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Abstract

Recent work in text analysis commonly de-
scribes topics in terms of their most frequent
words, but the exclusivity of words to top-
ics is equally important for communicating
content. We introduce Hierarchical Poisson
Convolution (HPC), a model which infers
regularized estimates of the differential use
of words across topics as well as their fre-
quency within topics. HPC uses known hier-
archical structure on human-labeled topics to
make focused comparisons of differential us-
age within each branch of the hierarchy of la-
bels. We then infer a summary for each topic
in terms of words that are both frequent and
exclusive. We develop a parallelized Hamil-
tonian Monte Carlo sampler that allows for
fast and scalable computation.

1. Introduction

Modern text analysis research has focused on discov-
ering latent structure in the content of document col-
lections to assist in critical tasks such as topical con-
tent exploration, dimensionality reduction, and classi-
fication. Most recently, topic models such as Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) have
taken a probabilistic approach to this task by view-
ing a document’s content as arising from a mixture
of component distributions. Inferred components, re-
ferred to as “topics”, as they often capture thematic
structure, characterize content in terms of the rela-
tive frequency of within-component word usage (Blei.,
2012). While inferred topics have proven to be a useful
low-dimensional summary of a corpus’ content, recent
work has documented a growing list of interpretability
issues: they are often dominated by contentless “stop”
words (Wallach et al., 2009), are sometimes incoher-
ent or redundant (Mimno et al., 2011; Chang et al.,
2009), and typically require post hoc modification to
meet human expectations (Hu et al., 2011).

Appearing in Proceedings of the 29 th International Confer-
ence on Machine Learning, Edinburgh, Scotland, UK, 2012.
Copyright 2012 by the author(s)/owner(s).

While most attempts to improve topical summaries to
date involve changes to the models used to estimate
relative frequency, we propose instead a new defini-
tion of topical content that incorporates how words
are used differentially across topics. If a word is com-
mon in a topic, it is also important to know whether
it is common in many topics or relatively exclusive
to the topic in question. Both measurements are in-
formative: nonexclusive words are less likely to carry
topic-specific content, while infrequent words occur
too rarely to form the semantic core of a topic. We
therefore look for the most frequent words in the cor-
pus that are also likely to have been generated from
the topic of interest to summarize its content. In this
approach we borrow ideas from the statistical litera-
ture, in which models of differential word usage have
been leveraged for analyzing writing styles in a super-
vised setting (Mosteller & Wallace, 1984; Airoldi et al.,
2006), and combine them with ideas from the machine
learning literature, in which latent variable and mix-
ture models based on frequent word usage have been
used to infer structure that often captures topical con-
tent (McCallum et al., 1998; Blei et al., 2003; Canny,
2004; Ramage et al., 2009).

Models based on topic-specific distributions over the
vocabulary (such as LDA) cannot produce stable es-
timates of differential usage since they only model
the relative frequency of words within topics. They
cannot regularize usage across topics and naively in-
fer the greatest differential usage for the rarest fea-
tures (Eisenstein et al., 2011). We introduce the gen-
erative framework of word rate models that param-
eterizes topic-specific word counts as unnormalized
count variates whose rates can be regularized across
topics as well as within them, making stable infer-
ence of both word frequency and exclusivity possi-
ble. Word rate models can be seen as a fully gen-
erative interpretation of Sparse Topic Coding (Zhu &
Xing, 2011) that emphasizes regularization and inter-
pretability rather than exact sparsity. We introduce a
parallelized Hamiltonian Monte Carlo (HMC) estima-
tion strategy that makes full Bayesian inference effi-
cient and scalable.

In this paper we focus on the case of document corpora
for which meaningful topical structure is already avail-



Summarizing topical content with word frequency and exclusivity

Figure 1. Graphical representation of Hierarchical Poisson
Convolution (left) and detail on tree plate (right)
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able, avoiding ambiguities about summarizing a topic
space that is not semantically meaningful. We utilize
large, annotated collections such as Reuters, New York
Times, Wikipedia, and Encyclopedia Britannica for
which human coders have already created a hierarchi-
cal system of categories for end users. Working within
the framework of word rate models, we develop Hierar-
chical Poisson Convolution (HPC), a generative model
for labeled corpora that exploits the known topic hier-
archy in these collections to make focused comparisons
of differential use between neighboring topics on the
tree and incorporates a sophisticated joint model for
topic memberships and labels in the documents. Since
HPC is designed to infer an interpretable description
of human-generated labels rather than find optimally
predictive covariates as with Supervised LDA (Perotte
et al., 2012), we restrict the topic components to have a
one-to-one correspondence with the human-generated
labels. We then infer a clear semantic description of
these labels in terms of words that are both frequent
and exclusive.

2. Hierarchical Poisson Convolution

The Hierarchical Poisson Convolution model is a gen-
erative story for document collections whose topics are
organized in a hierarchy. We refer to this structure in-
terchangeably as a hierarchy or tree since we assume
that each topic has exactly one parent and that no
cyclical parental relations are allowed. Each document
d ∈ {1, . . . , D} is a record of counts wfd for every fea-
ture in the vocabulary, f ∈ {1, . . . , V }. The length of
the document is given by Ld, which we normalize by
the average document length L to get ld ≡ 1

LLd. Doc-
uments have unrestricted membership to any combi-
nation of topics k ∈ {1, . . . ,K} represented by a vector
of labels Id where Idk ≡ I{doc d belongs to topic k}.

The HPC model leverages the known topic hierarchy
by assuming that words are used similarly in neigh-
boring topics. Specifically, the log rate for a word
across topics follows a Gaussian diffusion down the
tree. Consider the topic hierarchy presented in the

Table 1. Generative process for HPC

Tree parameters: For feature f ∈ {1, . . . , V }:

• Draw µf,0 ∼ N (ψ, γ2)

• Draw τ2f,0 ∼ Scaled Inv-χ2(ν, σ2)

• For j ∈ {1, . . . , J} (first level of hierarchy):

– Draw µf,j ∼ N (µf,0, τ
2
f,0)

– Draw τ2f,j ∼ Scaled Inv-χ2(ν, σ2)

• For j ∈ {1, . . . , J} (terminal level of hierarchy):

– Draw µf,j1, . . . , µf,jJ ∼ N (µf,j , τ
2
f,j)

• Define βf,k ≡ eµf,k for k ∈ {1, . . . ,K}

Topic parameters: For document d ∈ {1, . . . , D}:

• Draw ξd ∼ N (η,Σ = λ2IK)
• For topic k ∈ {1, . . . ,K}:

– Define pdk ≡ 1/(1 + e−ξdk )
– Draw Idk ∼ Bernoulli(pdk)

– Define θdk(Id, ξd) ≡ eξdkIdk/
∑K
j=1 e

ξdj Idj

Data generation: For document d ∈ {1, . . . , D}:

• Draw normalized document length ld ∼ 1
L

Pois(υ)
• For every topic k and feature f :

– Draw count wfdk ∼ Pois(ldθ
T
d βf )

• Define wfd ≡
∑K
k=1 wfdk (observed data)

right panel of Figure 1. At the top level, µf,0 repre-
sents the log rate for feature f overall in the corpus.
The log rates µf,1, . . . , µf,J for high level topics are
then drawn from a Gaussian centered around the cor-
pus rate with dispersion controlled by the variance pa-
rameter τ2f,0. From high level topics, we then draw the
log rates for their children from another Gaussian cen-
tered around their mean µf,j and with variance τ2f,j .
This process is continued down the tree, with each
parent node having a separate variance parameter to
control the dispersion of its children.

The variance parameters τ2fp directly control the local
differential expression in a branch of the tree. Words
with high variance parameters can have rates in the
child topics that differ greatly from the parent topic
p, allowing the child rates to diverge. Words with low
variance parameters will have child rates close to the
parent and so will be expressed similarly among the
children. If we learn a population distribution for the
τ2fp that has low mean and variance, it is equivalent
to saying that most features are expressed similarly
across topics a priori and that we would need a pre-
ponderance of evidence to believe otherwise.

Documents in the HPC model can contain content
from any of the K topics in the hierarchy at varying
proportions, with the exact allocation given by the vec-
tor θd on the K − 1 simplex. The model assumes that
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the count for word f contributed by each topic follows
a Poisson distribution whose rate is moderated by the
document’s length and membership to the topic; that
is, wfdk ∼ Pois(ldθdkβfk). The only data we observe

is the total word count wfd ≡
∑K
k=1 wfdk, but the in-

finite divisibility property of the Poisson distribution
gives us that wfd ∼ Pois(ldθ

T
d βf ). These draws are

done for every word in the vocabulary (using the same
θd) to get the content of the document.1

In labeled document collections, human coders give us
an extra piece of information for each document, Id,
that indicates the set of topics that contributed its
content. As a result, we know θdk = 0 for all topics k
where Idk = 0 and only have to determine how content
is allocated between the set of active topics.

The HPC model assumes that these two sources of in-
formation for a document are not generated indepen-
dently. A document should not have a high probability
of being labeled to a topic from which it receives little
content and vice versa. Instead, the model posits a la-
tent K-dimensional topic affinity vector ξd ∼ N (η,Σ)
that expresses how strongly the document is associ-
ated with each topic. The topic memberships and
labels for the document are different manifestations
of this affinity. Specifically, each ξdk is the log odds
that topic label k is active in the document, with
Idk ∼ Bernoulli(logit−1(ξdk)). Conditional on the la-
bels, the topic memberships are the relative sizes of
the document’s affinity for the active topics and zero

for inactive topics: θdk ≡ eξdkIdk/
∑K
j=1 e

ξdjIdj . Re-
stricting each document’s membership vectors to the
labeled topics is a natural and efficient way to generate
sparsity in the mixing parameters, stabilizing inference
and reducing the computational burden of posterior
simulation.

We outline the generative process in full detail in Ta-
ble 1, which can be summarized in three steps. First,
a set of rate and variance parameters are drawn for
each feature in the vocabulary. Second, a topic affin-
ity vector is drawn for each document in the corpus,
which generate topic labels. Finally, both sets of pa-
rameters are then used to generate the words in each
document. For simplicity of presentation we assume
that each non-terminal node has J children and that
the tree has only two levels below the corpus level, but
the model can accommodate any tree structure.

2.1. Estimands

A word’s topic-specific frequency, βfk ≡ expµfk, is
directly parameterized in the model and is regular-

1This is where the model’s name arises: the observed
feature count in each document is the convolution of (un-
observed) topic-specific Poisson variates.

ized across words (via hyperparameters ψ and γ2) and
across topics. A word’s exclusivity to a topic, φf,k, is
its usage rate relative to a set of comparison topics S:
φf,k = βf,k/

∑
j∈S βf,j . A topic’s siblings are a natu-

ral choice for a comparison set to see which words are
overexpressed in the topic compared to a set of sim-
ilar topics. While not directly modeled in HPC, the
exclusivity parameters are also regularized by the τ2fp,
since if the child rates are forced to be similar then the
φf,k will be pushed toward a baseline value of 1/|S|.
We explore the regularization structure of the model
empirically in Section 4.

Since both frequency and exclusivity are important
factors in determining a word’s semantic content, a
univariate measure of topical importance is a useful
estimand for diverse tasks such as dimensionality re-
duction, feature selection, and content discovery. In
constructing a composite measure, we do not want a
high rank in one dimension to be able to compensate
for a low rank in the other since frequency or exclusiv-
ity alone are not necessarily useful. We therefore adopt
the harmonic mean to pull the “average” rank toward
the lower score. For word f in topic k, we define the
FEfk score as the harmonic mean of the word’s rank
in the distribution of φ.,k and µ.,k:

FEfk =

(
w

ECDFφ.,k
(φf,k)

+
1− w

ECDFµ.,k
(µf,k)

)−1
.

where w is the weight for exclusivity (which we set to
0.5 as a default) and ECDFx.,k

is the empirical CDF
function applied to the values x over the first index.

3. Scalable inference via parallelized
HMC sampler

We use a Gibbs sampler to obtain the posterior ex-
pectations of the unknown rate and membership pa-
rameters (and associated hyperparameters) given the
observed data. Specifically, inference is conditioned on
W , a D×V matrix of word counts, I, a D×K matrix
of topic labels, l, a D-vector of document lengths, and
T , a tree structure for the topics.

Creating a scalable inference method is critical since
the space of latent variables grows linearly in the num-
ber of words and documents, with K(D+V ) total un-
knowns. Our model offers an advantage in that the
posterior consists of two groups of parameters whose
conditional posterior factors given the other. On one
side, the conditional posterior of the rate and vari-
ance parameters {µf , τ 2

f }Vf=1 factors by word given
the membership parameters and the hyperparameters
ψ, γ2, ν and σ2. On the other, the conditional pos-
terior of the topic affinity parameters {ξd}Dd=1 factors
by document given the hyperparameters η and Σ and
the rate parameters {µf}Vf=1.



Summarizing topical content with word frequency and exclusivity

Conditional on the hyperparameters, therefore, we are
left with two blocks of draws that can be broken into V
or D independent threads. Using parallel computing
software such as Message Passing Interface (MPI), the
computation time for drawing the parameters in each
block is only constrained by resources required for a
single draw. The total runtime need not significantly
increase with the addition of more documents or words
as long as the number of available cores also increases.

Both of these conditional distributions are only known
up to a constant and can be high dimensional if there
are many topics, making direct sampling impossible
and random walk Metropolis inefficient. We are able
to obtain uncorrelated draws through the use of Hamil-
tonian Monte Carlo (HMC) (Neal, 2011), which lever-
ages the posterior gradient and Hessian to find a dis-
tant point in the parameter space with high probability
of acceptance. HMC works well for log densities that
are unimodal and have relatively constant curvature.
We give step-by-step instructions for our implementa-
tion of the algorithm in the Supplemental Material.2

3.1. Block Gibbs Sampler

To set up the block Gibbs sampling algorithm, we
derive the relavant conditional posterior distributions
and explain how we sample from each.

3.1.1. Updating tree parameters

In the first block, the conditional posterior of the tree
parameters factors by word:

p({µf , τ 2
f }Vf=1|W , I, l, ψ, γ2, ν, σ2, {ξd}Dd=1, T ) ∝

V∏
f=1

{ D∏
d=1

p(wfd|Id, ld, µf , ξd)
}
p(µf , τ

2
f |ψ, γ2, T , ν, σ2).

Given the conditional conjugacy of the variance pa-
rameters and their strong influence on the curvature
of the rate parameter posterior, we sample the two
groups conditional on each other to optimize HMC
performance. Conditioning on the variance parame-
ters, we can write the likelihood of the rate parame-
ters as a Poisson regression where the documents are
observations, the θd(Id, ξd) are the covariates, and the
ld serve as exposure weights.

The prior distribution of the rate parameters is a Gaus-
sian graphical model, so a priori the log rates for each
word are jointly Gaussian with mean ψ1 and precision
matrix Λ(γ2, τ 2

f , T ) which has non-zero entries only
for topic pairs that have a direct parent-child relation-
ship.3 The log conditional posterior is:

2Available at http://www.fas.harvard.edu/~airoldi/
3In practice this precision matrix can be found easily as

the negative Hessian of the log prior distribution.

log p(µf |W , I, l, {τ 2
f }Vf=1, ψ, γ

2, ν, σ2, {ξd}Dd=1, T ) =

−
D∑
d=1

ldθ
T
d βf+

D∑
d=1

wfd log (θTd βf )−1

2
(µf−ψ1)TΛ(µf−ψ1).

We use HMC to sample from this density.

We know the conditional distribution of the variance
parameters due to the conjugacy of the Inverse-χ2

prior with the normal distribution of the log rates.
Specifically, if C(T ) is the set of child topics of topic k
with cardinality J , then

τ2fk|µf , ν, σ2, T ∼ Inv-χ2

(
J+ν,

νσ2 +
∑
j∈C(µfj − µfk)2

J + ν

)
.

3.1.2. Updating topic affinity parameters

In the second block, the conditional posterior of the
topic affinity vectors factors by document:

p({ξd}Dd=1|W , I, l, {µf}Vf=1,η,Σ) ∝
D∏
d=1

{ V∏
f=1

p(wfd|Id, ld, µf , ξd)
}
p(Id|ξd)p(ξd|η,Σ).

We can write the likelihood of the word counts as a
Poisson regression (now with the rates as covariates),
with an independent contribution from the labels. The
log conditional posterior for one document is:

log p(ξd|W , I, l, {µf}Vf=1,η,Σ) =

− ld
V∑
f=1

βTf θd +

V∑
f=1

wfd log (βTf θd)−
K∑
k=1

log(1 + e−ξdk )

−
K∑
k=1

(1− Idk)ξdk −
1

2
(ξd − η)TΣ−1(ξd − η).

We use HMC to sample from this density.

3.1.3. Updating corpus-level parameters

We draw the hyperparameters after each iteration of
the block update. We put flat priors on these un-
knowns so that we can learn their most likely values
from the data.

The log corpus-level rates µf,0 for each word follow a
Gaussian distribution with mean ψ and variance γ2.
The conditional distribution of these hyperparameters
is available in closed form:

ψ|γ2, {µf,0}Vf=1 ∼ N
(

1

V

V∑
f=1

µf,0,
γ2

V

)
and

γ2|ψ, {µf,0}Vf=1 ∼ Inv-χ2

(
V,

1

V

V∑
f=1

(µf,0 − ψ)2
)
.
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The variance parameters τ2fk independently follow an

identical Scaled Inverse-χ2 with convolution parame-
ter ν and scale parameter σ2. The exact form of the
conditional posterior of these hyperparameters is un-
known, so we use HMC to sample from this density.

The document-specific topic affinity parameters ξd fol-
low a normal distribution with mean parameter η and
a covariance matrix parameterized in terms of a scalar,
Σ = λ2IK . The conditional distribution of these hy-
perparameters is available in closed form. For effi-
ciency, we choose to put a flat prior on log λ2 rather
than the original scale, which allows us to marginalize
out η from the conditional posterior of λ2:

λ2|{ξd}Dd=1 ∼ Inv-χ2

(
DK − 1,

∑
d

∑
k(ξdk − ξ̄k)2

DK − 1

)
and η|λ2, {ξd}Dd=1 ∼ N

(
ξ̄,

λ2

D
IK

)
.

3.2. Inference for unlabeled documents

In order to classify unlabeled documents, we need to
find the predictive distribution of the membership vec-
tor Id̃ for a new document d̃. Inference is based on the
new document’s word counts wd̃ and the unknown pa-
rameters, which we hold constant at their posterior
expectation. Unfortunately, the predictive distribu-
tion of the topic affinities ξd̃ is intractable without
conditioning on the label vector since the labels con-
trol which topics contribute content. We therefore use
a simpler model where the topic proportions depend
only on the relative size of the affinity parameters:

θ∗dk(ξd) ≡
eξdk∑K
j=1 e

ξdj
and Idk ∼ Bern

(
1

1 + exp(−ξdk)

)
.

The predictive distribution of this simpler model fac-
tors into tractable components:

p∗(Id̃, ξd̃|wd̃,W , I) ∝ p(Id̃|ξd̃) p
∗(ξd̃|{µ̂f}

V
f=1, η̂, Σ̂,wd̃)

= p(Id̃|ξd̃) p
∗(wd̃|ξd̃, {µ̂f}

V
f=1) p(ξd̃|η̂, Σ̂).

It is then possible to find the most likely ξ∗
d̃

based on
the evidence from wd̃ alone.

4. Results

We analyze the fit of the HPC model to Reuters Cor-
pus Volume I (RCV1), a large collection of newswire
stories. First, we demonstrate how the variance pa-
rameters τ2fp regularize the exclusivity with which
words are expressed within topics. Second, we show
that regularization of exclusivity has the greatest effect
on infrequent words. Third, we explore the joint pos-
terior of the topic-specific frequency and exclusivity of

Figure 2. Topic hierarchy of Reuters corpus
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words as a summary of topical content, giving special
attention to the upper right corner of the plot where
words score highly in both dimensions. We compare
words that score highly on the FREX metric to top
words scored by frequency alone, the current practice
in topic modeling. Finally, we compare the classifica-
tion performance of HPC to baseline models.

RCV1 is an archive of 806,791 newswire stories from
a twelve-month period in 1996-1997.4 As described
in Lewis et al. (2004), Reuters staffers assigned sto-
ries into any subset of 102 hierarchical topic cate-
gories. In the original data, assignment to any topic
required automatic assignment to all ancestor nodes,
but we removed these redundant ancestor labels since
they do not allow our model to distinguish intentional
assignments to high level categories from assignment
to their offspring. We preprocessed document tokens
with the Porter stemming algorithm (getting 300,166
unique stems) and chose the most frequent 3% of stems
(10,421 unique stems, over 100 million total tokens) for
the feature set.5

The Reuters topic hierarchy has three levels that di-
vide the content into finer categories at each cut. At
the first level, content is divided between four high
level categories: three that focus on business and mar-
ket news (Markets, Corporate/Industrial, and Eco-
nomics) and one grab bag category that collects all re-
maining topics from politics to entertainment (Govern-
ment/Social). The second level provides fine-grained
divisions of these broad categories and contains the
terminal nodes for most branches of the tree. For
example, the Markets topic is split between equity,
bond, money, and commodity markets at the sec-
ond level. The third level offers further subcategories
where needed for a small set of second level topics.
For example, the Commodity Markets topic is divided
between agricultural (soft), metal, and energy com-

4Available upon request from the National In-
stitute of Standards and Technology (NIST),
http://trec.nist.gov/data/reuters/reuters.html

5Including rarer features did not meaningfully change
the results.
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Figure 3. Exclusivity as a function of variance parameters

modities. We present a graphical illustration of the
Reuters topic hierarchy in Figure 2.

4.1. How the differential usage parameters
regulate topic exclusivity

A word can only be exclusive to a topic if its expression
across the sibling topics is allowed to diverge from the
parent rate. Therefore, we would only expect words
with high differential usage parameters τ2fp at the par-
ent level to be candidates for highly exclusive expres-
sion φfk in any child topic k. Words with child topic
rates that cannot vary greatly from the parent should
have nearly equal expression in each child k, meaning
φfk ≈ 1

C for a branch with C child topics. An im-
portant consequence is that, although the φfk are not
directly modeled in HPC, their distribution is regular-
ized by learning a prior distribution on the τ2fp.

This tight relation can be seen in the HPC fit. Figure
3 shows the joint posterior expectation of the differen-
tial usage parameters in a parent topic and exclusivity
parameters across the child topics. Specifically, the
left panel compares the rate variance of the children
of Markets from their parent to exclusivity between
the child topics; the right panel does the same with
the two children of Performance, a second-level topic
under the Corporate category. The plots have similar
patterns. For low levels of differential expression, the
exclusivity parameters are clustered around the base-
line value, 1

C . At high levels of child rate variance,
words gain the ability to approach exclusive expres-
sion in a single topic.

4.2. How frequency modulates regularization
of exclusivity

One of the most appealing aspects of regularization in
generative models is that it acts most strongly on the
parameters for which we have the least information.
In the case of the exclusivity parameters in HPC we
have the most data for frequent words, so for a given
topic the words with low rates should be least able to
escape regularization of their exclusivity parameters

Figure 4. Frequency-Exclusivity (FREX) plots

Figure 5. Upper right corner of FREX plot for SCIENCE
AND TECHNOLOGY

by our shrinkage prior on the parent’s τ2fp.

Figure 4 shows for two topics the joint posterior
expectation of each word’s frequency in that topic
and its exclusivity compared to sibling topics (the
FREX plot). The left panel features the Science and
Technology topic, a child in the grab bag Govern-
ment/Social branch, and the right panel features the
Research/Development topic, a child in the Corporate
branch. The overall shape of the joint posterior is
very similar for both topics. On the left side of the
plots, the exclusivity of rare words is unable to sig-
nificantly exceed the 1

C baseline. This is because the
model does not have much evidence to estimate usage
in the topic, so the estimated rate is shrunk heavily
toward the parent rate. However, we see that it is pos-
sible for rare words to be underexpressed in a topic,
which happens if they are frequent and overexpressed
in a sibling topic. Even though their rates are similar
to the parent in this topic, sibling topics may have a
much higher rate and account for most appearances of
the word in the comparison group.
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Figure 6. Comparison of FREX score components for
SMART stop words vs. regular words

4.3. Frequency and Exclusivity as a two
dimensional summary of topical content

Words in the upper right of the FREX plot—those
that are both frequent and highly exclusive—are of
greatest interest. These are the most common words in
the corpus that are also likely to have been generated
from the topic of interest (rather than similar topics).
These high-scoring words can help to clarify content
even for labeled topics. For example, in the Science
and Technology topic (shown in detail in Figure 5),
we see almost all terms are specific to the American
and Russian space programs.

We also compute the Frequency-Exclusivity (FREX)
score for each word-topic pair, a univariate summary
of topical content that averages performance in both
dimensions. In Table 2 we compare the top FREX
words in three topics to a ranking based on frequency
alone, which is the current practice in topic modeling.
For context, we also show the immediate neighbors of
each topic in the tree. The topic being examined is
in bolded red, while the borders of the comparison set
are solid. The Defense Contracts topic is a special
case since it is an only child. In these cases, we use a
comparison to the parent topic to calculate exclusivity.

By incorporating exclusivity information, FREX-
ranked lists include fewer words that are used simi-
larly everywhere (such as said and would) and fewer
words that are used similarly in a set of related topics
(such as price and market in the Markets branch). One
can understand this result by comparing the rankings
for known stop words from the SMART list to other
words. In Figure 6, we show the maximum ECDF
ranking for each word across topics in the distribution
of frequency (left panel) and exclusivity (right panel)
estimates. One can see that while stop words are more
likely to be in the extreme quantiles of frequency, very
few of them are among the most exclusive words. This
prevents general and context-specific stop words from
ranking highly in a FREX-based index.

Table 2. Comparison of High FREX words to most fre-
quent words (comparison set in solid ovals)
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4.4. Classification performance

We compare the classification performance of HPC
with SVM and a LDA+logit classifier, which fits a
logistic regression using LDA topic loadings as covari-
ates. All methods were trained on a random sam-
ple of 15% of the documents using the 3% most fre-
quent words in the corpus as features. These fits were
used to predict memberships in the withheld docu-
ments, an experiment we repeated ten times with a
new random sample as the training set. We used a
stratified sampling technique to get a balanced sam-
ple (across topics) for training, validation, and test
partitions with a 15/25/60 split, respectively. We fit
the three models to each training set and then used
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Table 3. Classification performance

SVM LDA+Logit HPC
Micro-ave Precision 0.711 (0.01) 0.596 (0.09) 0.695 (0.01)
Micro-ave Recall 0.706 (0.01) 0.594 (0.01) 0.589 (0.01)
Macro-ave Precision 0.563 (0.01) 0.372 (0.01) 0.505 (0.09)
Macro-ave Recall 0.551 (0.06) 0.332 (0.01) 0.524 (0.01)

Standard deviation of performance over ten folds in parenthesis.

the validation set to calibrate a threshold (except for
SVM). Finally, we used the fit from the training set
and the threshold from the validation set to predict
topic memberships in the test set. Table 3 shows the
results of our experiment, using both micro averages
(every document weighted equally) and macro aver-
ages (every topic weighted equally). HPC performs
better than LDA+logit on most metrics but does not
dominate SVM, suggesting that there is a tradeoff be-
tween predictive performance and interpretability.

5. Concluding remarks

While HPC was developed for the specific case of hi-
erarchically labeled document collections, the frame-
work of word rate models can be readily extended to
other types of document corpora. For labeled corpora
where no hierarchical structure is available, one can
use a flat hierarchy that treats all topics as siblings.
For corpora where no labeled examples are available,
a simple word rate model with a flat hierarchy and
dense topic membership structure could be employed
to get more informative summaries of inferred topics.
In either case, this framework could be combined with
non-parameteric Bayesian models that infer hierarchi-
cal structure on the topics (Adams et al., 2010). We
expect that models based on rates will play an impor-
tant role in future work on text summarization.

The HPC model can also be leveraged to semi-
automate the construction of topic ontologies targeted
to specific domains, for instance, when fit to compre-
hensive human-annotated corpora such as Wikipedia,
The New York Times, Encyclopedia Britannica, or
databases such as JSTOR and the ACM repository.
By learning a probabilistic representation of high qual-
ity topics, HPC output can be used as a gold standard
to aid and evaluate other learning methods.

Targeted ontologies have been a key factor in moni-
toring scientific progress in biology (Ashburner et al.,
2000; Kanehisa & Goto, 2000). A hierarchical ontol-
ogy of topics would lead to new metrics for measuring
progress in text analysis. It would enable an evalua-
tion of the topical content of any collection of inferred
topics, thus finally allowing for a quantitative compar-
ison among the output of topic models. Current eval-
uations are qualitative, anecdotal and unsatisfactory;
for instance, authors argue that lists of most frequent

words describing an arbitrary selection of topics in-
ferred by a new model make sense intuitively, or that
they are better then lists obtained with other models.
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