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Abstract
The Group-Lasso is a well-known tool for
joint regularization in machine learning
methods. While the `1,2 and the `1,∞ version
have been studied in detail and efficient al-
gorithms exist, there are still open questions
regarding other `1,p variants. We character-
ize conditions for solutions of the `1,p Group-
Lasso for all p-norms with 1 ≤ p ≤ ∞, and
we present a unified active set algorithm. For
all p-norms, a highly efficient projected gra-
dient algorithm is presented. This new algo-
rithm enables us to compare the prediction
performance of many variants of the Group-
Lasso in a multi-task learning setting, where
the aim is to solve many learning problems
in parallel which are coupled via the Group-
Lasso constraint. We conduct large-scale ex-
periments on synthetic data and on two real-
world data sets. In accordance with theoret-
ical characterizations of the different norms
we observe that the weak-coupling norms
with p between 1.5 and 2 consistently outper-
form the strong-coupling norms with p� 2.

1. Introduction
In 1996, (Tibshirani, 1996) introduced the Lasso, an
`1-constrained method for sparse variable selection.
This method was extended by (Yuan & Lin, 2006)
and by (Turlach et al., 2005) to the problem where
explanatory factors are represented as groups of vari-
ables, leading to solutions that are sparse on the group
level. In recent years, mainly two variants of the
Group-Lasso have been proposed: one uses the `1,2
norm and the other one the `1,∞ norm for regulariza-
tion. Many algorithms for the `1,2-version have been
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presented, see for instance (Yuan & Lin, 2006; Meier
et al., 2008; Argyriou et al., 2007; Kim et al., 2006)
or (Bach, 2008). Algorithms for the `1,∞-variant of
the Group-Lasso were studied in (Turlach et al., 2005;
Schmidt & Murphy, 2008; Quattoni et al., 2009) and
(Vogt & Roth, 2010). The mixed-norm regulariza-
tion was elaborated in (Liu & Ye, 2010) and (Zhang
et al., 2010). In (Liu & Ye, 2010), an `1,p-regularized
Euclidean projection is presented and the optimiza-
tion problem is solved through an accelerated gradient
method. However, for large-scale problems with thou-
sands of groups, this method is not efficient.
In this work we derive conditions for the complete-
ness and uniqueness of all `1,p Group-Lasso estimates,
where a solution is complete, if it includes all groups
that might be relevant in other solutions. Based on
these conditions it can easily be tested if a solution is
complete, and all other groups that may be included in
alternative solutions with identical costs can be identi-
fied. We show the efficiency of this active set algorithm
and we prove convergence to the global optimizer.
Our main technical contribution in this work is three-
fold: i) We present a unified characterization of solu-
tions for all `1,p Group-Lasso methods. ii) We present
an efficient nesting of a constrained optimization prob-
lem and a Lagrangian optimization problem. During
optimization, we use a projected gradient method that
works with the Lagrangian form of an optimization
problem. However, the active set algorithm needs the
constrained form of the problem. The efficient com-
bination of these two optimization problems is not
trivial, as finding the Lagrangian parameter can be
arbitrarily sensitive to the step length which implies
slow convergence of the algorithm. We show that we
can combine these two methods efficiently by using an
interval bisection for finding the Lagrangian param-
eter that is guaranteed to converge. iii) These new
theoretic and algorithmic developments allow us to
conduct large-scale comparison experiments between
various different `1,p Group-Lasso versions. We fo-
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cus on multi-task (or transfer) learning problems, in
which the individual tasks are coupled via the group-
structure of the constraint term. The underlying as-
sumption here is that multiple tasks share a common
sparsity pattern. Large-scale experiments reveal clear
and statistical significant differences in the prediction
performance of the different `1,p methods. Theoretical
analysis shows a direct relation between norms with
high p-values and increasing coupling strength of the
Group-Lasso constraint.

2. Characterization of Solutions for the
`1,p Group-Lasso

We consider the following setting of a generalized lin-
ear model (see (McCullagh & Nelder, 1983) for more
details): given an i.i.d. data sample {x1, ...,xn},
xi ∈ Rd, arranged as rows of the data matrix X, and
a corresponding vector of responses y = (y1, ..., yn)T ,
we want to minimize the negative log-likelihood

l(y,ν, θ) = −
∑
i

log f(yi; νi, θ), (1)

where the exponential-familiy distribution f is the ran-
dom component of a generalized linear model (GLM),

f(y; ν, θ) = exp(θ−1(yν − b(ν)) + c(y, θ)). (2)

The GLM is completed by introducing a systematic
component ν = xTβ and a strictly monotone differen-
tiable (canonical) link function specifying the relation-
ship between the random and systematic components:
η(µ) = ν, where µ = Eν [y] is related to the natural pa-
rameter ν of the distribution f by µ = b′(ν) = η−1(ν).
From a technical perspective, an important property
of this framework is that log f(y; ν, θ) is strictly con-
cave in ν. This follows from the fact that the suffi-
cient statistics y/θ is one-dimensional and, therefore,
minimal, which implies that the log partition function
b(ν)/θ is strictly convex, see (Brown, 1986). For the
sake of simplicity we fix the scale parameter θ to 1.
With ν = xTβ and b′(ν) = η−1(ν), the gradient can
be seen as a function in either ν or β:

∇ν l(ν) = −(y − η−1(ν)) or (3)
∇βl(β) = −XT∇ν l(ν) = −XT (y − η−1(XTβ)), (4)

For the following analysis, we partition X, β and h :=
∇βl into J subgroups: X = (X1, ..., XJ),

β =

β1
...
βJ

 , h =

h1

...
hJ

 =

X
>
1 ∇ν l

...
X>J ∇ν l

 . (5)

l is a strictly convex function in ν. For general ma-
trices X it is convex in β, and it is strictly convex

in β if X has full rank and d ≤ n. Given X and y,
the Group-Lasso minimizes the negative log-likelihood
viewed as a function in β under a constraint on the
sum of the `p-norms, 1 ≤ p ≤ ∞, of the subvectors βj :

minimize l(β) s.t. g(β) ≥ 0, (6)

where g(β) = κ−∑J
i=1 ‖βj‖p. (7)

Here g(β) is implicitly a function of the fixed param-
eter κ. Considering the unconstrained problem, the
solution is not unique if the dimensionality exceeds n:
every β∗ = β0 + ξ with ξ being an element of the null
space N(X) is also a solution. By defining the unique
value κ0 := minξ∈N(X)

∑J
i=1 ‖β0

j + ξj‖p, we will re-
quire that the constraint is active i.e. κ < κ0. Al-
though it might be infeasible to ensure this activeness
by computing κ0 and selecting κ accordingly, practi-
cal algorithms will not suffer from this problem: given
a solution, we can always check if the constraint was
active. If this was not the case, then the uniqueness
question reduces to checking if d ≤ n. In this case
the solutions are usually not sparse, because the fea-
ture selection mechanism has been switched off. To
produce a sparse solution, one can then try smaller κ-
values until the constraint is active. We will restrict
our further analysis to models with finite likelihood
(f < +∞), i.e. l > −∞. Technically this means that
we require that the domain of l is Rd, which implies
that Slater’s condition holds.

Theorem 2.1 If κ < κ0 and X has maximum rank,
then the following holds: (i) A solution β̂ exists and∑J
i=1 ‖β̂j‖p = κ for any such solution. (ii) If d ≤ n,

the solution is unique.
Proof: Under the assumption l > −∞ a minimum of
(6) is guaranteed to exist, since l is continuous and
the region of feasible vectors β is compact. Since we
assume that the constraint is active, any solution β̂
will lie on the boundary of the constraint region. It is
easily seen that

∑J
j=1 ‖βj‖p is convex for 1 ≤ p ≤ ∞

which implies that g(β) is concave. Thus, the region
of feasible values defined by g(β) ≥ 0 is convex. If
d ≤ n, the objective function l will be strictly convex,
which implies that the minimum is unique.

The Lagrangian for problem (6) reads

L(β, λ) = l(β)− λg(β). (8)

For a given λ > 0, L(β, λ) is a convex function in β.
The vector β̂ minimizes L(β, λ) iff the d-dimensional
null-vector 0d is an element of the subdifferential
∂βL(β, λ). The subdifferential is

∂βL(β, λ) = ∇βl(β) + λv = X>∇ν l(ν) + λv, (9)
c© Julia Vogt — Last Update:May 15, 2012, 15:05 h
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with v = (v1, . . .vJ)> defined by

‖vj‖q ≤ 1 if ‖βj‖p = 0

‖vj‖q = 1 if ‖βj‖p > 0,
(10)

where 1
p + 1

q = 1 for 1 < p < ∞ and if p = 1, then

q =∞ and vice versa. Thus, β̂ is a minimizer for fixed
λ iff 0d = −XT∇ν l(ν)|ν=bν + λv, (with ν̂ = Xβ̂).
Let dj denote the dimension of the j-th sub-
vector βj . Hence, for all j with β̂j = 0dj

it
holds that λ ≥ ‖XT

j ∇ν l(ν)|ν=bν‖q. This yields
λ = max

j
‖XT

j ∇ν l(ν)|ν=bν‖q and for all j with β̂j 6= 0dj

it holds that λ = ‖XT
j ∇ν l(ν)|ν=bν‖q .

With these derivations we obtain results analogous
to (Roth & Fischer), but for all p-norms: Assume
that an algorithm has found a solution β̂ of (6) with
the set of “active” groups A := {j : β̂j 6= 0}. If
A = B = {j : ‖ĥj‖q = λ}, then there cannot exist any
other solution with an active set A′ with |A′| > |A|.
Thus, A = B implies that the solution is complete.
Otherwise, the additional elements in B which are not
contained in A define all possible groups that poten-
tially become active in alternative solutions. However,
A might still contain redundant groups. There exists
a simple test procedure for uniqueness under a further
rank assumption of the data matrix X (Roth & Fis-
cher): If every n× n submatrix of X has full rank, A
denotes the active set corresponding to some solution
β̂ of (6) and XA denotes the n × s submatrix of X
composed of all active groups. Then, if A is complete
and if s ≤ n, β̂ is the unique solution of (6). Figure 1
shows a graphical representation of different `p norms.
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Figure 1. Different `p balls: red curve: `1, orange curve:
`1.5, green curve: `2, brown curve: `3, blue curve: `∞.

3. An Efficient Active-Set Algorithm
The characterization of the optimal solution presented
in section 2 allows us to construct an active set algo-
rithm to solve the constrained optimization problem
(6) for all `1,p norms. The algorithm starts with only
one active group. In every iteration, further active
groups are selected or removed, depending on the vio-
lation of the Lagrangian condition. The algorithm is a

straightforward generalization of the subset algorithm
for the standard Lasso problem presented in (Osborne
et al., 2000). The main idea is to find a small set of
active groups. The optimization in step B can be per-

Algorithm 1 Active Set Algorithm

A : Set A = j0, βj0 arbitrary with
∥∥βj0∥∥p = κ.

B : Optimize over the current active set A.

Define set A+ =
{
j ∈ A :

∥∥βj0∥∥p > 0
}

.

Define λ = max
j∈A+

‖hj‖q. Adjust the active set A = A+.

C : Lagrangianviolation: ∀j /∈ A, check if ‖hj‖q ≤
λ. If this is the case, we have found a global solution.
Otherwise, include the group with the largest violation
to A and go to B.

D: Check for completeness and uniqueness.

formed by the projected gradient method (Bertsekas,
1995). The main challenge typically is to compute ef-
ficient projections onto the `1,p ball. In general this is
a hard to solve nonlinear optimization problem with
nonlinear and even non-differentiable constraints. For
the `1,2 norm, (Kim et al., 2006) presented an efficient
algorithm for the projection to the `1,2 ball and the
projection to the `1,∞ ball can be performed efficiently
by the method introduced in (Quattoni et al., 2009).
The `1,1 ball can be seen as a special case of the pro-
jection to the `1,2 ball. An efficient projection to the
`1,p ball was presented in (Liu & Ye, 2010). In general,
the main idea in the projected gradient method is that
one does not optimize problem (6) directly but solves a
subproblem with quadratic cost instead. First, we take
a step s∇βl(β) along the the negative gradient with
step size s and obtain the vector b = β−s∇βl(β). We
then project b on the convex feasible region to obtain
a feasible vector. Hence, the minimization problem we
need to solve now reads

min
β

‖b− β‖22 + µ
( J∑
j=1

‖βj‖p − κ
)

(11)

with Lagrangian multiplier µ. Algorithm 2 shows the
projection for all `1,p norms with 1 < p <∞.
Convergence of Interval Bisection. It remains
to show that the interval bisection within Algorithm 2
converges. This is our main technical contribution in
this work: the efficient combination of a constrained
problem with the Lagrangian form of an optimization
problem. The projection algorithm proposed in (Liu &
Ye, 2010) needs the Lagrangian representation of the
problem while we work with the constrained form in
the active set algorithm. The combination of these two
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Algorithm 2 Optimization Step B
B1 : Gradient :
At time t−1, set b = βt−1−s∇βl(βt−1) and A+ = A,
where s is the step size parameter.
Initialize Lagrangian multiplier µ within the interval
(0, µmax).

B2 : Projection :
For all j ∈ A+ minimize (11):

While
J∑
j=1

‖βtj‖p 6= κ do

Compute projection as in (Liu & Ye, 2010),
obtain optimal β∗j for all j ∈ A+. Adapt
Lagrangian multiplier µ via interval bisection.
B3 : Newsolution: ∀j ∈ A+, set βtj=β

∗
j

optimization problems is not trivial, as finding the ap-
propriate Lagrangian multiplier µ could be arbitrarily
sensitive to the step length s what leads to extremely
slow convergence of the algorithm. Our contribution
is to show that we can combine these two methods by
using an interval bisection for finding the Lagrangian
parameter µ that is guaranteed to converge rapidly.

Theorem 3.1 The interval bisection in Algorithm 2
is guaranteed to converge.

To prove Theorem 3.1, we need the following Lemma:

Lemma 3.2 For two Lagrangian functions with con-
vex likelihood function f(β)

L1(β, µ1) := f(β) + µ1(
J∑
j=1

∥∥βj∥∥p − κ1) and

L2(β, µ2) := f(β) + µ2(
J∑
j=1

∥∥βj∥∥p − κ2)

it holds that: µ1 < µ2 ⇐⇒ κ2 < κ1.

The proof of Lemma 3.2 is done via perturbation and
sensitivity analysis (see e.g. (Forst & Hoffmann, 2010)
or (Bertsekas, 1995) for more details) and is presented
in the supplementary material. Now we can prove The-
orem 3.1:

Proof: Let g̃(µ) :=
J∑
j=1

∥∥βj(µ)
∥∥
p
− κ. We denote with

β(µ) := arg min
β

L(β, µ) the optimal β for the La-

grangian function L(β, µ) as defined in Lemma 3.2.
Then we get with Lemma 3.2 and because we know
that the solution lies on the boundary of the feasible
set for µ1 < µ2:

g̃(µ1) =
J∑
j=1

∥∥βj(µ1)
∥∥
p︸ ︷︷ ︸

=κ1

−κ >
J∑
j=1

∥∥βj(µ2)
∥∥
p︸ ︷︷ ︸

=κ2

−κ = g̃(µ2).

Hence g̃ is a monotonically decreasing and con-
tinuous function in the interval [0, µmax] where
µmax := ‖β‖q (see (Liu & Ye, 2010) for de-
tails about µmax). For f(β) := ‖b− β‖22 it
holds that g̃(0) =

∑J
j=1 ‖bj‖p − κ > 0 (since

we assume that the constraint is active) and
g̃(µmax) =

∑J
j=1 ‖0‖p − κ < 0 (see (Liu & Ye, 2010),

Theorem 1). According to the Intermediate Value
Theorem, g̃(µ) has a unique root in (0, µmax), hence
the interval bisection converges.
After each iteration of the bisection method, the
bounds containing the root decrease by a factor of two.
As the interval bisection is guaranteed to converge, we
know that we will achieve a given tolerance in the so-
lution in a logarithmic number of iterations (see e.g.
(Press et al., 2007) for more details). The convergence
of the active set algorithm follows immediately: if the
solution is not optimal, the solution of the augmented
system will be a descent direction for the augmented
problem and also for the whole problem, as primal fea-
sibility is maintained and the constraint qualifications
are fulfilled. This implies that the algorithm as a whole
must converge. With these theoretical results we are
now able to efficiently combine the active set algorithm
with the projection algorithm for all p-norms. By us-
ing this efficient unified active set algorithm we can
now look at the prediction performance of all p-norms
for large scale experiments with thousands of features.

4. Multi-Task Applications
We address the problem of learning classifiers for a
large number of tasks. In transfer or multi-task learn-
ing, we want to improve the generalization ability and
the predictive power by solving many learning prob-
lems in parallel. Each task should benefit from the
amount of data that is jointly given by all tasks and
hence yield better results than examining every task
individually. The motivation for using the Group-
Lasso in problems of this kind is to couple the indi-
vidual tasks via the group structure of the constraint
term, based on the assumption that multiple tasks
share a common sparsity pattern. Due to our efficient
active set algorithm we are now able to handle data
sets with thousands of features in reasonable time.
Coupling strength of `p norms. The coupling
properties of the different p norms have a major influ-
ence on the prediction performance of the Group-Lasso
variants. The higher the value of p, the stronger the
different tasks are coupled. For p = 1, the tasks within
one group are barely coupled, as the `1,1 regularization
only induces a global coupling over all tasks. For p = 2
there exists an intermediate coupling of tasks within
a group and for p = ∞ the coupling of the tasks is
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very strong. This is due to the fact that the `∞ norm
only penalizes the maximum absolute entry of a group,
meaning we can increase all other parameters in this
group to the maximum value without changing the
constraint. Hence we can assign maximum weight to
every task in this group. The relation between cou-
pling strength and value of p is illustrated in Figure 2
and Figure 3.

ℓp norms

p = 1

|

p = 2

| |

p = ∞

”coupling strength”

within groupsweak intermediate strong

Figure 2. Coupling strength of `p norms
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Figure 3. For the `1,∞ Group-Lasso, all βi in one group
can be raised to the maximum value without changing the
value of the constraint. This explains the strong coupling
properties for p =∞.

Synthetic Experiments. The synthetic data for a
classification problem was created in the following way:
we consider a multi-task setting with m tasks and d
features (=̂ d groups) with a d×m parameter matrix
B = [β1, . . . ,βm], where βi ∈ Rd is a parameter vector
for the i-th task. Further, assume we have a data set
D = (z1, ..., zn) with points z belonging to some set Z,
where Z is the set of tuples (xi, yi, li) for i = 1, . . . , n
where each xi ∈ Rd is a feature vector, li ∈ 1, . . . ,m is
a label that specifies to which of the m tasks the exam-
ple belongs to and yi ∈ {−1, 1} is the corresponding
class label. First, we generated the parameter matrix
B by sampling each entry from a normal distribution
N (0, 1). We selected 2% of the features to be the set
V of relevant features and zeroed the other entries.

We ran four rounds of experiments where we changed
the shared sparsity pattern across the different tasks.
In the first round all tasks have exactly the same spar-
sity pattern, just the values of βi differ. In the sec-
ond experiment, the tasks share 75% of the sparsity
pattern, in the third experiment 50% and in the last
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Figure 4. Prediction error of the different regularizers: ma-
genta curve: learning on pooled data, red curve: single `1,
cyan curve: `1,1, orange curve: `1,1.5, brown curve: `1,3,
blue curve: `1,∞, green curve: `1,2. In this Figure we have
100% shared sparsity pattern.

experiment only 30%. For the training set, we sam-
pled n-times a d × m matrix, where each entry of
the matrix was sampled from the normal distribution
N (0, 1). The corresponding labels y ∈ Rnm are com-
puted by yk = (sgn(βTk x

1
k), ..., sgn(βTk x

n
k ))T ∈ Rn for

k = 1, ...,m. The test data was obtained by splitting
the training data in three parts and keeping 1/3 as an
“out-of-bag” set. We fixed the number of tasks m to
50, the number of features d to 500 and the number of
examples n per task to 200.
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Figure 5. 75% shared sparsity pattern.

We compared different approaches to solve the multi-
task learning problem. One approach is to pool the
data, i.e. combine all tasks to one ”big” task. Then
we conducted single-task learning on every task sep-
arately, and we compared different `1,p Group-Lasso
methods where we used the same active set algorithm,
the only difference lying in the projection step. The
statistical significance was tested with the Kruskal-
Wallis rank-sum test for multiple testing correction
and the Dunn post test with Bonferroni correction.
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Figure 4 shows the result for the data set with 100%
shared sparsity pattern. One can see that the pooled
data performs worst and that single-task learning per-
forms almost exactly the same as the `1,1 Group-Lasso.
As the `1,1 norm barely couples the tasks, this result is
not surprising. We perceive that single-task learning is
significantly worse than multi-task learning. Between
all Group-Lasso methods there is no statistical signif-
icant difference. As we have exactly the same sparsity
pattern in every task, even the very strong coupling of
the `1,∞ norm leads to good results.
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Figure 6. 50% shared sparsity pattern.
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Figure 7. 30% shared sparsity pattern.

In Figure 5 the results for 75% shared sparsity pattern
are plotted. As in the experiment with the same spar-
sity pattern, pooling the data is worst and multi-task
learning outperforms single-task learning. Here we can
see that the strong coupling of the `1,∞ norm yields
worse result than in the experiment before, because
the sparsity pattern is not exactly the same across the
different tasks anymore. There is no significant differ-
ence between the `1,2 norm and the `1,1.5 norm. By
further reducing the joint sparsity pattern we observe
that the very tight coupling of the `1,∞ norm leads
to even worse results than single-task learning and we
see a statistical significant advantage of the weak cou-
pling norms `1,2 and `1,1.5 over all other methods, as
shown in Figure 6. If we reduce the shared sparsity

pattern to only 30%, we can nicely see that in this
case the weak coupling norm `1,1.5 shows a clear ad-
vantage and the strong coupling norms `1,3 and `1,∞
are even worse than single-task learning. These results
are demonstrated in Figure 7. In all experiments, there
is not one single case where the strong coupling `1,∞
norm performs better than the weak coupling regular-
izations. There exists a convincing explanation for the
better performance of the weak coupling variants: the
different tasks are connected with each other only over
the constraint term. If the tasks do not share exactly
the same sparsity pattern, i.e. if the model assump-
tions are violated, this strong coupling is sensitive to
model mismatches. The `1,∞ norm couples the tasks
too strong. For all values of p with 1 ≤ p ≤ ∞, val-
ues for p ∈ [1.5, 2] seem to be the best compromise
between no coupling and very strong coupling.

5. Efficiency of the Algorithm
We show the efficiency of our active set algorithm by
comparing the run time of our method with the `1,p
norm-regularization introduced in (Liu & Ye, 2010).
To our knowledge, this is the only existing method
that can compute Group-Lasso solutions for all `1,p
norms. We created synthetic data in the same way
as explained in section 4 and compared the run time
of our algorithm and the algorithm proposed by (Liu
& Ye, 2010) for a fixed number of relevant features.
The code for ((Liu & Ye, 2010))’s method is publicly
available1. The comparisons are shown in Figure 8.
The dashed lines show the run time in log-log scale
for the algorithm proposed in (Liu & Ye, 2010), the
lines show the run time for our proposed active set al-
gorithm. We plotted the run time for the `1,1.5, `1,3,
`1,∞, and `1,2 Group-Lasso methods in Figure 8. One
can see that our active set method is by far faster if the
data set contains many groups. The steep increase in
the last section of (Liu & Ye, 2010)’s algorithm be-
tween 10000 and 20000 groups is due to numerical
problems that arise in their optimizer by having more
than 10000 groups. This comparison shows the huge
advantage of using an active set method. If the solu-
tion is sparse, not all groups are selected, but only the
active ones, and the active set algorithm only has to
optimize over the active set, but not over the set of all
possible groups.

6. Prostate Cancer Classification
The first real-world data set we looked at is a prostate
cancer set that consists of two tasks. The first data
set from (Singh et al., 2002) is made up of laser in-
tensity images from microarrays. The RMA normal-
ization was used to produce gene expression values

1
http://www.public.asu.edu/ jye02/Software/SLEP/index.htm
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Figure 8. Run time in log-log-scale for our efficient active
set algorithm (lines) and the algorithm proposed in (Liu &
Ye, 2010) (dashed lines).

from these images. The second data set from (Welsh
et al., 2001) is already in the form of gene expression
values. Although the collection techniques for both
data sets were different, they share 12600 genes which
are used as features in this experiment. We used the
same experimental setup as in (Zhang et al., 2010),
i.e. we used 70% of each task as training set. Simi-
lar to the synthetic experiments we compared different
approaches to solve the classification problem. The re-
sults of 20 cross-validation splits are shown in Figure
9 where we compared the prediction performance of
the pooled data set, the `1,∞, `1,3, `1,2 and `1,1.5 norm
regularization and we compared all these multi-task
learning methods with single-task learning `1. Pool-
ing the data yielded as bad results as in the synthetic
experiments. As in the synthetic experiments, the
`1,1.5 norm performs best and all Group-Lasso meth-
ods perform significantly better than single-task learn-
ing, where we tested the statistical significance with
the Kruskal-Wallis rank-sum test and the Dunn post
test with Bonferroni correction. Even with only two
tasks, we observe that single task learning is signifi-
cantly worse than multi-task learning.

MovieLens Data Set In a second real world exper-
iment, we applied different Group-Lasso methods on
the MovieLens data set.2 MovieLens contains 100,000
ratings for 1682 movies from 943 users. The genre in-
formation of the movies is used as features and the
ratings of the users are in five-point scale (1, 2, 3, 4,
5). Every user defines a task, hence we have 943 tasks
and 19 features, as we have the information about
19 movie genres. Similar as above, we compared dif-
ferent approaches to solve the learning problem. We
conducted single-task learning and looked at different
`1,p Group-Lasso methods. We see a statistical signif-

2The data is available at http://www.grouplens.org.
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Figure 9. Classification error of the different Group-Lasso
norms on the prostate cancer data set.

icant advantage of multi-task learning over single-task
learning. Among the Group-Lasso methods, the very
strong coupling of the `1,∞ norm yields the worst re-
sult. Between `1,1.5 and the `1,2 Group-Lasso there
is no significant difference, but both show statistical
significant advantages over all other methods. Figure
10 shows the results for the MovieLens data set, here
we plotted single-task learning `1, the `1,2, `1,∞ and
the `1,1.5 Group-Lasso. One can see that single-task
learning is significantly worse than multi-task learning
and that the weak- and intermediate-coupling norms
outperform the strong coupling norms.
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Figure 10. Prediction error of the different regularizers for
the MovieLens data set: red curve: single `1, orange curve:
`1,1.5, blue curve: `1,∞, green curve: `1,2.

7. Conclusion
We have presented a unified characterization and a
highly efficient active set algorithm for all `1,p-variants
of the Group-Lasso. With these results, we were
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able to compare Group-Lasso methods for different
p-norms in large-scale experiments. To summarize,
our contribution is threefold: (i) On the theoretical
side, we characterized conditions for solutions for all
`1,p Group-Lasso methods by way of subgradient cal-
culus. (ii) We were able to present an active set al-
gorithm that is applicable for all `1,p Group-Lasso
methods. The main theoretical contribution consists
in presenting a convergence proof of the interval bi-
section used to combine a constrained optimization
problem and the Lagrangian form of an optimization
problem in the inner optimization loop what leads to
a fast update scheme. (iii) On the experimental side
we compared the prediction performance of different
Group-Lasso variants and demonstrated the computa-
tional efficiency of our method compared to an existing
method. In a multi-task setting, where the different
tasks are coupled via a Group-Lasso constraint, we
examined the prediction performance of all `1,p vari-
ants. We compared the different methods on synthetic
data as well as on two real-world data sets.
The prediction performance of the different Group-
Lasso methods depends both on the coupling strength
of the corresponding `p norms and on the systematic
differences between the tasks. Our experiments indi-
cate that both the very tight coupling of the high-
p norms with p � 2 and the too loose coupling of
the low-p norms with p � 2 significantly degrade the
prediction performance. The weak-coupling norms for
p ∈ [1.5, 2] seem to be the best compromise between
coupling strength and robustness against systematic
differences between the tasks.
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