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Abstract

Ensembles of classification and regression
trees remain popular machine learning
methods because they define flexible non-
parametric models that predict well and are
computationally efficient both during train-
ing and testing. During induction of deci-
sion trees one aims to find predicates that
are maximally informative about the pre-
diction target. To select good predicates
most approaches estimate an information-
theoretic scoring function, the information
gain, both for classification and regression
problems. We point out that the common es-
timation procedures are biased and show that
by replacing them with improved estimators
of the discrete and the differential entropy we
can obtain better decision trees. In effect our
modifications yield improved predictive per-
formance and are simple to implement in any
decision tree code.

1. Introduction

Decision trees are a classic method of inductive infer-
ence that is still very popular (Breiman et al., 1984;
Hunt et al., 1966). They are not only easy to imple-
ment and use for classification and regression tasks,
but also offer good predictive performance, computa-
tional efficiency, and flexibility. While often heuris-
tically motivated, they can also deal with mixed dis-
crete/continuous features and missing values. As early
as in the late 1970’s ID3 introduced the use of in-
formation theory for the induction of decision trees
from data, described in detail in (Quinlan, 1986).
Yet, optimal induction of decision trees according to
some global objective is fundamentally hard (Hyafil
& Rivest, 1976), and to this day most implementa-
tions use randomized greedy algorithms for growing
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a decision tree (Criminisi et al., 2012). A recent ad-
vance has been the use of ensembles of randomized
decision trees (Amit & Geman, 1994), such as random
forests (Breiman, 2001), improving the predictive per-
formance by averaging predictions of multiple trees.

Reflecting on this rich history, we ask an almost
old-fashioned question: Can we improve the qual-
ity of learned decision trees by better estimation of
information-theoretic quantities? To answer this, we
take a look at how decision trees are typically grown
and how information theory is used in the process.

1.1. Decision Tree Induction

Decision trees are most often induced greedily, in the
following manner. Given a data set {(xi, yi)}Ni=1, we
start with an empty tree with just a root node. We
then sample a number of split function candidates from
a fixed distribution. Each split function partitions the
training set into a left and right subset by some test
on each xi. These subsets are scored so that a high
score is assigned to splits that aid in predicting the
output y well, i.e. those that reduce the average un-
certainty about the predictive target as estimated by
the training set. The highest scoring split is selected
and the training set is partitioned accordingly into the
two child nodes, growing the tree by making the node
the parent of the two newly created child nodes. This
procedure is applied recursively until some stopping
conditions such as a maximum tree depth or minimum
sample size are reached, see e.g. (Breiman et al., 1984).

Different split scoring functions exist and have been
used in the past (Breiman et al., 1984). A popular
split scoring function, the so called information gain
is derived from information-theoretic considerations.
The information gain is just the mutual information
between the local node decision (left or right) and the
predictive output.

To motivate the information gain score, let b ∈ B be a
random variable denoting the decision whether a sam-
ple is assigned to the left (L) or right (R) branch by
the split function. Hence B = {L,R}, and there is
a joint distribution p(y, b). Once we fix a sample x
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Algorithm 1 Information gain split selection

1: Input: Sample set Z = {(xi, yi)}n`
i=1, split pro-

posal distribution ps, number of tests T ≥ 1, en-
tropy estimator Ĥ

2: Output: Split function s∗ : X → {L,R}
3: Algorithm:
4: g∗ ← 0 {Initialize best infogain}
5: for t = 1, . . . , T do
6: Sample binary split s ∼ ps
7: Partition Z into (ZL, ZR) using s

8: g ← − |ZL|
n`

Ĥ(YL)− |ZR|
n`

Ĥ(YR) {Estimate}
9: if g > g∗ then

10: (g∗, s∗)← (g, s) {New best infogain}
11: end if
12: end for

the variable b is deterministic. We now measure the
mutual information (Cover & Thomas, 2006) between
the variable b and y. From the definition of mutual
information and by some basic manipulation we have

I(y, b) = DKL(p(y, b) ‖ p(y)p(b)) (1)

=

∫
B

∫
Y
p(y|b)p(b) log p(y|b) dy db

−
∫
B

∫
Y
p(y, b) log p(y) dy db (2)

= Hy −
∑

b∈{L,R}

p(b)Hy|b. (3)

Because the entropies Hy, Hy|b, and the split marginal
p(b) are unknown, they are typically estimated us-
ing the training sample. Depending on Y, the mea-
sure of integration dy is either discrete (classification)
or the Lebesgue measure (regression). Therefore the
entropies are either discrete entropies or differential
entropies (Cover & Thomas, 2006). The information
gain (3) is a popular criterion used to determine the
quality of a split (Criminisi et al., 2012), and has
been used for classification, regression, and density es-
timation. It is generally accepted as the criterion of
choice except for very unbalanced classification tasks,
or when the noise on the prediction targets y is large.

When we use the information gain criterion for recur-
sive tree growing, we execute Algorithm 1 at each node
in the decision tree, testing T candidate splits sequen-
tially and keeping the one that achieves the highest
estimated information gain. In the algorithm YL is
the subset of training set predictions that are sorted
into the left branch, i.e. YL = {yi : s(xi) = L}. Like-
wise YR is the remaining set of predictions. After the
best split is selected the left and right child nodes are
again subjected to the algorithm.

In this work we assume that the information gain (3)
is a good criterion by which to select splits. Given this
assumption, we address the problem of how to estimate
the information gain from a finite sample. As we will
see, the currently used estimators can be improved,
yielding more accurate estimates of the information
gain and in turn better decision trees.

1.2. Related work

The importance of how a split proposal is scored has
been analyzed in a series of papers. (Mingers, 1989)
provides an initial analysis and state that the “choice
of measure affects the size of a tree but not its accu-
racy”. At that time this was considered a controversial
claim and indeed (Buntine & Niblett, 1992) and (Liu
& White, 1994) demonstrated that the statistical anal-
ysis of Mingers was flawed and the different methods
of scoring a split do have a substantial influence on the
generalization error of the learned decision tree.

For binary classification tasks the choice of split scor-
ing functions has attracted special attention, as in this
case the split scoring function can be related to sta-
tistical proper scoring rules (Buja et al., 2005). In
addition, specialized criteria aiding the interpretabil-
ity of the resulting tree have been developed (Buja &
Lee, 2001). In our work we consider general multiclass
classification and multivariate regression tasks where
the goal is good predictive performance.

2. Multiclass Classification

For multiclass classification, we predict into a finite
set of classes Y = {1, 2, . . . ,K}. The most commonly
used entropy estimator is derived from empirical class
probabilities. For each class k, we count the number of
occurences of that class as hk =

∑
y∈Y I(y = k). The

sum of all counts is n = |Y | =
∑

k hk.

2.1. Naive Entropy Estimate

To estimate the entropy, we use the empirical class
probabilities p̂k(Y ) = hk/n, and the estimate

ĤN (Y ) = −
K∑

k=1

p̂k(Y ) log p̂k(Y ) (4)

= log n− 1

n

K∑
k=1

hk log hk, (5)

where in case a term is 0 log 0 it is taken to be zero.

The entropy estimator ĤN is an instance of a plug-in
estimator, where a function is evaluated on an esti-
mated probability distribution. In the case of the dis-
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crete entropy this is consistent, that is, in the large
sample limit n → ∞ it converges to the true en-
tropy (Antos & Kontoyiannis, 2001). Although (4)
is popularly used (see e.g. (Criminisi et al., 2012) and
references therein), it is a bad estimator when used
in (3). In particular (4) is biased and universally un-
derestimates the true entropy. In fact, the bias is
known (Schürmann, 2004), and we have for n = |Y |
samples that the bias depends on the true but un-
known per-class probabilities pk as

H(Y )−E[ĤN (Y )]=
K − 1

2n
− 1

12n2

(
1−

K∑
k=1

1

pk

)
+O(n−3).

Unfortunately, the second and higher-order terms of
this bias depend on the true unknown probabilities.
The first term, K−1

2n , however, can be evaluated and
is known as the Miller correction to (4), see (Miller,
1955). The correction is useful for entropy estimation,
but has no effect in (3). To see this, let us define the
Miller-adjusted estimate, ĤM (Y ) = ĤN (Y ) + K−1

2|Y | ,

and use it to evaluate the sum in (3), as

−|ZL|
n`

ĤM (YL)− |ZR|
n`

ĤM (YR)

= −
(
|ZL|
n`

ĤN (YL) +
|ZR|
n`

ĤN (YR)

)
+ C,

where the constant C = (K − 1)/n` is independent
of the split and thus it influences all split scores in
the same way in (3). Therefore, although the entropy
estimates are improved in absolute accuracy, the Miller
correction has no effect on which split is selected.

Can we at all hope to achieve a better split from using
improved entropy estimators? Estimating the discrete
entropy is challenging (Paninski, 2003; Antos & Kon-
toyiannis, 2001), but superior corrections than the one
of Miller have been proposed recently. We cannot give
an overview of the many proposed estimators here,
but recommend the work (Schürmann, 2004) for an
overview and quantitative comparison. For our pur-
poses, we select the Grassberger entropy estimate.

2.2. Grassberger Entropy Estimate

In two papers (Grassberger, 1988; 2003), Peter Grass-
berger derived a family of discrete entropy estimators.
We use the refined estimator from 2003, given as

ĤG(h) = log n− 1

n

K∑
k=1

hkG(hk), (6)
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Figure 1. Illustration of information gain estimation. For
a 40-class problem we produce finite-sample histograms,
varying the total number of samples in the set. The set
is partitioned into a left and right subset according to a
fixed multinomial distribution over classes, yielding a pos-
itive true information gain (which we can compute in this
example because we know the multinomial distribution).
Shown are the mean estimates and one unit standard devi-
ation over 500 replicates. The Grassberger entropy estima-
tor ĤG produces more accurate estimates than the naive
plugin entropy estimator.

where n = |Y |, and the summation is over all hk > 0
in the histogram. The function G(h) is given as1

G(hk) = ψ(hk) +
1

2
(−1)hk

(
ψ(
hk + 1

2
)− ψ(

hk
2

)

)
.

In the above formula, ψ is the digamma function. For
large hk the function G(hk) behaves like a logarithm,
and hence in the limit n→∞ we see that (6) becomes
identical to (5). For small sample sizes G(hk) differs
from log hk and the resulting estimate ĤG is more ac-
curate (Schürmann, 2004).

To train classification trees using ĤG we simply use
it instead of ĤN in Algorithm 1. The improvement
in information gain estimation is dramatic, as shown
in Figure 1. It is now fair to ask whether this im-
provement in information gain estimation also leads
to better generalization performance in the final clas-
sification tree ensemble. We will address this experi-
mentally in the next section, but generally we expect
the improvement to be largest when many classes are
used (say, K ≥ 10), because in this case the empirical
class frequencies cannot be estimated reliably.

2.3. Experiments

For the experimental protocol we follow the recom-
mendations in (Demšar, 2006). We intentionally do
not compare against other classification methods, both
because the competitive performance of randomized

1This is the closed-form solution to equation (30)
in (Grassberger, 2003), where G(hk) was given only as

G(hk) = ψ(hk) + (−1)hk
∫ 1

0
xhk−1

x+1
dx.
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decision trees has been established before and because
we want to assess only the contribution of improved in-
formation gain estimates. Overall, we use a standard
setup for training our classification trees; no pruning
is used and there are no missing features.

As features we use simple single-dimension threshold-
ing tests of the form s(x, a, b) = (xa ≤ b), where xa is
the a’th element in vector x, and b is a threshold. The
proposal distribution at a node is to select a uniformly
at random, but b is sampled uniformly from the sam-
ples reaching that node. At the leaf nodes we store a
single class label, the majority class over all remaining
samples at that node. Ties are broken at random. The
ensemble of trees is trained using simple replication of
the training set. To make predictions at test time, we
simply take the majority decision over the individual
predictions made by all trees in the ensemble.

Setup. We use 30 data sets from a variety of sources.
We use all multiclass (K ≥ 3) data sets from UCI,
as well as four text classification data sets (reuters,
tdt2, news20, rcv1) and web data sets.2 For data
sets that come with a fixed train/val/test split we
have used this split. For data sets that only come with
a train/test split we further split the original train
set 50/50 into a new train/val set. For data sets that
do not provide any split we partition the data into the
three subsets according to the proportions 25/25/50.
We perform model selection entirely on the val set,
selecting the minimum number of samples required to
continue splitting in {1, 5, 10}, but fixing the number
of trees to eight and the number of feature tests to 256.
The best parameter on the validation set is taken and
one model is trained on train+val, then evaluated on
test. We repeat the procedure five times and report
averaged multiclass accuracies on the test set.

Results. Table 1 shows the average multiclass ac-
curacies achieved on the test set. Generally the
performance appears to be on the same level, with
some notable exceptions (tdt2, news20, rcv1, and
sector) where the Grassberger entropy estimator ob-
tains higher accuracies. A Wilcoxon signed-rank test
rejects the null hypothesis of equal performance at a
p-value of 0.0267. Overall, the Grassberger estimate
yields higher accuracies on 18 data sets, compared to
eight data sets for the naive estimate, with four ties.
The runtime of the two methods showed no difference
and the the entire experiment ran on a single eight
core PC in less than 10 hours.

2From http://www.zjucadcg.cn/dengcai/Data/
TextData.html and http://www.cs.umd.edu/~sen/
lbc-proj/LBC.html

Table 1. Multi-class classification accuracies achieved on
different data sets. We report the average test set accuracy
as well as one unit standard deviation over five replicates.
Comparing the mean results over all data sets, a Wilcoxon
signed-rank test (Demšar, 2006) rejects the null-hypothesis
that the classifiers perform equally well when using ĤG and
when using Ĥ, at a p-value of 0.0267. For each data set,
we print the highest average performance in boldface.

Data set Classes Using Ĥ Using ĤG

webkb 5 77.7±2.0 76.7±3.9
cora 7 67.1±0.9 67.9±0.9
citeseer 6 66.3±0.8 66.4±0.9

reuters 58 83.3±0.6 84.7±0.5
tdt2 96 88.9±0.7 90.8±0.6
news20 20 64.8±0.4 68.3±0.7
rcv1 53 70.4±0.3 72.1±0.4

faces-olivetti 40 85.9±3.3 85.5±3.2
mnist 9 94.5±0.08 94.5±0.1
usps 10 91.7±0.4 91.7±0.4

connect4 3 76.2±0.4 76.7±0.7
covtype 7 96.0±0.04 95.9±0.04
dna 3 93.0±0.4 93.4±0.4
glass 6 66.1±4.7 65.1±4.9
iris 3 93.3±1.8 93.5±2.6
letter 26 88.3±0.3 88.2±0.4
oilflow 3 99.0±0.3 99.2±0.3
pendigits 9 95.5±0.4 95.7±0.6
poker 9 56.4±0.1 56.2±0.1
protein 3 61.4±0.4 61.1±0.6
satimage 6 89.1±0.6 89.2±0.4
sector 105 49.1±1.1 54.9±1.3
seismic 3 75.2±0.2 75.2±0.1
shuttle 7 100.0±0.0 100.0±0.1
soy 3 90.1±3.0 91.3±1.2
svmguide2 3 71.6±2.7 72.5±2.0
svmguide4 3 78.6±1.6 78.2±1.5
vehicle 4 70.6±2.0 72.2±1.4
vowel 10 44.5±1.6 44.8±2.2
wine 3 90.0±3.7 91.2±3.8

wins (4 ties) 8 18

Discussion. The difference between the two estima-
tors is small but statistically significant and we can
conclude that improved entropy estimation yields im-
proved classification trees. All other things have re-
mained unchanged and therefore the difference is di-
rectly attributable to the entropy estimation. The
change is most pronounced on data sets with a
large number of classes, confirming the superior-
ity of the Grassberger estimate in these situations.
Implementation-wise this improvement comes for free:
all that is required is to replace the naive entropy es-
timate with the Grassberger estimate.

http://www.zjucadcg.cn/dengcai/Data/TextData.html
http://www.zjucadcg.cn/dengcai/Data/TextData.html
http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
http://www.cs.umd.edu/~sen/lbc-proj/LBC.html
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3. Multivariate Regression

For multivariate regression problems and density es-
timation tasks we have Y = Rd. Moreover, we re-
quire that for the true generating distribution q(x, y)
we have that q(y|x) is a density with respect to the
Lebesgue measure, that is, the CDF of q(y|x) is ab-
solutely continuous. Our goal is to learn a prediction
model p(y|x) by evaluating a decision tree and storing
a simple density model p`(y) at the leaf `.

For any such distribution we consider its differential
entropy (Cover & Thomas, 2006) as a measure of un-
certainty, H(q) = −

∫
y
q(y|x) log q(y|x)dy. In general,

estimating the differential entropy of an unknown con-
tinuous distribution is a more difficult problem than
in the discrete case. The next subsection discusses the
common approach for training regression trees before
we propose a better estimator.

3.1. Normal approximation

One strategy is to assume the sample is a realization
of a distribution within a known parametric family of
distributions. By identifying a member in this family
using a point estimate we can compute the entropy
in closed form analytically. The most popular multi-
variate distribution that is amenable to such analytic
treatment is the multivariate Normal distribution. For
example, (5.2) in (Criminisi et al., 2012) uses the en-
tropy of a multivariate Normal in d dimensions,

ĤMVN-PLUGIN(Ĉ(Y )) =
d

2
− d

2
log(2π) +

1

2
log |Ĉ(Y )|

(7)
where Ĉ(Y ) is the sample covariance matrix. This
is a consistent plugin-estimator of the entropy be-
cause Ĉ(Y ) is a consistent estimator of the covari-
ance parameter of the Normal distribution. A spe-
cial case is the diagonal approximation ĤDIAG(C) =
ĤMVN-PLUGIN(C�I) where only the variances are used
and � is the elementwise matrix product, such that all
covariances are set to zero. However, as for the discrete
entropy, this estimator is biased: if the true distribu-
tion is Normal, then (7) underestimates its entropy.

If we are to accept the Normal approximation, we
should use a better estimator of its entropy. Such an
estimator exists, as (Ahmed & Gokhale, 1989) show:
they derive among all unbiased estimators one that
uniformly has the smallest variance. It is

ĤMVN-UMVUE =
d

2
log(eπ) +

1

2
log |

∑
y∈Y

yyT | (8)

−1

2

d∑
j=1

ψ

(
n+ 1− j

2

)
,

where ψ is again the digamma function. While (8)
improves over (7), a fundamental problem with the
Normal approximation is misspecification: we assume
that the samples come from a Normal distribution, but
in fact they could come from any other distribution.

3.2. Non-parametric Entropy Estimation

Instead of making the assumption that the distribution
belongs to a parametric family of distributions, non-
parametric entropy estimates aim to work for all dis-
tributions satisfying some general assumptions. Typ-
ically, the assumptions we make here, bounded sup-
port and absolute continuity, are sufficient conditions
for these estimates to exist.

The 1-nearest neighbor estimator of the differen-
tial entropy was proposed by (Kozachenko & Leo-
nenko, 1987) (a detailed description in English is given
in (Beirlant et al., 2001)). For each sample we de-
fine the one nearest neighbor (1NN) distance ρi =
minj∈{1,...,n}\{i} ‖yj − yi‖. The estimate is

Ĥ1NN =
d

n

n∑
i=1

log ρi + log(n− 1) + γ + log Vd, (9)

where γ ≈ 0.5772 is the Euler-Mascheroni constant,
and Vd = πd/2/Γ(1 + d

2 ) is the volume of the d-
dimensional hypersphere. We can efficiently com-
pute (9) for small number of output dimensions (say,
d ≤ 10) by the use of k-d trees (Friedman et al., 1977).
Then, computing ρi is O(log n) so that for a fixed di-
mension we can evaluate Ĥ1NN in O(n log n) time. To
speed up evaluation, we subsample the set Y used in
H1NN to keep only 256 samples, without replacement.

Other non-parametric estimates of the differential en-
tropy have been derived from kernel density esti-
mates (Beirlant et al., 2001), length of minimum span-
ning trees (Hero & Michel, 1999; Costa & Hero, 2004),
and k-nearest neighbor distances (Goria et al., 2005).
The latter two could potentially improve on the 1-NN
estimate, but we did not examine them further. For an
introduction to the field of non-parametric estimation
of information-theoretic functions, see (Wang et al.,
2009), and the earlier survey (Beirlant et al., 2001).

3.3. Experiments

For the experiments we use the same features and
method as in the classification task, but compare four
different entropy estimators. We again follow the rec-
ommendations of (Demšar, 2006).

Kernel density leaf model. For each leaf ` in the
tree we use the kernel density estimate as leaf density,
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(Härdle et al., 2004)[Section 3.6],

p`(y) =
1

n`

n∑̀
i=1

kB(y − y(`)i ),

where kB(y) = k(B−1y)/ det(B) is the kernel and
B ∈ Rd×d is the bandwidth matrix. We estimate
the bandwidth matrix using “Scott’s rule” as B =

n
−1/(d+4)
` Σ̂1/2, where Σ̂ = 1

n`−1
∑n`

i=1 yiy
T
i + λI is the

regularized sample covariance of all samples reaching
this leaf node, and λ ≥ 0 is a regularization param-
eter determined by model selection. As basis kernel
k : Rd → R+ we use a multivariate standard Normal
kernel. Hence p` is a properly normalized density.

Setup. We use 18 univariate and multivariate re-
gression data sets from the UCI, StatLib, AMSTAT
repositories, and one own data set, see Table 2.

The absolute continuity assumption is satisfied for
most of the data sets we considered, with one no-
table exception: for the UCI forestfire data set the
predictive target is one dimensional (the area of for-
est burned in a particular district), but is a mixed
variable, being exactly zero for around half of the in-
stances, and continuous real-valued for the other half.
As such, it does not have an absolutely continuous
CDF and the information gain criterion is not justi-
fied. If we would continue anyway we can have ρi = 0,
leading to invalid expression of log 0 in (9).

For other data sets, however, another problem occurs:
discretization of an originally continuous variable. For
example, in the classic Boston housing benchmark
data set from the UCI repository, the predictive target
(median value in 1000 USD) is discretized at a gran-
ularity of 0.1, whereas the original quantity is clearly
continuous. To satisfy the absolute continuity assump-
tion we opted to add—prior to any experiments—a
sample from the uniform U(−h/2, h/2) to each pre-
dictive target, where h is the discretization bin width.
This corresponds to a piecewise constant density in
each bin, a reasonable assumption for the small bin
sizes used. We do this for all data sets that have two
or more identical predictive target vectors, and esti-
mate the bin size h for each dimension individually by
taking the smallest positive difference between sorted
values in that dimension.

As a last step, because the differential entropy is not
invariant to affine transformations we standardize each
output dimension of the training set individually, but
undo this scaling on the target predictions before mea-
suring the root mean squared error.

We perform model selection by first splitting the en-

tire data set into trainval and test in proportions
60/40, and then replicate ten times the following pro-
cedure: split the trainval data set into train and val

data sets at proportions 40/20, train a model from the
train set and evaluate its performance on val. The
best model parameters for each estimator is used in
the final training replicates using the full trainval

data set for training. The following parameters were
fixed in all experiments: number of trees 8, minimum
samples per leaf 16, number of feature tests 256, non-
parametric subsampling size 256. The parameter se-
lected was the kernel density estimation regularization
λ ∈ {10−4, 10−3, 10−2, 0.1, 1}. All models are trained
on exactly the same data sets using the same param-
eters, except for the entropy estimator.

We estimate the expected log-likelihood 〈LL〉 for a sin-
gle sample from the true distribution as average and
one unit standard deviations over the ten runs, trained
on trainval and tested on test. The log-likelihood
is the uniform average of each individual tree model.

Results. The non-parametric entropy estimator
yields the highest ranking holdout likelihood (average
rank 1.83) compared to the other estimators. A Fried-
man test (Demšar, 2006) rejects the null-hypothesis of
equal performance (p-value 0.0272, Iman-Davenport
statistic 3.31 at N = 18, k = 4). In contrast, for
the RMSE performance the null-hypothesis of equal
performance is not rejected (p-value 0.350, Iman-
Davenport statistic 1.12), suggesting that a better log-
likelihood does not yield lower RMSE. The runtime of
the 1NN estimator is a about 6-10 times larger per
data set than for the Normal estimator; the entire ex-
periments completed in 24 hours on an eight core PC.

Discussion. MVN-UMVUE and MVN-PLUGIN
seem to perform equally well and this indicates that
the misspecification error dominates the Normal en-
tropy estimation error. Training with the 1-NN es-
timator yields the best log-likelihood in 10 out of 18
cases, showing that the conditional density p(y|x) is
captured more accurately. This does not translate
into a statistically significant improvement in RMSE,
where the 1-NN estimator wins 8 out of 18 cases. The
lack of improvement in terms of RMSE makes sense
from the point of view of empirical risk minimization.

4. Conclusion

We have proposed the use of recently developed en-
tropy estimators for decision tree training. Our ap-
proach applies only to classification and regression
trees using information gain as a split scoring function.
While this appears limiting, this variant of decision
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Table 2. Multivariate regression results: average log-likelihood and root mean squared error (RMSE). The first set of data
sets originate from the UCI repository, the second set from StatLib and AMSTAT, and the third (kinectk2la) is our
own data set. For each data set we report the input feature dimensionality i, the output dimensionality d and the total
number of samples N . The average ranks (1 to 4) in terms of the holdout likelihood are also reported at the bottom of
the table. For each data set we print the highest average holdout log-likelihood in boldface.

Data set i/d/N Using Ĥdiag Using Ĥmvn-plugin Using Ĥmvn-umvue Using Ĥ1nn

pyrim 27/1/74 〈LL〉 −1.059± 0.009 −1.050± 0.002 −1.173± 0.021 -1.015±0.003
RMSE 0.50± 0.01 0.47± 0.00 0.61± 0.04 0.44± 0.00

triazines 60/1/186 〈LL〉 −1.272± 0.188 -1.091±0.055 −1.471± 0.176 −1.568± 0.356
RMSE 1.09± 0.03 1.07± 0.03 1.15± 0.06 1.16± 0.03

mpg 7/1/392 〈LL〉 −0.490± 0.034 −0.669± 0.062 −0.627± 0.052 -0.412±0.011
RMSE 38.97± 0.55 43.49± 0.94 44.86± 0.84 37.08± 0.61

housing 13/1/506 〈LL〉 -0.421±0.043 −0.476± 0.113 −0.641± 0.084 −0.550± 0.151
RMSE 58.82± 1.03 53.85± 2.42 69.54± 1.48 61.57± 1.66

mg 6/1/1385 〈LL〉 −0.679± 0.017 −0.696± 0.017 −0.977± 0.048 -0.650±0.009
RMSE 2.91± 0.03 2.94± 0.03 3.19± 0.05 2.81± 0.03

spacega 6/1/3107 〈LL〉 −0.928± 0.026 −0.978± 0.005 −1.147± 0.005 -0.861±0.017
RMSE 4.29± 0.03 4.36± 0.04 4.65± 0.07 4.31± 0.04

abalone 8/1/4177 〈LL〉 −1.003± 0.028 −0.977± 0.019 −1.189± 0.005 -0.913±0.010
RMSE 95.77± 0.48 94.95± 0.69 97.34± 1.17 94.53± 0.32

cpusmall 12/1/8192 〈LL〉 0.514± 0.013 0.526±0.031 0.363± 0.009 0.515± 0.007
RMSE 191.20± 5.70 186.12± 6.43 195.43± 4.11 267.35± 15.59

cadata 8/1/20640 〈LL〉 −0.348± 0.028 -0.320±0.017 −0.588± 0.012 −0.421± 0.017
RMSE 105(50.10± 0.94) 105(47.94± 0.35) 105(52.88± 0.35) 105(53.89± 0.72)

concretesl 7/3/103 〈LL〉 −3.303± 0.124 −4.015± 0.515 −3.924± 0.062 -3.206±0.173
RMSE 18.94± 0.36 19.00± 0.51 18.61± 0.47 17.72± 0.26

servo 4/1/167 〈LL〉 −0.131± 0.006 −0.078± 0.000 −0.078± 0.000 0.278±0.000
RMSE 7.20± 0.00 7.18± 0.00 7.18± 0.00 5.98± 0.00

concretestr 8/1/1030 〈LL〉 −0.567± 0.023 -0.436±0.013 −0.559± 0.058 −0.547± 0.013
RMSE 153.60± 5.04 137.01± 2.53 143.60± 6.61 150.00± 4.28

parkinsons 19/2/5875 〈LL〉 3.115± 3.699 3.522± 0.201 3.518± 0.152 3.953±0.106
RMSE 3.69± 0.25 2.30± 0.04 2.29± 0.04 7.04± 0.22

fatdata 14/2/252 〈LL〉 −0.938± 0.040 −1.239± 0.061 −1.272± 0.050 -0.811±0.032
RMSE 12.93± 0.65 11.41± 1.05 11.31± 1.02 11.13± 0.70

plasma 12/2/315 〈LL〉 −2.722± 0.078 −2.891± 0.072 −2.876± 0.133 -2.540±0.098
RMSE 283.89± 3.88 287.93± 4.48 287.93± 4.20 279.36± 2.54

cps85 9/2/534 〈LL〉 −2.655± 0.022 −2.655± 0.019 -2.650±0.012 −2.684± 0.029
RMSE 5.64± 0.07 5.60± 0.08 5.57± 0.03 5.65± 0.04

kuiper 10/2/804 〈LL〉 −1.284± 0.021 −1.083± 0.009 -0.450±0.019 −0.765± 0.035
RMSE 8907.56± 25.34 8924.12± 14.42 8923.40± 9.54 9161.77± 38.31

kinectk2la 71/9/2087 〈LL〉 −4.314± 0.149 −2.135± 0.181 -2.027±0.169 −2.244± 0.414
RMSE 0.30± 0.00 0.30± 0.00 0.30± 0.00 0.30± 0.01

LL rank 2.72 2.39 3.06 1.83
RMSE rank 2.56 2.11 2.89 2.44

LL wins 1 4 3 10
RMSE wins (1 tie) 2 5 2 8

trees is a popular one, implemented in many software
packages and used in hundreds of publications. We
therefore suggest that the improvement in predictive
performance derived from improved information gain
estimates, while small, is useful to many. Furthermore,
the changes are well-motivated and require only minor
modifications to existing implementations.
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gio. Universal estimation of information measures
for analog sources. Found. Trends Commun. Inf.
Theory, 5:265–353, 2009.


