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Abstract

We present a robust multiple manifolds structure
learning (RMMSL) scheme to robustly estimate
data structures under the multiple low intrinsic
dimensional manifolds assumption. In the lo-
cal learning stage, RMMSL efficiently estimates
local tangent space by weighted low-rank ma-
trix factorization. In the global learning stage,
we propose a robust manifold clustering method
based on local structure learning results. The
proposed clustering method is designed to get
the flattest manifolds clusters by introducing a
novel curved-level similarity function. Our ap-
proach is evaluated and compared to state-of-the-
art methods on synthetic data, handwritten digit
images, human motion capture data and motor-
bike videos. We demonstrate the effectiveness of
the proposed approach, which yields higher clus-
tering accuracy, and produces promising results
for challenging tasks of human motion segmen-
tation and motion flow learning from videos.

1. Introduction

The concept of manifold has been extensively used in
almost all aspects of machine learning such as non-
linear dimension reduction (Saul & Roweis, 2003), visu-
alization (Lawrence, 2005; van der Maaten, 2009), semi-
supervised learning (Singh et al., 2009), multi-task learn-
ing (Agarwal et al., 2010) and regression (Steinke & Hein,
2009). Related methods have been applied to many real-
world problems in computer vision, computer graphics,
web data mining and more. Despite the success of mani-
fold learning (in this paper, manifold learning refers to any
learning technique that explicitly assumes data have mani-
folds structures), people find there are several fundamental
challenges in real applications,

(1) Multiple manifolds with possible intersections: in many
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circumstances there is no unique (global) manifold but a
number of manifolds with possible intersections. For in-
stance, in handwritten digit images, each digit forms its
own manifold in the observed feature space. For human
motion, joint-position (angle) of key points in body skele-
ton form low dimensional manifolds for each specific ac-
tion (Urtasun et al., 2008). In these situations, modeling
data as a union of (linear or non-linear) manifolds rather
than a single one can give us a better foundation for many
tasks such as semi-supervised learning (Goldberg et al.,
2009) and denoising (Hein & Maier, 2007).

(2) Noise and outliers: one critical issue of manifold learn-
ing is whether the method is robust to noise and outliers.
This has been pointed out in the pointer work on nonlin-
ear dimension reduction (Saul & Roweis, 2003). For non-
linear manifolds, since it is not possible to leverage all data
to estimate local data structure, more samples from mani-
folds are required as the noise level increases.

(3) High curvature and local linearity assumption: typi-
cal manifold learning algorithms approximate manifolds by
the union of locally linear patches (possibly overlapped).
These local patches are estimated by linear methods such
as principal component analysis (PCA) and factor analysis
(FA) (Teh & Roweis, 2003). However, for high curvature
manifolds, many smaller patches are needed, but this often
conflicts with the limited number of data samples.

In this paper, we investigate the problem of robustly es-
timating data structure under the multiple manifolds as-
sumption. In particular, data are assumed to be sam-
pled from multiple smooth submanifolds of (possibly dif-
ferent) low intrinsic dimensionalities with noise and out-
liers. The proposed scheme named Robust Multiple Man-
ifolds Structure Learning (RMMSL) is composed of two
stages. In the local stage, we estimate local manifolds
structure taking into account of noise and curvature. The
global stage, i.e., manifold clustering and outlier detec-
tion, is performed by constructing a multiple kernel sim-
ilarity graph based on local structure learning results by in-
troducing a novel curved-level similarity function. Thus,
issue (1) is explicitly addressed, and (2) and (3) are par-
tially investigated. A demonstration of the proposed ap-
proach is given in Fig.1. It is worth noting that other
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Figure 1.A demonstration of RMMSL. From left to right, noisy
data points sampled from two intersecting circles with outliers,
outlier detection results, and manifolds clustering results after
outlier detection.

types of global learning tasks such as dimension reduc-
tion, denoising and semi-supervised learning can be han-
dled based on each individual manifold cluster by ex-
isting methods (Lawrence, 2005; van der Maaten, 2009;
Hein & Maier, 2007; Sinha & Belkin, 2010).

Our problem statement is rigorously expressed as follows.
Data{xi}

n1+n2
i=1 ∈R

D×(n1+n2) consist of inliers{xi} (1≤ i ≤
n1) and outliers{x j} (n1+1≤ j ≤ n1+n2). Inlier points
{xi}

n1
i=1 ∈ R

D×n1 are assumed to be sampled from multiple
submanifoldsMc (1≤ c≤ nc) as follows,

xi = fC(xi)(τi)+ni , i = 1,2, ..,n1 (1)

whereC(xi) ∈ {1,2, ...,nc} is the manifold label function
for xi . ni is inlier noise inRD. fc(·) is the smooth mapping
function that maps latent variableτi from latent spaceRdc

to ambient spaceRD for manifoldMc. dc(< D) is the in-
trinsic dimensionality ofMc and it can vary for different
manifolds. The task of local structure learning is to esti-
mate the tangent spaceTxiM and the local intrinsic dimen-
sionality dC(xi) at eachxi . This is equivalent to estimate

J( fci (·);τi) ∈ R
D×dci , i.e., the Jacobian matrix offci (·) at

τi . Details are given in section 3. The tasks of global struc-
ture learning addressed in this paper are, to detect outliers
{x j} (n1+1≤ j ≤ n1+n2) and to assign manifolds cluster
labelci ∈ {1,2, ...,nc} for inliers{xi} (1≤ i ≤ n1) (Fig. 2).
This is given in section 4. Experimental results are shown
in section 5 and followed by conclusion in section 6.

2. Related Work

Recent works on manifold learning and latent vari-
able modeling focus on low-dimensional embedding and
label propagation for high dimensional data, which
are usually assumed to be sampled from a single
manifold (Saul & Roweis, 2003; Sinha & Belkin, 2010;
Lawrence, 2005; van der Maaten, 2009). To address the
multiple manifolds problem, (Goldberg et al., 2009) gives
theoretical analysis and a practical algorithm for semi-
supervised learning with the multi-manifold assumption.
As a complementary approach to previous works, RMMSL
mainly focuses on unsupervised learning with the multi-
manifold assumption and it can be combined with existing

approaches1.

In the global structure learning stage, RMMSL focuses on
clustering and outlier detection. Clustering is a long stand-
ing problem and we only review manifold related cluster-
ing methods. If data lie on a low-dimensional submanifold,
distance on the manifold is used to replace the Euclidean
distance in the clustering process. This leads to spectral
clustering (Ng et al., 2002; Zelnik-Manor & Perona, 2005;
Maier et al., 2009), one of the most popular modern cluster-
ing algorithms. We refer (von Luxburg, 2007) as a survey
for spectral clustering. However, most of these works do
not explicitly consider multiple intersecting manifolds.

State-of-the-art multiple subspace learning methods
such as (Elhamifar & Vidal, 2009; Vidal et al., 2010;
Yan & Pollefeys, 2006) acquire good performance on
multiple linear (intersecting) subspace segmentation with
the assumption that the intrinsic manifolds have linear
structures. However, real data often have nonlinear intrin-
sic structures, which brings difficulty for them. Nonlinear
manifold clustering is investigated in (Goh & Vidal, 2007),
which mainly focuses on separated manifolds. As an
extension of ISOMAP, (Souvenir & Pless, 2005) proposes
an EM algorithm to perform multiple manifolds clustering,
but results are sensitive to initializations and the E-step
is heuristic. Recently, (Wang et al., 2011) proposes an
elegant solution of manifolds clustering by constructing
the affinity matrix based on estimated local tangent space.

3. Local Manifold Structure Estimation

Correctly and efficiently estimating local data structure is
a crucial step for data analysis. As explained before, prob-
lems like noise and high curvature make local structure es-
timation challenging. This section addresses the issue of
how to model and represent local structure information on
manifolds. We start from local Taylor expansion, and lo-
cal manifold tangent space is represented by the Jacobian
matrix under the local isometry assumption.

Local Taylor Expansion. Without additional assump-
tions, the model in eq.1 (section 1) is not well defined.
For instance, iff (·) and point set{τi} satisfy eq.1, then
f (g−1(·)) and point set{g(τi)} satisfy it too, whereg(·) is
any invertible and differential mapping function fromRd

to R
d. Thus, thelocal isometryassumption is enforced at

point τi ∈ R
d,

|| f (τ)− f (τi)||2 = ||τ− τi ||2+o(||τ− τi ||2) (2)

whereτ is in theε−neighborhoodof τi . The above con-
dition implies thatJ( f (·);τi) ∈ R

D×d is an orthonormal
matrix (Smith et al., 2009), i.e.,JT( f (·);τi)J( f (·);τi) = Id.

1It can also be used to supervised learning with minor modifi-
cations.
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From eq.1, by using Taylor expansion to incorporate both
Taylor approximation error and inlier noise we get,

xi j −xi = J( f (·);τi)(τi j − τi)+ei j +n,i j

ei j ∼ o(||τi j − τi ||2)
(3)

wherexi j (1≤ j ≤mi) aremi elements in theε ball of xi and
noise vectorn,i j

denotesni j −ni . By using matrix notation,
we have,

Xi −xi1
T
mi

= Ji(T i − τi1
T
mi
)+Ei +Ni (4)

Assume there aremi points {τi j ,xi j}
mi
j=1 in the ε −

neighborhoodof {τi ,xi}, the local data matrixXi is defined
as [xi1,xi2, ...,ximi

] ∈ R
D×mi . The corresponding latent co-

ordinate matrixT i for Xi is denoted as[τi1,τi2, ...,τimi
] ∈

R
d×mi , the corresponding local Taylor approximation error

matrix Ei is denoted as[ei1,ei2, ...,eimi
] ∈ R

D×mi andNi is
the local inlier noise matrix[n,i1,n

,
i2
, ...,n,imi

] ∈ R
D×mi . Ji is

the short notation ofJ( f (·);τi).

It is natural to assume noisen,i j
to be i.i.d with homo-

geneous Gaussian distributionN(0,σ2
nID) (1 ≤ j ≤ mi).

Furthermore, we treat errors as independent Gaussian ran-
dom vectors with different covariance matrices, i.e.,ei j ∼

N(0,σ2IDαi j ). By adding noise and error together, aninte-
grated errorvectorεi j is defined as,

εi j = n,i j
+ei j ∼ N(0,σ2

nID +σ2αi j ID)

j = 1,2, ...,mi

(5)

whereσ2
n indicates the scale of the noise’s covariance and

σ2 indicates the scale of the error.αi j reflects the inhomo-
geneous property of different error of Taylor expansion on
pointsxi j (based onxi). Thus, noise and error are jointly
considered. Instead of treating errorei j as homogeneous
across different points, we argue the error is proportionalto
the relative distance||τi j − τi ||2, based on the natural prop-
erty of Taylor expansion.

Inference. To reflect the inhomogeneous property of er-
ror εi j (combine both Taylor approximation error and inlier
noise), we propose the following objective function to esti-
mateJi ,

L (Ji) = ||EiS||
2
F

= ||{(Xi −xi1
T
mi
)−Ji(T i − τi1

T
mi
)}S||2F

(6)

whereS∈ R
mi×mi is the diagonal weight matrix withsj j =

s(τi j ,τi) indicating the importance to minimize errorεi j on
xi j . Intuitively, we emphasize the error minimization forxi j

more thanxik if sj j is larger thanskk.

Then we discuss how to chooseαi j and determineSaccord-
ingly. First, we chooseαi j = α(||τi j −τi ||2) whereα(·) is a

monotonically non-decreasing function in the non-negative
domain. Supported by the fact of local-isometry (eq.2), we
haveαi j ∼ α(||xi j −xi ||2). So,

εi j ∼ N(0,(σ2
n+σ2α(||xi j −xi ||2))ID)

j = 1,2, ...,mi
(7)

Eq. 7 immediately suggests a weight function,sj j = s(‖
τi j − τi‖2)= 1/(σ2

n+σ2α(||xi j −xi ||2)). Given the function
α(·), s(·) can be determined and we get the weight matrix
S. Then, eq.6 can be effectively solved by the following
optimization framework

argmax
Ji

||(JT
i X̃iSST X̃

T
i Ji)||∗,s.t.,J

T
i Ji = Id (8)

Essentially, the solution of eq.8 is just the largestd eigen-

vectors of the matrix̃XiSST X̃
T
i (X̃ = (Xi −xi1T

mi
)), which is

calledlocal structure matrix Ti ∈ R
D×D. The local intrin-

sic dimensionalityd can be estimated by finding the largest
gap between eigenvalues ofT i (Mordohai & Medioni,
2010).

Analysis. By modeling inhomogeneous errorei j , curvature
effect (Hessian) is implicitly considered without high order
terms. Furthermore, for a large range ofα(·) (such as high
order polynomial), weightsj j is quite small when||xi j −
xi ||2 is large. Thus, outliers will not affect the estimation
results much.

It is also interesting to compare the local learning meth-
ods with different kernel functionsα(·). For standard low-
rank matrix approximation by Singular Value Decomposi-
tion (SVD), α(·) is a constant function. This is because
SVD assumes data lie on a linear subspace without consid-
ering curvature or outliers. SVD can be improved to Robust
SVD, by introducing the robust influence function to han-
dle outliers (De la Torre & Black, 2003). However, Robust
SVD is still constrained by the linear model and the com-
putational cost is high because of the iterative computation.
On the other hand, Tensor Voting (TV) uses Gaussian ker-
nel (Mordohai & Medioni, 2010), which can be viewed as
a special case ofs(·) whenσn = 0. This is because standard
Tensor Voting does not consider inlier noise.

4. Global Manifold Structure Learning

In this global stage of RMMSL, we focus on multiple
smooth manifolds clustering based on local structure learn-
ing results.

In contrast to previous works, the clustering stage in
RMMSL can handle multiple non-linear (possibly inter-
secting) manifolds with different dimensionalities and it
explicitly considers outlier filtering, which is addressedas
one step in the clustering process. Compared to the stan-
dard assumptions in clustering, i.e., the intra-class distance
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Figure 2.An example of multiple smooth manifolds clustering.
The first one is the input data samples and the other three are
possible clustering results. Only the rightmost is the result we
want because the underlying manifolds are smooth.

should be small while the inter-class distance should be
large, we further argue that each cluster should be a smooth
manifold component. As shown in Fig.2, when two man-
ifolds intersect, there exist multiple possible clustering so-
lutions, while only the rightmost is the result we want. The
underlying assumption we make is local manifold has rela-
tively low curvature, i.e. it changes smoothly and slowly as
spatial distance increases. In order to get theflattestman-
ifold clustering result, it is natural to incorporate aflatness
measure into the clustering objective function.

Curved-Level Measure.As an approximation of (continu-
ous) Laplacian-Bertrami operator (Hein et al., 2005), (dis-
crete) graph Laplacian can measure the smoothness of the
underlying manifold. However, computing graph Lapla-
cian is a global process and most of the theoretical results
can not be easily adapted to the multi-manifold setting. On
the other side, curvature is a local measurement to indi-
cate the curved degree of a geometric object. As a gener-
alization of the curvature for 1D curve and 2D surface, the
Ricci curvature tensor is proposed to represent the amount
by which the volume element of a geodesic ball in a curved
(Riemannian) manifold deviates from that of the standard
ball in Euclidean space.

Inspired by the idea of curvature, the followingcurved-
levelmeasurementR(x) is considered,

R(x) = ∑
xi∈N(x)

||θ(Ji ,J)||
d(xi ,x)

(9)

θ(Ji ,J) measures the principal angle between the tangent
spaceJi ∈ ℜD×di (TxiM) andJ ∈ ℜD×d (TxM). d(xi ,x)
is the geodesic distance betweenxi and x. N(x) is the
spatial neighborhood points set forx. Intuitively, R(x) is
analogous (up to a constant variation) to the integration of
the unsigned principal curvatures along different directions
at x. The theoretical analysis on the connection between
R(x) and curvature (such as mean curvature) as well as the
asymptotic behavior when the number of data samples goes
to infinity is left for future investigation. Based on eq.9, we
can measure the (approximate)total curvedlevel on one
manifold clusterMk by summing upR(·) on all data sam-

plesxi belonging to this cluster,

R(Mk) = ∑
xi∈Mk

R(xi) = ∑
xi∈Mk,(i, j)∈G

||θ(Ji ,J j)||

d(xi ,x j)
(10)

where G is the undirected neighborhood graph built on
data samples (ε-neighborhood orK-nearest neighborhood
graph).

Objective Function. Eq. 10 provides an empirical way to
measure thetotal curved degreeon one particular manifold
clusterMk. This can be viewed as one type of the intra-
cluster dissimilarity in the standard clustering framework.
In order to get the balanced clustering results, we also con-
sider the inter-cluster dissimilarity function as follows,

R(Mk,Ml ) = ∑
xi∈Mk,x j∈Ml ,(i, j)∈G

||θ(Ji ,J j)||

d(xi ,x j)
(11)

In practice, the value of||θ(Ji ,J)||/d(xi ,x) in eq.9 is un-
bounded and numerically unstable. Thus, it is straightfor-
ward to compound eq.9, 11 and the standard similarity
kernel function (such as Gaussian) to get thenormalized
curved measurement. In particular, we use the standard
minimization framework by putting||θ(Ji ,J)||/d(xi ,x) into
the similarity function with an additional distance similar-
ity function,

JRMMSL({Mk}
nc
k=1) =

nc

∑
k=1

W(Mk,Mk)

W(Mk)
(12)

whereW(·) is thecontraryversion of the curved measure
function R(·), i.e., theflatter the manifold is thelarger
value ofW(·) is. Mk is the complementary set ofMk.
The formulation ofW(·) is,

∑
xi∈Mk,(i, j)∈G

w1(
||θ(Ji ,J j)||

d(xi ,x j)
)w2(d(xi ,x j)) (13)

wherew1(·) andw2(·) are similarity kernel functions that
can be chosen as Gaussian or other standard formulations
(similar for W(Mk,Ml )). Due to the shrinkage effect of
kernel,d(·) is further approximated by Euclidean distance.
Intuitively, W(Mk) is one type of the intra-class similarity
function on one manifold cluster andW(Mk,Ml ) is the
inter-class similarity function between two clusters. The
optimalnc-classes clustering results are obtained by mini-
mizing eq.12.

Algorithm. Indeed, eq.12 can be viewed as a multi-
class normalized-cut with novel similarity measurement
provided by local curved similarity and distance similarity
functions (von Luxburg, 2007). Directly minimizing eq.12
is an NP-hard problem, but it can be relaxed by graph spec-
tral clustering in the following procedure.
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Step1. Before (global) manifold clustering, local structure
learning of RMMSL in sec.3 is performed to estimate the
local tangent spaceJi ∈ ℜD×di at each pointxi . di can be
locally estimated from the local learning stage of RMMSL
or chosen as a fixed value in advance. Also, the neigh-
borhood graphG is built on all input data samples{xi}

n
i=1

(n= n1+n2).

Step 2. Constructing the similarity matrixW =
[w(xi ,x j)]i, j ∈ ℜn×n by the following two kernels. The
first kernel is the pairwise distance kernel, which is
widely used in graph spectral clustering and defined as
w1(xi ,x j) = exp{−||xi − x j ||

2/(σiσ j)}. In particular, we
use the idea from self-tuning spectral clustering to select
the local bandwidthσi and σ j (Zelnik-Manor & Perona,
2005). The second one is curved level kernelw2(xi ,x j) =
exp{−(θ(Ji ,J j))

2/(||xi − x j ||
2(σ2

c/σiσ j))}, where σc is
used to control the effect of this curved similarity. Then,
w(xi ,x j) is set as

wi j = w1(xi ,x j)w2(xi ,x j) =

exp{−(
||xi −x j ||

2

σiσ j
+

θ(Ji ,J j)
2

||xi −x j ||2σ2
c/σiσ j

)}.
(14)

Step̃3 (optional). Based onW, outlier detection (filtering)
can be done as described later.

Step4. Once we have the similarity matrixW, the stan-
dard spectral clustering technique can be applied. Specif-
ically, we compute the (unnormalized) Laplacian matrix
L = D−W, whereD is a diagonal matrix whose elements
equal to the sum ofW’s corresponding rows. We select the
first nc (number of clusters) eigenvectors of the generalized
eigenproblemLe= λDe. Finally, K-means algorithm is ap-
plied on the rows of these eigenvectors. After identifying
manifold cluster labels, many tasks such as embedding and
denoising can be performed on each manifold cluster.

Outlier Detection. We formulate the outlier detection
problem as a manifold saliency ranking problem by the
random walk model proposed in (Zhou et al., 2004). We
define a random walk graph on{xi}

N
i=1 from the follow-

ing transition probability matrixP = I − Lrw = D−1W. It
can be shown that, ifW is symmetric, then the stationary
probabilityπ of this random walk can be calculated directly
without complex eigen-decomposition (Zhou et al., 2004),

π = 1T
n D/||W||1 (15)

where 1n is ann×1 column vector with all elements as 1
and|| · ||1 is the entry-wise 1-norm of a matrix. It is straight-
forward that, ranking data according toπ is the same as
the un-normalized distribution 1T

n D. After ranking, bottom
points can be filtered out as outliers. The ratio of the out-
liers can be given as a prior or be estimated by performing
K-means on 1Tn D.

−100
−50

0
50

100

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100
150

200
250

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100
150

200
250

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100
150

200
250

−100

−50

0

50

100

−100

−50

0

50

100

−100
−50

0
50

100
150

200
250

−100

−50

0

50

100

−100

−50

0

50

100

0
20

40
60

80
100

0

20

40

60

80

0

20

40

60

80

100

0 20 40 60 80 100

0

20

40

60

80

0

20

40

60

80

100

0
20

40
60

80
100

0

20

40

60

80

0

20

40

60

80

100

0
20

40
60

80
100

0

20

40

60

80

0

20

40

60

80

100

Figure 3.Visualization of part of the clustering results in Ta-
ble 1. The first row : one noisy sphere inside another
noisy sphere inℜ3. The second row: two intersecting noisy
spheres inℜ3. The third row: two intersecting noisy planes
in ℜ3. For each part from left to right: K-means, self-tuning
spectral clustering (Zelnik-Manor & Perona, 2005), Generalized
PCA (Vidal et al., 2010) and RMMSL.

Analysis. The key idea of this algorithm is to present a
novel way to construct the similarity matrixW in a multi-
ple kernel setting (based on local structure estimations) to
encourageflatter clustering results. It is worth noting that
if two points have different tangent spaces, the similarity
(eq. 14) becomes smaller when two points get closer (in
a range). This can be viewed as an intuitive explanation
that why RMMSL can handle multiple intersecting mani-
folds. From the high level point of view, the pairwise simi-
larity incorporates the information on two local points sets
rather than two single points only. Similar ideas were pro-
posed in (Elhamifar & Vidal, 2009; Goldberg et al., 2009;
von Luxburg et al., 2011).

5. Experiments

We evaluate the performance of RMMSL on synthetic data,
USPS digits, CMU Motion Capture data (MoCap) and Mo-
torbike videos. These data are chosen to demonstrate the
general capability of RMMSL as well as the advantages
on nonlinear manifolds. We investigate the performance of
manifold clustering and further applications such as human
action segmentation and motion flow modeling. We also
perform quantitative comparisons of the local tangent space
estimations. In particular, the weighted low-rank matrix de-
composition (local structure learning in RMMSL) is com-
pared with the local SVD (or local PCA (Teh & Roweis,
2003)) and ND-TV (Mordohai & Medioni, 2010). Results
show that RMMSL is more robust to curvature and outliers
than other methods. Also, if the manifold has relatively low
curvature and is outlier free, then RMMSL and local SVD
have similar results. Details are omitted due to space limit.
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Data/Methods K-means NJW Clustering Self-tuning Clustering GPCA SSC RMMSL

Big-small spheres 0.50 1.00 1.00 0.51 0.56 1.00
Two-intersecting spheres 0.76 0.78 0.84 0.50 0.53 0.95
Two-intersecting planes 0.51 0.60 0.62 0.85 0.93 0.95
USPS-2200 0.80 0.89 0.89 - - 0.90
USPS-5500 0.78 0.88 0.88 - - 0.88
CMU MoCap 0.69 0.81 0.81 - - 0.89
Motorbike Video 0.72 0.84 0.85 0.85 0.87 0.96

Table 1.Rand index scores of clustering on synthetic data, USPS digits, CMU MoCapsequences and Motorbike videos.

−20

−15

−10

−5

0

5

10

15

20

25

−20

−10

0

10

20

30

0

50

−20

−15

−10

−5

0

5

10

15

20

25

−20

−10

0

10

20

30

0

50

−15

−10

−5

0

5

10

15

−20

−15

−10

−5

0

5

10

15

20

25

0

50

−20

−15

−10

−5

0

5

10

15

20

25

−20

−10

0

10

20

30

0

50

Figure 4.Clustering results of RMMSL on two manifolds with
outliers. From left to right: ground truth, outlier detection, clus-
tering after outlier filtering and clustering without outlier filtering.

5.1. Multiple Manifolds Clustering

In this task, quantitative comparisons of manifolds clus-
tering are provided on three data sets. We compare
RMMSL (global structure learning) to K-means, spec-
tral clustering (NJW algorithm (Ng et al., 2002)), Self-
tuning spectral clustering (Zelnik-Manor & Perona, 2005),
Generalized PCA (GPCA) (Vidal et al., 2010) and Sparse
Subspace Clustering (SSC) (Elhamifar & Vidal, 2009).
These methods (except K-means) are chosen because
they are related to manifold learning or subspace learn-
ing. We also perform comparisons with other spec-
tral clustering and subspace clustering methods such
as (Yan & Pollefeys, 2006) and (Goh & Vidal, 2007), and
get the same conclusion, but results are omitted due to
space limit. Rand Index score is used as the evalua-
tion metric. The kernel bandwidthσ in spectral clus-
tering is tuned in{1,5,10,20,50,100,200} for synthetic
data, MoCap and videos, and{100,500,1000,2000,5000}
for USPS. The value of theKth neighborhood in self-
tuning spectral clustering and RMMSL is chosen from
{5,10,15,20,30,50,100}. σc in the global stage of
RMMSL is chosen from{0.2,0.5,1,1.5,2}. In the lo-
cal stage, quadraticα(·) is used andσn is set as 1.
The sparse regularization parameter of SSC is tuned in
{0.001,0.002,0.005,0.01,0.1}. For synthetic data with
random noise, the parameters for all methods are selected
on 5 trials and then the average performance on another 50
trials is reported. For real data, parameters are selected by
picking the best Rand Index. For all methods containing
K-means, 100 replicates are performed.

Synthetic Data. Since most clustering algorithms do not
consider outliers explicitly, we first perform a comparison

on 3 outlier free synthetic data, while each contains 2000
noisy samples from two manifolds inℜ3 (d= 2 andD= 3).
Results are shown in Fig.3. Rand index scores are given in
the first three rows of Table1. For all methods, the num-
ber of clustersnc is fixed as 2. Results (Table1) show that
RMMSL achieves comparable and often superior perfor-
mance than other candidate methods. In particular, when
two manifolds are nonlinear and have intersections, such
as two intersecting spheres (second row), the advantage of
RMMSL is clearest.

To verify the robustness, we further evaluate RMMSL on
synthetic data with outliers. We add 100 outliers and a
2D plane (1000 samples) on the Swiss roll (2000 samples)
to generate two intersecting manifolds inℜ3. The results
of RMMSL are shown in Fig.4. RMMSL effectively fil-
ters out outliers and achieves 0.96 Rand score (nc = 2) and
0.99 F-measure for outlier detection when the ratio is given.
Also, the Rand score is reduced to 0.78 if we do clustering
without outlier filtering (nc = 3). This fact suggests that the
outlier detection step is helpful if outliers exist. It is worth
noting that spectral clustering methods cover broader cases
than RMMSL, which mainly has advantage on multiple
low-dimensional manifolds embedded in high dimensional
space. For instance, in the case of two 2D Gaussian dis-
tributed clusters inℜ2, RMMSL is reduced to self-tuning
spectral clustering (all local tangent spaces are ideally iden-
tical). Compared with multiple subspace learning methods
such as GPCA and SSC, which are the state-of-the-art for
linear manifold clustering, our approach is better when un-
derlying manifolds arenonlinear.

USPS Digits.We choose two subsets of USPS hand writ-
ten digits images. The first contains 1100 samples for dig-
its 1 and 2 each (USPS-2200) and the second contains 1100
samples for digits 1 to 5 each (USPS-5500).D is reduced
from 256 (size 16×16 images) to 50 by PCA andd is fixed
as 5. Due to the highly nonlinear image structure, results
of subspace clustering methods are not reported. For USPS
data, the possible high intrinsic dimensionality v.s. the lim-
ited number of samples bring difficulties for data structure
learning, especially the local learning stage of RMMSL.
Nevertheless, RMMSL achieves comparable results.
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Figure 5.An example of human action segmentation results on CMU MoCap. Top left, the 3D visualization of the sequence. Top right,
labeled ground truth and clustering results comparison. Bottom, 9 uniformly sampled human poses.

MoCap Data. The automatic clustering of human motion
sequences into differentaction unitsis a necessary step for
many tasks such as action recognition and video annota-
tion. Usually this is referred astemporal segmentation. In
order to make a fair comparison among different cluster-
ing methods, we focus on the non-temporal setting, i.e.,
the temporal index is removed and sequences are treated
as collections of static human poses. We choose 5 mixed
action sequences from subject 86 in the CMU MoCap. We
use the joint-position (45-dimensional representation for 15
human body markers inℜ3) features which are centralized
to remove the global motion. The average Rand scores are
reported in Table1. It shows that RMMSL achieves higher
clustering accuracy than other candidate methods.

One motion sequence (500 frames) and the corresponding
results are visualized in Fig.5. The subject walks, then
slightly turns around and sits down. By combining the local
learning results from RMMSL and (Teh & Roweis, 2003),
joint-position features (ℜ45) from this sequence are visual-
ized inℜ3. This figure supports the assumption that there
are low-dimensional manifolds in the joint-position space.
In fact, this MoCap sequence can be viewed as threecon-
nectednonlinear motion manifolds, corresponding to walk-
ing, turn-around and sit-down respectively.

Motion Flow Modeling. Unsupervised motion flow mod-
eling is performed on videos (Lin et al., 2011). The goal
is to analyze coordinated movements formed by multiple
objects, extractsemanticlevel information, and understand
what’s happening in the scene. Given motorbike videos as
shown in Fig.6 (from YouTube), global motion pattern is
learned from low level motion features. This is an impor-
tant task for video analysis and can be served as a foun-
dation for many applications such as object tracking and
abnormal event detection (Lin et al., 2010; 2011).

Differ from the probabilistic approaches in (Lin et al.,
2011), we formulate motion flow learning as a manifold

clustering problem. In the experiments, optical flows
on salient feature points are estimated by Lucas-Kanade
algorithm. Every feature point has 4D information of
(x,y,vx,vy). Then motion directionθ is calculated, and ev-
ery point is embedded to(x,y,θ) space. We observe that
coordinated group movements form into manifold struc-
tures in(x,y,θ) space. Therefore, the points are used as
the input. The first video containsn= 9266 points and the
second one containsn = 8684 points. We use RMMSL
to learn the global motion manifolds by doing manifold
clustering (nc = 2) and get the best Rand scores which are
reported in Table1. Since optical flow results are noisy,
outlier filtering is performed before clustering. The mo-
tion manifold learning results of two motorbike videos are
shown in Fig.6, where motion manifolds are visualized
on images after kernel density interpolation. From the re-
sults we can see that the clustered manifolds have clear
semantic meanings, since each manifold corresponds to a
coordinated movement formed by a group of motorbikes.
Therefore, RMMSL correctly learns global motion to help
understand the video scenes.

6. Conclusion

Robust Multiple Manifolds Structure Learning is proposed
to effectively learn the data structure by considering noise,
curved-level and multiple manifolds assumption. In partic-
ular, the estimated local structure is used to assist the global
structure learning tasks of clustering and outlier detection.
The algorithm is evaluated and compared to other state-of-
the-art clustering methods. The results are encouraging: on
both synthetic and real data, the proposed algorithm yields
smaller clustering errors in challenging cases, especially
when multiple nonlinear manifolds intersect. Furthermore,
the results on action segmentation and motion flow model-
ing demonstrate RMMSL’s capability for broad challeng-
ing applications in real world.
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Figure 6.Two examples of motion flow modeling results on motorbike videos. From left to right: two images samples, optical flow
results, learned motion manifolds with highlighted motion directions.
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