures, and a ker-
nel function is defined as the sum of kernel functions
among the substructures. It is important to design a
good kernel function to balance the expressive power
of the substructures with efficient algorithms for com-
puting the kernel. In the framework of the convolution
kernel, various kernel functions have been proposed
for sequences (Lodhi et al., 2002; Leslie et al., 2002),
trees (Collins & Duffy, 2001; Kashima & Koyanagi,
2002; Aiolli et al., 2009), and graphs (Kashima et al.,
2003; Gärtner et al., 2003).

1.2. Tree kernels

In this paper, we focus on tree kernels. The first tree
kernel was proposed by Collins and Duffy (2001) for
parse trees, and it was then extended to general or-
dered trees (Kashima & Koyanagi, 2002). More re-
cently, various kernels for ordered trees have been
proposed (Moschitti, 2006; Kuboyama et al., 2006;
Aiolli et al., 2009; Sun et al., 2011).

Among the existing tree kernels, only a few kernels
can handle unordered trees (Fig. 1(a)). In their sem-
inal work, Vishwanathan and Smola (2003) proposed
an efficient kernel for unordered trees. Their work is
pioneering in two ways: computation can be performed
in linear time with respect to the size of two trees by
converting the trees into strings. Moreover, in the pre-
diction phase, prediction for a newly coming tree can
be made in linear time with respect to the size of the
tree. Their kernel employs complete subtrees as fea-
tures. Figure 1(b) shows all the complete subtrees in
the tree shown in Fig. 1(a). More efficient implementa-
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tion using the enhanced suffix array (ESA) for strings
was proposed by Teo and Vishwanathan (2006).

More recently, Kimura et al. (2011) proposed another
tree kernel using vertical substructures called sub-
paths. Figure 1(c) shows all the subpaths in the tree
shown in Fig. 1(a). Their kernel is useful for captur-
ing vertical substructures responsible for hierarchical
information in trees. Note that neither of the complete
subtree features and the subpath feature is a superset
of the other. Figure 2 shows the experimental com-
parison of the predictive accuracy of their kernel with
that of four other tree kernels using three datasets,
including one XML dataset (Zaki & Aggarwal, 2006)
and two glycan datasets (Hashimoto et al., 2003;
Doubet & Albersheim, 1992)1. Note that three kernels
were designed by Kashima & Koyanagi (2002), Mos-
chitti (2006) and Aiolli et al. (2009) for ordered trees;
hence, we used the order information appearing in the
datasets as it is. The results show that the subpath
kernel proposed by Kimura et al. (2011) is competi-
tive with the other kernels. Interestingly, the subpath
kernel and the kernel proposed by Vishwanathan and
Smola (2003) work complementarily.
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Figure 1. (a) Unordered tree. (b) Complete subtree fea-
tures of Vishwanathan et al. . (c) Subpath features of
Kimura et al. .

Kimura et al. (2011) also showed that their subpath
kernel is practically fast and that it is competitive
with the linear-time kernel (Teo & Vishwanathan,
2006). However, despite its practical usefulness, the
time complexity of the subpath kernel is theoretically
O(nlogn) on average, and it is O(n2) in the worst
case, where n is the sum of the sizes of the input trees,
because their algorithm for computing the kernel uses
the multi-key quick sort (Bentley & Sedgewick,
1997). Moreover, in contrast to the linear-
time kernel (Vishwanathan & Smola, 2003;
Teo & Vishwanathan, 2006), we need to evaluate
the subpath kernel between a given tree and all the
support vectors in the prediction phase, which is a

1We used LIBSVM (Chang & Lin, 2001) as the SVM
implementation. The accuracy is measured using 10-fold
cross-validation. Kernels by Kimura et al. (2011) and Mos-
chitti (2006) have tunable weight parameters, which were
also tuned by cross-validation. As for datasets, see Table 1.
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Figure 2. Comparison of five tree kernels using three
datasets. The subpath kernel proposed by Kimura
et al. (2011) is competitive with the three other ker-
nels (Vishwanathan & Smola, 2003; Kashima & Koyanagi,
2002; Moschitti, 2006; Aiolli et al., 2009).

serious drawback with large-scale data.

1.3. Proposed methods

By improving the result of Kimura et al. (2011), we
aim to develop (i) a theoretically guaranteed linear-
time kernel computation algorithm that is practically
fast, and (ii) an efficient prediction algorithm whose
running time depends only on the size of the input
tree.

The key to achieving these two objectives is an efficient
data structure that accesses vertical substructures in
trees. The suffix tree (ST) of trees (Shibuya, 2003) is
a potential candidate. However, despite its theoretical
merits, its performance (especially its memory usage)
is not sufficient for practical use, as pointed out in lit-
erature (e.g., Abouelhoda et al. (2004)). In order to
overcome this challenge, we use a more space-efficient
data structure called the enhanced suffix array (ESA)
for unordered trees, and we develop its linear-time con-
struction algorithm. To the best our knowledge, this
is the first algorithm that constructs the ESA for trees
in linear time.

Using the ESA for trees, we devise a linear-time com-
putation algorithm for the subpath tree kernel by sim-
ulating bottom-up traversal in the ST. Note that Vish-
wanathan et al. calculated their kernel by simulat-
ing top-down traversal in the ST, using the ESA for
strings.

We also devise a fast algorithm for prediction, whose
complexity is independent of the number of support
vectors. This algorithm can be considered as a gener-
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alization of that of Teo & Vishwanathan (2006), which
simulates top-down traversal in the ST. Our algorithm
guarantees quadratic time with respect to the size of
an input tree in the worst case. Note that a naive
implementation using the ESA results in cubic time
complexity. Experimental results show the proposed
algorithms are also quite efficient in practice.

1.4. Contributions

Our study makes the following three contributions:

1. We propose a linear-time algorithm for construct-
ing an enhanced suffix arrays for a tree (Sec-
tion 3).

2. We propose a linear-time algorithm for computing
the subpath kernel (Section 4).

3. We present a fast algorithm for making predic-
tions with the subpath kernel whose time com-
plexity does not depend on the number of support
vectors (Section 5).

2. Subpath Kernel for Unordered Trees

Kimura et al. (2011) proposed a tree kernel on the basis
subpaths to capture vertical substructures responsible
for hierarchical information in trees. Formally, a sub-
path is a substring of a path from the root to one of the
leaves (Fig 1(c)). By using subpaths, they proposed a
kernel function between two trees T1 and T2 as

K(T1, T2) ≡
∑
p∈P

λ|p|num(T1p)num(T2p), (1)

where P is the set of all subpaths in T1 and T2, and
num(T1p) and num(T2p) are the number of times a
subpath p ∈ P appears in T1 and T2, respectively.
λ (0 < λ ≤ 1) is a constant giving an exponentially
decaying weight to each subpath p, according to its
length |p|.

Kimura et al. pointed out that there is a one-to-one
correspondence between a subpath and a prefix of a
suffix of a tree. Intuitively, a prefix of a suffix of a tree
is a reversed subpath (whose formal definition is given
in Section 3). They utilized this fact, and computed

K(T1, T2) =
∑
s∈S

λ|s|num(T1s)num(T2s) (2)

by extending the idea of multi-key quicksort instead
of computing Eq. (1) directly, where S is the set of all
prefixes of suffixes in T1 and T2. The time complexity
of their algorithm is O((|T1|+ |T2|)log(|T1|+ |T2|)) on
average, and O((|T1|+ |T2|)2) in the worst case.

In Section 4, we will improve this result to O(|T1| +
|T2|), even in the worst case, by using the ESA for
trees proposed in Section 3.

3. Efficient Data Structure for
Unordered Trees

First, we review the suffix tree and ESA for a tree.
Both of them are essential for constructing fast algo-
rithms for the subpath kernel in Section 4. Then, we
propose a novel algorithm for constructing the ESA in
linear time.
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Figure 3. (a) Suffix tree (ST) for the tree T in Fig 1 (a)
maintains all suffixes S1, S2, . . . , S4 of T . (b) An ESA for
T consists of a suffix array (SA) and an lcp array (LCP).

3.1. Suffix Trees and Enhaced Suffix Arrays
for a Tree

Let T be a rooted tree consisting of n nodes, whose
node labels are drawn from alphabet Σ of size σ = |Σ|.
The i-th suffix of T (denoted by Si) is the string associ-
ated with the path from the i-th node to the root of T .
For a string s, each substring beginning with the first
character is called a prefix. The suffix tree (ST) of a
tree T is a patricia trie for all suffixes of T (Fig. 3(a)),
where a common prefix of suffixes is associated with
a pass from the root to an internal node. Although
ST provides fast access to any suffix of the tree, it
is known that it requires a large amount of mem-
ory, and hence, it is inefficient for practical purposes.
The ESA (Abouelhoda et al., 2004) is a more space-
efficient data structure that allows many of the oper-
ations provided by the ST, and therefore, it is often
used in many practical applications instead of the ST.

The ESA of a tree T consists of two data structures, a
suffix array (SA) and an lcp array (LCP). The suffix
array SA[1, |T |] is an array of integers that maintains
the starting positions of lexicographically ordered suf-
fixes. The lcp array LCP[1, |T |] is an array of inte-
gers that stores the lengths of the longest common
prefixes of the adjacent suffixes in the SA, that is,
LCP[i] ≡ lcp(SSA[i], SSA[i+1]) for 1 ≤ i < |T |, and
LCP[|T |] ≡ −1, where lcp(s, t) denotes the longest
common prefix of two strings s and t. The LCP pro-
vides information about the depth of internal nodes of
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the ST. We present an example of the SA and LCP in
Fig 3(b).

3.2. Linear-time construction algorithm of an
ESA for a tree

There exists a linear-time algorithm that constructs
an ESA for a string (Kärkkäinen & Sanders, 2003).
However, to the best of our knowledge, there is no algo-
rithm for constructing an ESA for a tree in linear time.
Therefore, we propose an O(|T |) algorithm for con-
structing an ESA for a tree T , which is described as Al-
gorithm 1. Our algorithm is designed by carefully com-
bining two algorithms, namely, the skew algorithm for
ESA construction of strings (Kärkkäinen & Sanders,
2003) and the linear-time construction algorithm of an
SA for a tree (Ferragina et al., 2005). The following
theorem guarantees that this algorithm constructs an
ESA of a tree in linear time.

Theorem 1 Algorithm 1 constructs the ESA for a
tree T in O(|T |) time.

Algorithm 1 Constructing the ESA for a tree T in
O(|T |) time

Input: Tree T
Output: SA[1, |T |] and LCP[1, |T |] for T
1. Apply Algorithm 1 recursively to a tree T ′ obtain
SA1[1, |T ′|] and LCP1[1, |T ′|], where T ′ consists of
some of the nodes in T whose depth is not equal to
d in modulo 3
2. Construct SA2[1, |T |−|T ′|] for nodes whose depth
is equal to d in modulo 3 by using SA1[1, |T ′|]
3. Construct SA[1, |T |] by merging SA1[1, |T ′|] and
SA2[1, |T | − |T ′|]
4. Construct LCP[1, |T |] by using LCP1[1, |T ′|],
SA1[1, |T ′|], and SA[1, |T |]
return SA[1, |T |] and LCP[1, |T |]

In what follows, we give how the algorithm works and
a skech of the proof of Thorem 1 by construction.

Algorithm 1 works recursively; it calls itself to con-

struct an ESA for tree T ′, whose size is at most 2|T |
3

(in Step 1). We focus only on the suffixes starting at
nodes whose depths are not equal to d ∈ {0, 1, 2} in
modulo 3, and apply the radix sorting to them using
only the first three labels in each suffix. The param-
eter d is appropriately chosen so that the number of
nodes staring at depth d (in modulo 3) is at least |T |/3.
Next, we rename the label of each node with the rank
of the suffix starting at the node in the sorting result,
and construct T ′ whose size is at most 2|T |/3. If the
all of the renamed node labels are different, their order
directly gives the order of suffixes (SA1[1, |T ′|]). Oth-

erwise, the algorithm calls itself to construct an ESA
for tree T ′.

In Step 2, it constructs an SA for the nodes not in-
cluded in the ESA of T ′. This can be done in O(|T |)
time by the radix sort using the first two node labels.
(Note that we already know the order of the second
node label from SA1[1, |T ′|].) In Step 3, it constructs
an SA for T by merging the (E)SA obtained in Step 1
and the SA obtained in Step 2. This can be done in
O(|T |) time (Ferragina et al., 2005).

The key to the linear-time construction is in Step 4,
which is originated from the algorithm of Kärkkäinen
and Sanders (2003) for updating the LCP for strings.
Let k and l be k ≡ SA[i] and l ≡ SA[i + 1] for T ,
respectively. There are two possible cases: (i) neither
of the depths of k and l is equal to d in modulo 3, or
(ii) either of them is equal to d in modulo 3.

In the first case, k and l are both included in T ′.
Let k′ and l′ be the nodes in T ′ corresponding to
k and l, respectively. We can know the positions
of k′ and l′ in SA1[1, |T ′|] by using a reversed suf-
fix array (RSA), which is defined as RSA[SA[i ]] ≡ i .
Note that the RSA can also be constructed in lin-
ear time. Without loss of generality, we assume
that RSA[k′] < RSA[l′]. Since k and l are ad-
jacent in SA[1, |T |], k′ and l′ are also adjacent in
SA1[1, |T ′|]. Since we already have LCP1[1, |T ′|], we
obtain m = lcp(k′, l′) = LCP1[RSA[k ′]] with a con-
stant time by accessing LCP1[1, |T ′|]. Then, we can
calculate LCP[i] = 3m + lcp(anc(k, 3m), anc(l, 3m)),
where anc(vi, j) returns the j-th ancestor of node vi.
Note that three successive node labels in T is renamed
with one character in T ′. In the case with trees, we
need preprocessing for all nodes T to achieve O(1)-
access to their arbitrary ancestor nodes (whereas this
is trivial in strings by using the indices). This problem
is called the level ancestor problem. It can be solved by
O(|T |) preprocessing (Bender & Farach-Colton, 2004).
Since the lcp(anc(k, 3m), anc(l, 3m)) is at most 2, we
can obtain the value in constant time. Consequently,
we can compute LCP[i] in O(1) time after O(|T |) pre-
processing.

In the latter case, while at least one of k and l
is not included in T ′, anc(k, z) and anc(l, z) (z ∈
{1, 2}) are both included in T ′. In contrast with
the previous case, k′ and l′ are not necessarily ad-
jacent in SA1[1, |T ′|]. However, we can obtain m =
lcp(k′, l′) = RMQ(LCP1[1, |T ′|],RSA[k ′],RSA[l ′]−1 ),
where RMQ(Array, x , y) returns the minimum value of
Array[i] (x ≤ i ≤ y). This problem is called the range
minimum query, and it can be solved in O(1) time after
O(|T |) preprocessing. Consequently, we can compute
LCP[i] in O(1) time after O(|T |) preprocessing.
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In conclusion, we can compute LCP[1, |T |] in O(|T |)
time, and hence the total running time of the algo-
rithm represented as f(T ) = f(2|T |/3) + O(|T |) =
O(|T |).

4. Linear-time Algorithm for
Computing the Subpath Kernel

We propose a linear-time algorithm for computing the
subpath kernel (2) by using the ESA for the trees intro-
duced in Section 3. The proposed algorithm consists
of the following three steps.

1. Add special terminal characters $1 and $2 ($1 <
$2) just above the root nodes of T1 and T2, re-
spectively; then, merge the two trees. (We assume
that $1 and $2 are lexicographically smaller than
any character in Σ.)

2. Construct an ESA for the merged tree by using
Algorithm 1.

3. Calculate Eq. (2) by simulating bottom-up traver-
sal in the ST for the merged tree, with the ESA.

First, the algorithm merges the input trees T1 and
T2 in Step 1, in which the special terminal characters
are added to ensure that no suffix can be a prefix of
any other suffix. Next, it constructs the ESA for the
merged tree using Algorithm 1 in linear time. Finally,
it calculates Eq. (2) with the ESA. Since Eq. (2) can
be calculated by enumerating all the common prefixes
of suffixes in T1 and T2, it can be computed as

K(T1, T2) =
∑

v∈STin

(W[depth(v)]−W[depth(parent(v))])

× lvs(T1v)lvs(T2v),

by a bottom-up traversal of the ST for the merged tree.
In the above equation, STin denotes the set of inner
nodes in ST, depth(v) denotes the depth of node v,
parent(v) denotes the parent node of v, and lvs(T1v)
denotes the number of leaves belonging to T1 among
the leaves of the subtree rooted at v. W is an ar-
ray whose elements are defined as W[n] ≡

∑n
i=1 λi ,

where λ is the decaying rate in Eq. (2). Since we con-
structed an ESA instead of a ST, we use the ESA to
simulate bottom-up traversals in the ST (Kasai et al.,
2001). Algorithm 2 shows the pseudocode of a bottom-
up traversal in the ST and calculation of Eq. (2) with
the ESA. Since the number of nodes in the ST for a
T is 2|T | at most, Algorithm 2 runs in O(|T1| + |T2|)
time. Figure 4 shows an example of (a) the merged
tree obtained in Step 1, (b) the ST for the merged
tree, and (c) the ESA for the merged tree.

The following theorem shows that the three steps listed
above compute the subpath kernel (2) in linear time.

Theorem 2 The proposed algorithm computes the
subpath kernel (2) for T1 and T2 in O(|T1|+ |T2|) time.

Proof 1 We can merge T1 and T2 in O(1) time in
Step 1. In Step 2, Algorithm 1 constructs the ESA
in O(|T1|+ |T2|) time. Finally, Algorithm 2 computes
Eq. (2) in O(|T1|+|T2|) time. Therefore, the total time
complexity of the proposed algorithm is O(|T1|+ |T2|).

Algorithm 2 Algorithm for computing Eq. (2)
inO(|T1|+ |T2|)

Input: Trees T1 and T2, SA[1, |T1|+ |T2|], LCP[1, |T1|+
|T2|], Stack s, Array W
Output: The kernel function value of Eq.(2)
kernel = 0, s = [0, 0,−1,−1]
for i = 1 to |T1|+ |T2| do

if SA[i] ≤ |T1| then
s.append(1, 0, i, depth(SA[i]))

else
s.append(0, 1, i, depth(SA[i]))

end if
l1, l2, x, h = s.top(), hi = LCP[i], c1 = 0, c2 = 0
while h > hi do

c1+ = l1, c2+ = l2, l
′
1, l

′
2, x

′, h′ = s.top()
s.pop(), l1, l2, x, h = s.top()
kernel+ = (W[h′]−W[h]]) ∗ l′1 ∗ l′2
if h = hi then

s.top = (l1 + c1, l1 + c1, x, h)
else if hi > 0 && h < hi then

s.append(c1, c2, i, hi)
end if

end while
end for
return kernel
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Figure 4. (a) The merged tree of two trees. (b) The ST for
the merged tree (which we do not explicitly construct). (c)
The ESA for the merged tree (with which we simulate the
ST).

5. Fast Prediction

A serious drawback in applying kernel methods to
large-scale data sets is that we need to evaluate a ker-
nel function between an input data T and all the sup-
port vectors Ti (i = 1, ...,m) in the prediction phase.
For the subpath kernel, prediction for a tree T needs



Fast Computation of Subpath Kernel for Trees

to evaluate

f(T ) =
m∑
i=1

αiK(Ti, T )

=
∑

s′∈PSi

∑
s∈PS

(
m∑
i=1

αinum(Ti s)

)
λ|s|δ(s′, s), (3)

where PSi and PS are the set of all prefixes of suf-
fixes in Ti and T , respectively. Note that Eq. (3) is
identical to the one of Teo and Vishwanathan (2006)
when {Ti}i and T are strings. They proposed a so-
phisticated O(|T |)-time algorithm whose running time
does not depend on the number of support vectors.
We briefly describe the algorithm. The computation
of Eq. (3) comes down to finding the longest common
prefix (lcp) between Si and the “master string”, which
is the concatenation of all the strings corresponding to
the support vectors. First, the algorithm constructs an
ESA of the master string, Then, when an input string
T comes, the algorithm simulates a top-down traver-
sal of a ST with the ESA to find the lcp between Si

and the master string. The algorithm utilizes the fact
that li ≥ li−1 − 1, where li is the length of the lcp be-
tween Si and the master string. This implies that we
can skip the first li−1 characters and start comparison
from the next character when we find li.

We extend their algorithm to trees. First, we construct
an ESA for the “master tree” obtained by concatenat-
ing all the support vector trees. Then, when an in-
put tree T comes, the algorithm simulates a top-down
traversal of a ST with the ESA to find the lcp be-
tween Si and the master tree. The difference from the
previous algorithm is in its skipping strategy. Since
node i may have more than one children in trees,
li ≥ max lCh(i) − 1 holds, where Ch(i) is the set of
children of node i. Thus, we can skip max lCh(i) − 1
nodes when we find li. The following theorem guaran-
tees that the prediction for a newly coming tree T is
computed in O(|T |2) time in the worst case.

Theorem 3 The time complexity of prediction for a
tree T is O(|T |2).

Proof 2 We evaluate the total length which we tra-
verse the ST to find all the lcp between Si and the
master tree.∑
i:max lCh(i)=0

(li + 1) +
∑

i:max lCh(i) 6=0

(li −max lCh(i) + 2)

≤ 2|T |+
∑

i:li 6=max lSib(i)

li

≤ 2|T |+ (L− 1)H ≤ O(|T |2).

For any node i satisfying max lCh(i) = 0, we cannot
skip any node; hence, we have to walk down the ST of

the master tree (corresponding to the first term in the
first line). For any node i satisfying max lCh(i) 6= 0,
we can skip max lCh(i) − 1 nodes (the second term in
the first line). Sib(i) in the right term in the sec-
ond line denotes the siblings of node i. Since the
number of nodes in this term is L − 1 (where L is
the number of leaves in T ) and li is upper bounded
by H(= maxdepth(T )), the time complexity is upper
bounded by O(|T |2).

Note that the time complexity of the algorithm be-
comes O(|T |) for some trees (for example, when either
L or H is bounded by a constant). Finally, we point
out that the algorithms in Section 4 and this section
can also be applied to the route kernel (Aiolli et al.,
2009) for ordered trees.

6. Experiments

We demonstrate the performance of the linear time
algorithm for the subpath kernel and the fast compu-
tation algorithm in the prediction phase.

First, we compare the execution time of the pro-
posed linear-time algorithm (denoted by ‘Proposed’)
with that of the existing algorithm of Kimura et
al. (2011) (‘Multikey’) for the subpath kernel. We
also compare them with the the linear-time tree ker-
nel (Teo & Vishwanathan, 2006) (‘Vishwanathan’) im-
plemented by Teo and Vishwanathan2.

Next, we examine the execution time of the algo-
rithm in the prediction phase (denoted by ‘Predic-
tion’). We study the effect of the size of an input
tree and the number of support vectors. We also
compare the execution time with the direct compu-
tation of Eq. (3) (‘Direct’) and the linear-time tree
kernel (Teo & Vishwanathan, 2006) (‘Vishwanathan’).

We run all the experiments on an Intel Core2 Duo
2.40GHz system with 4GB of main memory under
Windows Vista. For all the kernels we use in the ex-
periments, we set λ = 1 in Eq. (2) since the choice
does not affect the computation time.

6.1. Experiment 1: Fast kernel evaluation

We compare the execution times using three real data
sets, including one XML data set (Zaki & Aggarwal,
2006) and two glycan data sets (Hashimoto et al.,
2003; Doubet & Albersheim, 1992). Table 1 lists the
statistics of these datasets.

We measured the average computation time needed
for a single evaluation of each kernel function. Fig-
ure 5 (a) shows the average times of ‘Proposed’, ‘Mul-
tikey’, and ‘Vishwanathan’ for the three datasets. The

2http://users.cecs.anu.edu.au/~chteo/SASK.html



Fast Computation of Subpath Kernel for Trees

results show that our proposed linear-time algorithm
is consistently the fastest, which shows that our kernel
is quite efficient in practice as well as in theory.

Next, we examine the scalability of the algorithms with
artificial datasets. We fixed the label size at 5, and we
varied the tree size. Figure 5 (b) shows the average
times of the three algorithms. Again, our proposed
linear-time algorithm outperforms the others.

Table 1. Statistics of real datasets

data set data set size label size
XML 3183 9097
Cystic 160 27

Leukemia 480 59

data set avg. nodes avg. degree avg. depth
XML 14.3 1.9 6.6
Cystic 8.2 1.9 4.0

Leukemia 13.5 2.0 6.4

0.0042
0.0064 0.0049

0.0045 0.0066
0.0059

0.025

0.012
0.01

0

0.005

0.01

0.015

0.02

0.025

0.03

XML Cystic Leukemia

C
P

U
-
ti

m
e
 (

m
s
)

Proposed

Multikey

Vishwanathan

(a)

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

C
P

U
 –

ti
m

e
 (

m
s
)

Proposed

Multikey

Vishwanathan

Tree size )10(
3×

)10(
2×

(b)

Figure 5. Comparison of execution times for (a) the real
datasets and for (b) the artificial datasets.

6.2. Experiment 2: Fast prediction

We compare the execution times in the prediction
phase with the XML dataset. We give all support
vectors a uniform weight of αi = 1.

First, we study the effect of the number of support
vectors. We merge the first 100 XML data to make
an input tree. We use the other XML data as sup-
port vectors, and vary the number of support vectors.
Figure 6 (a) shows the average times of ‘Prediction’,
‘Direct’, and ‘Vishwanathan’. The results show that
the execution times of Prediction and Vishwanathan
are not dependent on the number of support vectors,
whereas that of Direct scales linearly.

Next, we study the effect of the size of an input tree on
the ’Prediction’ algorithm. We fix the number of sup-
port vectors at 100, and we vary the size of an input
tree. Figure 6 (b) shows the average times of Predic-
tion. Although the time complexity of the algorithm

is theoretically quadratic with respect to the size of an
input tree in the worst case, the execution time scales
linearly in practice.
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Figure 6. (a)Comparison of execution times in prediction.
(b) Execution time for a fixed number of support vectors
in prediction.

7. Related Work

Since Haussler (1999) introduced the framework of the
convolution kernel, various kernel functions for trees
have been proposed. The first tree kernel was proposed
for parse trees by Collins and Duffy (Collins & Duffy,
2001), and then, it was generalized for labeled ordered
trees (Kashima & Koyanagi, 2002; Kuboyama et al.,
2006), syntactic trees (Daumé III & Marcu, 2004),
and positional trees (Aiolli et al., 2009). However, all
these kernels (explicitly or implicitly) exploit edge or-
der information at each node in their definitions or
algorithms, and therefore, they cannot be directly
applied to unordered trees. For unordered trees, a
hardness result for tree kernels using general tree-
structured features was shown by Kashima (2007).
Vishwanathan et al. (2003) proposed an efficient
linear-time kernel based on subtrees. While this kernel
can be computed efficiently with the ESA for strings,
it is pointed out that its predictive performance is usu-
ally worse than that of the other tree kernels in the pre-
vious work of Aiolli et al. (2009). Kimura et al. (2011)
proposed another tree kernel for unordered trees using
vertical substructures called subpaths.

8. Conclusion

In this paper, we focused on the subpath kernel for un-
ordered trees proposed by Kimura et al. (2011), and
we proposed a linear-time algorithm for computing it
with an enhanced suffix array for trees. To achieve
the desired time complexity, we proposed, for the first
time, a linear-time algorithm for constructing an en-
hanced suffix array for trees. In addition, we presented
a fast algorithm for prediction, which is independent
of the number of support vectors because it exploits
the algorithm of (Teo & Vishwanathan, 2006). Exper-
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imental results showed that the proposed algorithm
is faster than the existing algorithm, and its practi-
cal running time scales linearly in practice. Moreover,
the running time in prediction is independent of the
number of support vectors. A possible future devel-
opment is to combine the subpath kernel with a fast
training framework of SVM with kernels. Recently,
Severyn and Moschitti (2011) proposed a fast training
algorithm for structured kernels with a cutting plane
method, which might be applied for the subpath ker-
nel.
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