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Abstract

We consider Markov decision processes under
parameter uncertainty. Previous studies all
restrict to the case that uncertainties among
different states are uncoupled, which leads to
conservative solutions. In contrast, we intro-
duce an intuitive concept, termed “Lightning
Does not Strike Twice,” to model coupled un-
certain parameters. Specifically, we require
that the system can deviate from its nominal
parameters only a bounded number of times.
We give probabilistic guarantees indicating
that this model represents real life situations
and devise tractable algorithms for comput-
ing optimal control policies.

1. Introduction

Markov decision processes (MDPs) are widely used
tools to model sequential decision making in stochastic
dynamic environments (e.g., Puterman, 1994; Sutton
& Barto, 1998). Typically, the parameters of these
models (reward and transition probability) are esti-
mated from finite and sometimes noisy data, so they
often deviate from their true value. Such deviation,
termed “parameter uncertainty,” can cause the per-
formance of the “optimal” policies to degrade signifi-
cantly, as demonstrated in Mannor et al. (2007).

Many efforts have been made to alleviate the effect
of parameter uncertainty in MDPs (e.g., Nilim & El
Ghaoui, 2005; Iyengar, 2005; Givan et al., 2000; Ep-
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stein & Schneider, 2007; Bagnell et al., 2001). In-
spired by the so-called “robust optimization” frame-
work (Ben-Tal & Nemirovski, 1998; Bertsimas & Sim,
2004; Ben-Tal et al., 2009), the common approach re-
gards the MDP’s uncertain parameters r and p as fixed
but unknown elements of a known set U , often termed
as the uncertainty set, and ranks solutions based on
their performance under (respective) worst parameter
realization.

Previous study in robust MDPs typically assumes that
there exists no coupling between uncertain parameters
of different states. That is, U =

∏
s∈S Us, where Us is

the uncertainty set for (ps, rs), the transition probabil-
ities and rewards for each state. Such an assumption
is restrictive, and can often lead to conservative solu-
tions as it essentially assumes that all parameters take
worst possible realization simultaneously – an event
that rarely happens in practice.

In this paper we propose and analyze a robust MDP
approach that allows coupled uncertainty to miti-
gate conservativeness of the uncoupled uncertainty
model. Specifically, we consider a setup which we
term LDST after famous proverb “Lightning Does not
Strike Twice:” while each parameter may be any ele-
ment of the uncertainty set, the total number of states
whose parameters deviate from their nominal value is
bounded. The motivation is intuitive: suppose the
parameter of each state deviates with a small prob-
ability, and all states are independent, then the to-
tal number of states with deviated parameters will be
small. Hence, protection against the scenario that only
a limited number of states deviate from their nominal
parameter is sufficient to ensure that the solution is
very likely to be robust to the real parameters.

The LDST approach is conceptually intuitive and sim-
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ple, yet with added modeling power. Indeed, it is
backed by probabilistic guarantees that hold under
reasonable conditions. While the LDST approach pro-
vides a flexible way to control the conservativeness of
robust MDPs, it remains computationally friendly: it
is tractable even when both reward parameters and
transition probabilities are uncertain, for one of the
two setups which we will consider. For the other
one that is computationally more challenging, it is
tractable in the special case where only the reward
parameters are uncertain.

One advantage of the LDST approach is that it
requires no distribution information. This is in
sharp contrast to some other variants of MDP meth-
ods also aiming to mitigate conservativeness, includ-
ing Bayesian reinforcement learning (Strens, 2000;
Poupart, 2010), chance constrained MDP (Delage &
Mannor, 2010), and distributionally robust MDP (Xu
& Mannor, 2010), all assuming a-priori information on
the distribution of the system parameters.

In Section 2 we give background on MDPs and de-
fine the LDST formulation. In Section 3 we define the
non-adaptive model and prove that it is computation-
ally hard in the general case, but tractable if only the
rewards are subject to deviations. In Section 4 we de-
fine the adaptive model and give tractable algorithms
for solving both finite and infinite-horizon problems.
In Section 5 we define the concept of fractional devia-
tion and prove that the adaptive model is solvable also
when fractional deviations are considered. Simulation
of the adaptive model is demonstrated in Section 6 and
a conclusion is given in Section 7.

2. Preliminaries

In this section we briefly explain our notations, some
preliminaries about MDP, and the setups that we in-
vestigate. Following standard notations from Puter-
man (1994), we define a Markov decision process as a
6-tuple < T, γ,S,A, p, r >: here T , possibly infinite, is
the decision horizon; γ ∈ (0, 1] is the discount factor,
and can be 1 only when T <∞. The state space S and
the action space A are both finite. In state s ∈ S, the
decision maker can pick an action a ∈ A, and obtains a
reward of r(s, a), and the next state will be s′ ∈ S with
a probability p(s′|s, a). We use a subscript s to denote
the parameter for state s. For example, rs is the re-
ward vector for different actions in state s. We assume
that the initial state is distributed according to α(·),
i.e., the initial state is s with probability α(s). The
sets of all history-dependent randomized strategies, all
Markovian randomized strategies, and all Markovian
deterministic strategies are denoted by ΠHR, ΠMR and

(a) (b)

(c) (d)

Figure 1. Illustration of effective uncertainty sets for differ-
ent values of D. The origin symbolizes the nominal param-
eters p0 and r0: (a) D = 0 (no uncertainty); (b) D = 1;
(c) D = 2; and, (d) D = 3 (uncoupled uncertainty).

ΠMD, respectively. The decision goal is to maximize
the performance X(π, p, r) , Eπ{

∑T
t=1 γ

t−1r(st, at)} ,
i.e., the expected accumulative reward, under param-
eter p and r.

An uncertain MDP (uMDP) is defined as a tuple
< T, γ,S,A, p0, r0,U , D >. In contrast to standard
MDP, the true parameters ptrue and rtrue are unknown.
Instead, for each state s, we know p0

s and r0
s termed

nominal parameters hereafter, which are essentially
point estimations of the parameters ps and rs, as well
as an uncertainty set Us such that (ps, rs) ∈ Us. As
standard in robust optimization and robust MDPs, we
assume that the nominal parameters p0

s and r0
s be-

long to the uncertainty set Us, and the uncertainty
sets {Us}s∈S are convex. As discussed above, previ-
ous work in robust MDP all focused on the case that
parameter realization is uncoupled, i.e., (p, r) can take
any value in U ,

∏
s Us. In this paper we add the pos-

sibility of coupling between uncertainties to avoid be-
ing overly conservative. Following the proverb “light-
ning does not strike twice,” we consider uncertainty
models that do not allow disaster to happen too fre-
quently. In particular, besides the constraint that the
parameters belong to respective uncertainty sets, we
further require that the number of states whose param-
eters deviate from their nominal values is bounded by
the given threshold D. An illustration of different ef-
fective uncertainty sets the model can produce is given
in Figure 1 for three states, where it can be seen that
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the model spans both the model oblivious to uncer-
tainty, and the conservative model of uncoupled un-
certainty. We will later demonstrate that the values of
D in-between these extremes are both advantageous,
and tractable.

Intuitively, LDST can be thought of as a two-player
zero-sum game, where the decision maker chooses a
policy, and an adversarial Nature picks an admissi-
ble parameter realization attempting to minimize the
reward of the decision maker. Two models are possi-
ble, leading to two forms that we will investigate in
the sequel. In the first model, termed non-adaptive
model, depending on the control policy, Nature chooses
the parameter realization of all states once and fixed
thereafter, thus leading to a single stage game. In the
second model, both players adapt their actions to the
trajectory of the MDP, leading to a sequential game.
To illustrate the difference, consider the following ex-
ample: suppose at state s0, taking an action a will lead
the system to either state s1 or state s2, both with pos-
itive probabilities, and that only the parameter of one
state is allowed to deviate. In the adaptive uncertainty
model the following deviation is allowed: deviate s1 if
the system reaches s1, and deviate s2 if the system
reaches s2. In contrast, in the non-adaptive model the
state whose parameters deviate must be fixed, and can
not depend on whether the system reaches s1 or s2.

3. Non-Adaptive Uncertainty Model

In this section, we focus on the non-adaptive case. As
mentioned above, the uncertain parameters, while un-
known, are fixed a priori and do not depend on the
trajectory of the MDP. Similarly, the decision maker
has to fix a strategy and can not adapt to the realiza-
tion of the parameters. Equivalently, this means that
the decision maker does not observe whether or when
the parameters deviate.

Our goal is to find a strategy that performs best under
the worst admissible parameter realization. That is, to
solve the following problem:

max
π∈ΠHR

min
(p,r)∈UD

X(π, p, r) (1)

where: UD ,

{
(p, r) ∈ U

∣∣∣∣∣∑
s∈S

1(ps,rs)6=(p0s,r
0
s) ≤ D

}
.

To put it in words, the set of admissible parameters
UD is defined as follows: the parameters of no more
than D states can deviate from their nominal values,
and the deviated parameters belong to their respective
uncertainty set Us.

The main motivation of this formulation is that often

in practice, the correlation between the parameters of
different states is weak, or even completely indepen-
dent. In such a case, protection against the scenario
that only a limited number of states deviate from their
nominal parameter is sufficient to ensure that the so-
lution is very likely to be robust to the real parame-
ters. To illustrate this intuition, we have the following
theorem which considers a generative deviation model
where the parameters of different states are indepen-
dent. The proof is deferred to Appendix A.

Theorem 1. Suppose the parameters of different
states deviate independently, with a probability αs
for s ∈ S. Then with probability at least 1 − δ
we have (p, r) ∈ UD′ , where D′ ,

∑
s∈S αs +

1
3 log(1/δ)

(
1 +

√
1 + 18

∑
s∈S αs

log(1/δ)

)
.

3.1. Computational Complexity

In general, the non-adaptive case – Problem 1 – is
computationally hard. To make this statement formal,
we consider the following “yes/no” decision problem.

Decision Problem. Given a Markov decision process
with |S| = n and |A| = m, D ∈ [0 : n], Us for all s ∈ S
and β ∈ R. Does there exist π ∈ ΠHR such that

min
(p,r)∈UD

X(π, p, r) ≥ β ? (2)

We denote the decision problem by L(ΠHR). Sim-
ilarly we can define L(ΠMR) and L(ΠMD). We next
show that answering the decision problem is hard even
for very simple uncertainty set U . This immediately
implies that finding a strategy π that satisfies (2) is
computationally difficult. The proof, deferred to Ap-
pendix B, is based on reduction from Vertex Cover
Problem.

Theorem 2. Suppose for any s ∈ S, Us is a line
segment, i.e., the convex combination of two points.
Then, the problems L(ΠHR), L(ΠMR) and L(ΠMD)
are NP-hard.

3.2. Reward-Uncertainty Case

While in general Problem 1 can be intractable, we
show that if only the reward parameters are subject
to uncertainty then the problem is solvable in poly-
nomial time. We first define the concept of tractable
uncertainty set:

Definition 1. A set U is called tractable, if in poly-
nomial time, the following can be solved for any c:

Minimize: c>x; s.t. x ∈ U .
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Using this formulation we state the main result of this
section. The proof is given in Appendix C in the sup-
plementary material.

Theorem 3. Suppose that only the reward is subject
to uncertainty. If for all s ∈ S, Us is a tractable uncer-
tainty set, then Problem 1 can be solved in polynomial
time.

When uncertainty sets are polytopes or ellipsoids as
often the case in practice, we can convert Problem 1
into easier convex optimization problems such as LP
or quadratic programming, for which large scale prob-
lems can be solved using standard solvers in reasonable
time. See Appendix D and E for detail.

4. Adaptive Uncertainty Model

This section is devoted to the adaptive case, i.e., the
parameter realization – in particular the choice of de-
viating states – depends on the history trajectory of
the MDP. Moreover, the decision maker observes pa-
rameter deviation retrospectively. That is, in each de-
cision stage the decision maker chooses an action, after
which the true parameters are realized and observed
by the decision maker. Hence the decision maker is
aware of the occurrence of parameter deviation, and
his strategy is allowed to depend on such information.

In practice, there are two cases where the agent can
confidently determines a deviation. The first case is
where the parameter deviation is accompanied by ex-
ternal signals (e.g., lighting). For example, consider a
problem of determining the route for a helicopter, the
deviation is when there is a storm, and it is reason-
able to assume that the agent can observe the storm
if it really happens. A similar example is portfolio
optimization where the parameter deviation is due to
market crash or company bankrupcy, which certainly
can be observed. The second case, where there is no
external signal, is the case where the support of the
nominal parameter and deviation barely intersects (in
the probabilistic sense). Take the simulation in Section
6 as an example, although under the nominal parame-
ter, it is possible that the number of customers come is
large, the probability is very small. Recurrence of such
events is more unlikely. Hence, the agent can count
each of these events as one parameter deviation, and
allow the Nature one or two extra chances of parameter
deviation. Solving the resulting adaptive case would
yield a solution that with overwhelming probabilities
is robust to fixed number of parameter deviation, yet
not overly conservative. Notice that a special example
of the second case is when the supports are disjoint.

4.1. Finite-horizon case

Mathematically, the finite-horizon adaptive case can
be formulated as the following decision problem 1,

max
a1∈A

min
(p1,r1)∈Us1

max
a2∈A

min
(p2,r2)∈Us2

· · · (3)

max
aT∈A

min
(pT ,rT )∈UsT

E

{
T∑
t=1

rt(st, at)

}
;

Subject to:

T∑
t=1

1(pt,rt)6=(p0t ,r
0
t ) ≤ D.

Here, st is the randomized state at decision epoch t.
Hence, for all s, s′ ∈ S we have Pr(st+1 = s′|st =
s, at) = pt(s

′|s, at). We remark that in the adaptive
case we require that the number of decision stages
(as opposed to states) where the parameter deviates
is bounded by D. Hence, the parameters of a state
are allowed to take different values for multiple visits.
Similarly to Theorem 1, Formulation (3) is justified
by the following probabilistic guarantee. The proof is
almost identical to that of Theorem 1, and omitted.

Theorem 4. Suppose the parameters of different
stages deviate independently, with a probability αt
for t = 1, · · · , T . Then with probability at least
1 − δ we have that the total number of deviations∑T
t=1 1(pt,rt)6=(p0t ,r

0
t ) is upper bounded by

∑T
t=1 αt +

1
3 log(1/δ)

(
1 +

√
1 + 18

∑T
t=1 αt

log(1/δ)

)
.

The next theorem, which is the main result of this
subsection, asserts that in sharp contrast to the non-
adaptive case, the adaptive-case can be solved via
backward induction.

Theorem 5. Let vT+1(s, d) = 0 for all s ∈ S and
d ∈ [0 : D], and define for t = 1, · · · , T ,

vt(s, d) ,
max
a∈A

{
min

[
qt(s, d, a, p

0
s, r

0
s),

min
(p,r)∈Us

qt(s, d− 1, a, p, r)
]}
, if d ≥ 1;

max
a∈A

qt(s, d, a, p
0
s, r

0
s), if d = 0;

a∗t (s, d) ,
arg max

a∈A

{
min

[
qt(s, d, a, p

0
s, r

0
s),

min
(p,r)∈Us

qt(s, d− 1, a, p, r)
]}
, if d ≥ 1;

arg max
a∈A

qt(s, d, a, p
0
s, r

0
s), if d = 0;

1In a slight abuse of notation we write (pt, rt) instead
of (pst , rst).
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where qt(s, d, a, p, r) ,
∑
s′ p(s

′|s, a)vt+1(s′, d) +
r(s, a). Then the optimal strategy to Problem 3 is to
take a∗t (s, d) at stage t, state s, where stage-parameters
are allowed to deviate at most d times from this stage
on.

Before proving the theorem, we first explain our intu-
ition: we can re-formulate Problem 3 as a sequential
game of perfect information on an augmented state-
space. More precisely, Problem 3 can be regarded as a
sequential game, where there are two players, namely
the decision maker who attempts to maximize the to-
tal expected reward by choosing actions sequentially,
and Nature who aims to minimize the total expected
reward by choosing parameter-realization. Thus, we
can expand the decision horizon into 2T where the de-
cision maker makes move in each odd decision stage,
and Nature makes move in each even decision stage.
Furthermore, both the decision maker and Nature are
aware of the number of “deviated visits” so far, which
affect their optimal strategies. Hence, we need to aug-
ment the state-space with this information. Thus, we
construct the following game.

Consider the following augmented state space, where
we have two types of states: the decision maker states
and the Nature states. The set of decision maker states
is given by

SD = S × [0 : D],

and the set of Nature states is given by

SN = S × [0 : D]×A.

The entire (augmented) state space is thus

S = SD
⋃
SN .

A zero-sum stochastic game with time horizon 2T be-
tween two players on S is constructed as follows. In
each decision epoch 2t−1 for t = 1, · · · , T , the system
state belongs to SD and only the decision maker can
choose an action a ∈ A. Let the state be (s, d) where
s ∈ S and d ∈ [0 : D], and suppose the decision maker
takes action a ∈ A, then the next state will be (s, d, a),
with both players get zero-reward.

In each decision epoch 2t for t = 1, · · · , T , the system
state belongs to SN and only Nature can choose an
action. The action set for Nature is the following: if
d ≥ 1, Nature can either pick the nominal parame-
ter (p0

s, r
0
s), in which case the next state will be (s′, d)

where s′ is a random variable following the probability
distribution p0(s′|s, a), and the decision maker gets a
reward r0(s, a), which Nature simultaneously loses; al-
ternatively, Nature can pick a parameter (p′, r′) ∈ Us,
in which case the next state will be (s′, d−1) where s′

s1

s1

s2

a1
: (1, 7

)

a2 : (0.4, 4)

a2 : (0.6, 4)

(a)

s1, 1

s1, 0

s1, 1, a1

s1, 1, a2

s1, 0, a1

s1, 0, a2

s1, 1

s2, 1

s1, 0

s2, 0

(p, r)
(1−

p, r)
(1−

p, r)

(p, r)

(1, 7)

(0.4, 4
)

(0.6, 4)

(1, 7)

(0.4,
4)

(0.6, 4)

(b)

Figure 2. Illustration of the two-player stochastic game
construction for Theorem 5, T = 1. (a) The nominal
MDP, (b) The two-player stochastic game. Dashed lines
are moves in which Nature chooses to deviate system’s pa-
rameters, and (p, r) ∈ Us1 is in Nature’s control.

is a random variable following the probability distribu-
tion p′(s′|s, a), and the decision maker gets a reward
r′(s, a), which Nature, again, simultaneously loses. If
d = 0, Nature can only pick the nominal parame-
ter (p0

s, r
0
s). An example of this construction is given

graphically in Figure 2. It is easy to see that solving
Problem 3 is equivalent to solving the aforementioned
stochastic game. This leads to the proof of Theorem 5.

Proof of Theorem 5. We prove the theorem by investi-
gating the aforementioned stochastic game, and show-
ing that a Nash equilibrium exists for the stochastic
game, where the decision maker’s move is a∗t (s, d).
Since the solution to the stochastic game and the solu-
tion to Problem 3 coincide (Filar & Vrieze, 1996), the
theorem thus follows.
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We now construct the Nash equilibrium. Let the deci-
sion maker take the strategy a∗t (s, d) at state (s, d) ∈
SD in decision epoch 2t− 1. Let Nature take the fol-
lowing action at state (s, d, a) ∈ SN in decision epoch
2t: do not deviate the parameters (i.e, pick param-
eter (p0

s, r
0
s)) if either d = 0, or qt(s, d, a, p

0
s, r

0
s) ≤

min(p,r)∈Us qt(s, d− 1, a, p, r); otherwise, pick parame-
ters arg min(p,r)∈Us qt(s, d− 1, a, p, r).

Observe that if Nature fixes this strategy, the stochas-
tic game reduces to a standard MDP for the decision
maker to maximize his total reward, in which case his
optimal strategy is take a∗t (s, d) at each (s, d) ∈ SD
at the decision epoch 2t − 1. On the other hand, if
the decision maker fixes his strategy, then for Nature
to minimize the total-reward for the decision maker,
it is easy to see that the aforementioned strategy is
optimal. Thus, the aforementioned pair of strategies
is a Nash equilibrium, which implies the theorem.

Algorithm 1 illustrates how Theorem 5 can be used
to compute optimal policy for the non-adaptive
model in the LDST setup. Its time-complexity is

O
(
TD|S||A|

(
|S| + M

))
where M is defined as the

maximal computational effort in performing a single
minimization of qt(s, d, a, p, r) in (p, r) ∈ Us for any
s ∈ S, t ∈ [1 : T ].

4.2. Discounted-Reward Infinite Horizon Case

We extend the formulation of the adaptive case into
the infinite horizon case, with discounted total reward
criterion. Depending on whether the number of pa-
rameter deviations is also discounted, we formulate
and investigate the following two setups:

Setup A – Non-Discounted Deviates:

max
a1∈A

min
(p1,r1)∈Us1

max
a2∈A

min
(p2,r2)∈Us2

· · · (4)

max
at∈A

min
(pt,rt)∈Ust

· · ·E

{ ∞∑
t=1

γt−1rt(st, at)

}
;

Subject to:

∞∑
t=1

1(pt,rt)6=(p0t ,r
0
t ) ≤ D.

Setup B – Discounted Deviates:

max
a1∈A

min
(p1,r1)∈Us1

max
a2∈A

min
(p2,r2)∈Us2

· · · (5)

max
at∈A

min
(pt,rt)∈Ust

· · ·E

{ ∞∑
t=1

γt−1rt(st, at)

}
;

Subject to:

∞∑
t=1

βt−11(pt,rt) 6=(p0t ,r
0
t ) ≤ D.

Algorithm 1 Backward Induction to solve the adap-
tive case

Input: uMDP < T,S,A, p0, r0,U , D >
Initialize VT+1(s, d) = 0 ∀s ∈ S, d ∈ [0 : D].
for t = T downto 1 do

for d = 0 to D do
for s ∈ S do

Initialize bestAction = φ
Initialize bestActionV alue = −∞
for a ∈ A do
{Nominal value}
Initialize actionV alue = qt(s, d, a, p

0
s, r

0
s)

if d ≥ 1 then
deviatedV alue =

min(p,r)∈Us qt(s, d− 1, a, p, r)
if actionV alue > deviatedV alue then
actionV alue = deviatedV alue

end if
end if
if bestActionV alue < actionV alue then
bestActionV alue = actionV alue
bestAction = a

end if
end for
Vt(s, d) = bestActionV alue
πt(s, d) = bestAction

end for
end for

end for
return πt(s, d) ∀t ∈ [1 : T ], s ∈ S, d ∈ [0 : D]

In Setup A the total number of stages where param-
eters deviate is bounded. In contrast, in Setup B,
similarly to future reward, future parameter devia-
tion is discounted. Setup A is easy to compute as we
can apply the same technique to augment the state-
space with the remaining budget of “Nature”. Setup
B further requires discretization of the remaining bud-
get. Both setups’ optimal value functions admit im-
plicit equations similar to the Bellman Equations, as
shown in Appendix F in the supplementary material,
and thus are solvable in the same methods as classic
infinite-horizon MDPs.

5. Continuous Deviations

This section is motivated from the following setup: in
each stage, the real parameter is likely to slightly de-
viate from the nominal one, whereas large deviation is
rare. Notice that the previous approach that bounds
the number that parameter deviates does not apply to
this setup. Hence, we extend previous results to the
continuous deviation case, i.e., Nature is allowed to
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perform “fractional” deviations.

More specifically, suppose the nominal parameters are
p0, r0 and the uncertainty set is U , and that Us is
star-shaped2 in respect to (p0

s, r
0
s) for each s ∈ S. If

the realized parameter is (p, r) ∈ U , then Nature is
considered to have consumed a budget of deviation
b(p, r, p0, r0,U) such that

b(p, r, p0, r0,U) , min{α ≥ 0 |
∃(δp, δr) ∈ ∆U : (p, r) = (p0 + αδp, r

0 + αδr)},
where ∆U , {(δp, δr)|(p0 + δp, r

0 + δr) ∈ U}.

Since (p, r) ∈ U , we get b(p, r, p0, r0,U) ≤ 1. Roughly
speaking, a “small” deviation is considered “less ex-
pensive” compared to a large one. Thus, we can
formulate the continuous extension as follows, with
γ ≤ β ≤ 1, and γ < 1.3

Continuous Deviations:

max
a1∈A

min
(p1,r1)∈Us1

max
a2∈A

min
(p2,r2)∈Us2

· · · (6)

max
at∈A

min
(pt,rt)∈Ust

· · ·E

{ ∞∑
t=1

γt−1rt(st, at)

}
;

Subject to:

∞∑
t=1

βt−1b(pt, rt, p
0
t , r

0
t ,Ust) ≤ D.

Similarly to Problems 4 and 5 from the previous sec-
tion, Problem 6 is solvable (approximately) using a
discretization scheme. The statement and proof are
given in Appendix G in the supplementary material.

We next provide a probabilistic guarantee of the con-
tinuous model, for the finite horizon case. The proof
is similar to the previous probabilistic guarantees and
is given in Appendix H in the supplementary material.

Theorem 6. Suppose the amount of parameter
deviation, b(pt, rt, p

0
t , r

0
t ,Ust) is independent with

a mean αt. Then with probability at least
1 − δ we have the that total amount of devia-
tion,

∑T
t=1 b(pt, rt, p

0
t , r

0
t ,Ust), is upper bounded by∑T

t=1 αt + 1
3 log(1/δ)

(
1 +

√
1 + 18

∑T
t=1 αt

log(1/δ)

)
.

6. Simulations

We present simulation results of the proposed method
under a setup closely resembles our motivating exam-
ple, i.e., parameters randomly deviate from their nom-
inal values with a small probability. We use a scenario

2A set U is star-shaped w.r.t. u0 if for any u ∈ U , the
line segment between u and u0 also belongs to U .

3Notice that both the finite horizon case, and the two
infinite horizon cases investigated, can be formulated in
this way.

based on the Single-Product Stochastic Inventory Con-
trol problem described in Puterman (1994). Here the
states represent the number of items in the inventory,
with maximal capacity of MAXSTOCK items. Ev-
ery day an order is made for new items at the cost of
STOREPRICE each. A price is paid for holding the
items in the inventory (both old and new), which is a
function of the number of items HOLDINGCOST(n).
A Poisson-distributed number of customers, with ex-
pected value of NUMCUSTOMERS place orders for
the item and pay CUSTOMERPRICE for each prod-
uct sold. If the demand cannot be met, the store is
“fined” total of PENALTY(n) where n is the number
of customers whose demand cannot be met. The simu-
lation is run for T days, and any unused stock at time
T + 1 is wasted.

The deviation we added to this scenario is Rush: the
maximal number of customers, MAXSTOCK, arrive
simultaneously on the same day. Thus the uncertainty
set Ust consists of two points: regular Poisson arrival
and Rush. Note that a Rush affects both the transition
probabilities and the rewards.

We simulated the above scenario for different values
of initially assumed number of deviations d0

4, and
applied random occurrences of Rush with probability
prush for each day independently. We also added the
expected value of the optimal MDP policy aware of
the occurrence of Rush for comparison. The results
5 are given in Figure 3. It can be seen that with a
suitable choice of d0 such as expected number of devi-
ation, the performance of LDST’s policy is comparable
to the performance of the optimal policy for each sce-
nario, while both nominal (d0 = 0) and conservative,
uncoupled uncertainty (d0 = T ) polices give worse per-
formance as expected.

7. Conclusion

We proposed a new robust MDP framework, termed
“Lightning Does not Strike Twice,” to model the case
that uncertain parameters among different states are
coupled by sharing a common pool of “budget” of de-
viation. This leads to a tractable formulation that pro-
vides a flexible tradeoff between risk and value, which
can be adjusted by tuning the “budget.”

4Note that for d0 = 0 we get the nominal policy, and
for d0 = T we get the conservative, uncoupled uncertainty
policy.

5The parameters chosen for simulation are T =
100, MAXSTOCK = 20, STOREPRICE = 5,
CUSTOMERPRICE = 50, NUMCUSTOMERS = 10,
HOLDINGCOST (n) = 2n2, PENALTY (n) = 7n2, ini-
tially the stock is empty.
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Figure 3. Simulation results for three values of prush. The
number of simulated trajectories is 105.

One obstacle that prevents robust MDPs from being
widely applied is that the solution tends to be con-
servative – an outcome of the traditional formulation
that uncertainties are uncoupled. On the other hand,
coupled uncertainty in MDPs is in general computa-
tionally difficult. Therefore, it is important to iden-
tify sub-classes of coupled uncertainty that are flexi-
ble enough to overcome conservativeness, yet remains
computationally tractable. This paper is the first of
such attempts, which we hope will facilitate the appli-
cability of robust MDPs.
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