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Abstract

We present a hybrid algorithm for optimiz-
ing a convex, smooth function over the cone
of positive semidefinite matrices. Our algo-
rithm converges to the global optimal solu-
tion and can be used to solve general large-
scale semidefinite programs and hence can be
readily applied to a variety of machine learn-
ing problems. We show experimental results
on three machine learning problems. Our
approach outperforms state-of-the-art algo-
rithms.

1. Introduction

We consider the following unconstrained semidefinite
optimization problem:

min f(X)
s.t. X � 0 , (1)

where f(X) : Rn×n → R is a convex and differentiable
function over the cone of positive semidefinite matri-
ces. Many machine learning problems can be cast as a
semidefinite optimization problem. Prominent exam-
ples include sparse PCA (d’Aspremont et al., 2007),
distance metric learning (Xing et al., 2002), nonlin-
ear dimensionality reduction (Weinberger et al., 2006),
multiple kernel learning (Lanckriet et al., 2004), mul-
titask learning (Obozinski et al., 2010), and matrix
completion (Srebro et al., 2004).

We provide an algorithm that solves general large-scale
unconstrained semidefinite optimization problems ef-
ficiently. The idea to our algorithm is a hybrid ap-
proach: we combine the algorithm of Hazan (2008)
with a standard quasi-Newton algorithm. The algo-
rithm achieves convergence to the global optimum with
very good running time. It can be readily used for a
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variety of machine learning problems and we demon-
strate its efficiency on three different tasks: matrix
completion, metric learning, and sparse PCA. Another
advantage of the algorithm is its simplicity, as it can
be implemented in less than 30 lines of Matlab code.

1.1. Related Work

A constrained version of Problem 1 is called a semidef-
inite program (SDP) if function f as well as the con-
straints are linear. Semidefinite programs have gained
a lot of attention in recent years, since many NP-hard
problems can be relaxed into SDPs and many machine
learning problems can be modeled as SDPs.

The most widely known implementations of SDP
solvers are interior point methods. They provide high-
accuracy solutions in polynomial time. However, since
the running time is a low-order polynomial in the di-
mension n they do not scale well to medium and large
problems that often occur in machine learning. On
the other hand, the high accuracy of their solutions is
typically not needed as the input data is often noisy.
Among other methods, proximal methods have been
employed to solve SDPs in order to circumvent the
large running time of interior point methods. They
achieve better running times at the expense of less ac-
curate solutions. Examples include (Nesterov, 2007;
Nemirovski, 2004) and (Arora et al., 2005) where the
multiplicative weights update rule is employed.

The algorithm of (Arora et al., 2005) has been random-
ized by (Garber & Hazan, 2011) based on the same
idea as in (Grigoriadis & Khachiyan, 1995) to achieve
sublinear running time. Another randomized algo-
rithm has appeared in (Kleiner et al., 2010). Further-
more, alternating direction methods have been pro-
posed to solve SDPs (Wen et al., 2010).

Another line of algorithms for solving SDPs are Frank-
Wolfe type algorithms such as (Hazan, 2008). This ap-
proach is also known as sparse greedy approximation
and these algorithms have the advantage that they
produce sparse solutions (Clarkson, 2008) which, for
SDPs, corresponds to low-rank solutions. Low-rank
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solutions are very appealing since they can drastically
reduce the computational effort. Instead of storing a
low-rank positive semidefinite matrix X ∈ Rn×n one
just stores a matrix V ∈ Rn×k where X = V V T , with
k being the rank of X. Matrix-vector multiplications,
for instance, can be done in O(nk) instead of O(n2).

There have also been nonlinear approaches to linear
SDPs, however, without general convergence guaran-
tees (Burer & Monteiro, 2003). In some special cases
(matrix completion problems where it is assumed that
the data is indeed generated by a low rank matrix and
the restricted isometry property holds) convergence
guarantees have been shown. In general, the prob-
lem of solving an SDP with a low-rank constraint is
NP-hard (Goemans & Williamson, 1995).

Organization of the Paper Section 2 describes
our algorithm while in Section 3 we provide experimen-
tal results on three different machine learning prob-
lems. We compare our algorithm against a standard
interior point method and against algorithms that are
specifically designed for each of the individual prob-
lems. Section 4 provides theoretical guarantees for the
running time and for the convergence to the global
optimal solution.

2. The Hybrid Algorithm

Our algorithm is summarized in pseudo-code in Algo-
rithm 1.

Algorithm 1 Hybrid Algorithm
Input: Smooth, convex function f : Rn×n → R
Output: Approximate solution of Problem 1
Initialize X0 = 0, V0 = 0
repeat

Increase rank by 1 using Hazan update:
Compute vi = ApproxEV(−∇f(ViV Ti ), ε̃).
Solve

minα,β f(α · ViV Ti + β · vivTi )
s. t. α, β ≥ 0.

Set Vi+1 = [
√
α · Vi,

√
β · vi].

Run nonlinear update:
Improve Vi+1 by finding a local minimum
of f(V V T ) wrt. V starting with Vi+1.

until Approximation guarantee has been reached

The notation [Vi, vi] used in Algorithm 1 stands for
the horizontal concatenation of matrix Vi and col-
umn vector vi. The function ApproxEV returns
an approximate eigenvector to the largest eigenvalue:

given a square matrix M it returns a vector vi =
ApproxEV(M, ε̃) of unit length that satisfies vTi Mvi ≥
λmax(M) − ε̃, where λmax(M) denotes the largest
eigenvector of matrix M .

Our algorithm runs in iterations. Each iteration con-
sists of two steps: a rank-1 update and a subse-
quent nonlinear improvement of the current solution.
The rank-1 update step follows a Frank-Wolfe type
approach. A linear approximation to function f at
the current iterate Xi is minimized over the cone of
semidefinite matrices. The minimum is attained at
viv

T
i where vi = λmax(−∇f(Xi)) is the vector to the

largest eigenvalue of −∇f(Xi). Then the next iter-
ate Xi+1 is a linear combination of the current iterate
Xi = ViV

T
i and viv

T
i such that it minimizes f .

In the second step, the nonlinear update step, the cur-
rent solution Xi+1 = Vi+1V

T
i+1 is further improved by

minimizing function f(V V T ) with respect to V . Note
that this function is no longer convex with respect to
V . Hence, we can only expect to find a local minimum.
Our analysis however shows, that this is sufficient to
still converge to the global optimal solution of Prob-
lem 1. In fact, it is even not necessary to find a local
minimum, any improvement will work.

In Section 4 we will prove that after at most O( 1
ε )

many iterations Algorithm 1 will return a solution that
is ε-close to the global optimal solution.

3. Applications and Experiments

We have implemented our hybrid algorithm in Matlab
exactly as described in Algorithm 1. For the nonlin-
ear update we use minFunc (Schmidt) which imple-
ments the limited memory BFGS algorithm. The two-
variable optimization problem in the rank-1 update is
also solved using minFunc. We use the default settings
of minFunc. The approximate eigenvector computa-
tion is done using the Matlab function eigs. We ran
all experiments in single-thread mode on a 2.50GHz
CPU.

3.1. Matrix Completion

In this section we consider the matrix completion prob-
lem used for collaborative filtering. Given a matrix Y
where only a few entries have been observed the goal
is to complete this matrix by finding a low-complexity
matrix X which approximates the given entries of Y as
good as possible. Low complexity can be achieved for
instance by a low rank or by small trace norm. Also
different error norms can be considered depending on
the specific application. For instance, the l1-norm in
combination with the trace-norm regularization leads
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Figure 1. Matrix completion problem: running time with respect to the rank for the three MovieLens datasets: 100K,
1M, and 10M.

Table 1. Matrix completion problem: test error (RMSE) on the three MovieLens datasets.

100K 1M 10M
RMSE Sec. Rank RMSE Sec. Rank RMSE Sec. Rank

Geco 0.947 397 6 0.874 50712 11 0.821 784941 12
Geco 0.950 127 5 0.880 6368 7 0.830 65468 8

This paper 0.933 5 2 0.874 223 5 0.815 2663 5

to the robust PCA approach for matrix completion
with low rank (Candès et al., 2011). Here, we use
the l2-norm and the rank constraint as a measure of
complexity. Hence, the matrix completion problem
becomes the following optimization problem:

min
∑

(i,j)∈Ω(Xij − Yij)2

s.t. rank(X) ≤ k , (2)

where Ω is the set of all given entries of Y . Note
that Problem (2) is NP-hard (Gillis & Glineur, 2011).
However, we can still attempt to find a good solution to
it by using our hybrid algorithm. Problem (2) can be
transformed into the following equivalent semidefinite
optimization problem:

min
∑

(i,j)∈Ω̂(X̂ij − Ŷij)2

s.t. rank(X̂) ≤ k
X̂ � 0 ,

(3)

where

X̂ =
(

V X
XT W

)
and Ŷ =

(
0 Y
Y T 0

)
,

and X̂ is a positive semidefinite matrix. V and W
are suitable symmetric matrices. Hence, the matrix
completion Problem (2) for an input matrix Y ∈ Rm×n
can be cast into a semidefinite optimization problem
over matrices X ∈ R(m+n)×(m+n).

We compare our algorithm to a state-of-the-art solver
GECO (Shalev-Shwartz et al., 2011) which was specifi-

cally designed for solving large-scale matrix minimiza-
tion problems with a low-rank constraint. We fol-
low the experimental setting of (Shalev-Shwartz et al.,
2011). We use three standard matrix completion
datasets: MovieLens100k, MovieLens1M, and Movie-
Lens10M. The dimensions of the three datasets are
943 × 1682, 6040 × 3706, and 69878 × 10677 respec-
tively and they contain 105, 106, and 107 movie ratings
from 1 to 5. The task is to predict a movie rating for
user i and movie j. We used the datasets without any
normalization1 and split them randomly such that for
each user 80% of the ratings went into training data
and 20% into test data.

Our algorithm minimizes the training error much
faster than GECO and at the same time also needs
a much smaller rank. As a result we also achieve an
optimal test error much faster and with a smaller rank
than GECO. Table 1 reports the test root-mean-square
error (RMSE) as well as the rank where it was achieved
and the running times. Both rows for GECO in Ta-
ble 1 reflect the same runs. The first row shows the
statistics where the test error reaches the minimum.
However, since GECO slows down a lot with the rank
we also added intermediate results when the test error
is approaching the minimum. As it can be observed
our algorithm achieves the same or better test error by
requiring only a fraction of the time needed by GECO.

1We noticed that normalization had no impact on the
results.
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Both algorithms need quasi-linear time in the number
of ratings and hence can be used to solve large scale
matrix factorization problems. Note however, that for
our algorithm the runtime per iteration scales linearly
with the rank k whereas GECO needs O(k6). This
behavior slows down GECO considerably, which can
be seen in Figure 1.

3.2. Metric Learning

The second problem we approach is the metric learning
problem. We are given a labeled dataset X = (xi, yi)i.
Let S be a set containing all pairs of indices (i, j)
whose data points xi and xj are similar to each other,
i.e. its labels yi and yj are equal; let the set S̄ con-
tain all indices of data points that are dissimilar to
each other. For a given semidefinite matrix A, the
Mahalanobis distance between xi and xj is defined as
dA(i, j) =

√
(xi − xj)TA(xi − xj). The metric learn-

ing problem is that of finding a positive semidefinite
matrix A, such that under the induced Mahalanobis
distance, points that are similar are close to each other
and points that are dissimilar are far apart. This prob-
lem can be cast as a semidefinite optimization prob-
lem(Xing et al., 2002):

min
∑

(i,j)∈S dA(i, j)2

s.t.
∑

(i,j)∈S̄ dA(i, j) ≥ 1
A � 0.

(4)

Note that the 1 in the inequality constraint in Prob-
lem (4) can be changed to any arbitrary positive con-
stant. This constraint is just to ensure that not
all points are mapped onto the same point. Prob-
lem (4) does not fit into our framework. However,
we can transform it into the following equivalent un-
constrained semidefinite problem:

min
∑

(i,j)∈S dA(i, j)2 − λ
∑

(i,j)∈S̄ dA(i, j)
s. t. A � 0.

(5)

Problem (5) is just the Lagrangian of Problem (4).
Since the 1 in the inequality constrained was chosen
arbitrary we can also choose any positive constant for
λ. In our experiments we set it to 1.

We follow the experimental setting of (Kleiner et al.,
2010). We compared our approach against an interior
point method implemented in SeDuMi (Sturm, 1999)
(via CVX (Grant & Boyd, 2011)) and the algorithm
of (Xing et al., 2002) which is a projected gradient ap-
proach and was specifically designed to solve the above
SDP. We could not directly compare our algorithm to
that of (Kleiner et al., 2010) as the code was not
available. However, the authors show that it performs
similarly to (Xing et al., 2002).

As a measure of quality for a given solution A we de-
fine:

Q(A) =
1
ξ
·
∑
i

∑
j:(i,j)∈S

∑
l:(i,l)∈S̄

1[dA(i, j) < dA(i, l))],

where 1[.] is the indicator function and ξ =∑
i

∑
j:(i,j)∈S

∑
l:(i,l)∈S̄ 1 is a normalization factor. In

essence Q captures how many points with the same la-
bel are mapped closer to each other than points with
different labels.

We initially apply metric learning to the UCI iono-
sphere dataset which contains 351 labeled data points
in dimension 34. The results of this experiment are
shown in Figure 2. As it can be seen, our hybrid al-
gorithm achieves the optimal value almost instantly.
The projected gradient descent algorithm (PG) needs
about 20 times as long to achieve a solution of com-
parable quality. Since the interior point method (IP)
scales very badly with the number of data points, we
only ran it on a sub-sample of size 4*34=136. On this
dataset, our method achieves the same function value
as IP: 5.47e-05, while requiring only 0.28 seconds as
opposed to 1513 seconds that IP needs. PG achieves
a function value of 5.50e-05 in 88 seconds.
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Figure 2. Metric learning problem: UCI ionosphere data.

Following (Kleiner et al., 2010), we ran a second set
of experiments on synthetic data in order to mea-
sure the dependence on the dimension d. We sam-
pled points from Rd as follows: We define two sets
of cluster centers C1 = {(−1, 1), (−1,−1)} and C2 =
{(1,−1), (1, 1)} and apply a random rotation to both
sets. We then sample each data point from a uniform
Gaussian distribution N (0, Id). The first two coordi-
nates of each data point are replaced by one of the
cluster centers and the label of this data point is set
accordingly to either 1 or 2. Finally, a small pertur-
bation drawn from N (0, 0.25I2) is added to the first
two coordinates. The results are depicted in Table 2,
which shows the running times for the various algo-
rithms until a quality measure of Q > 0.99 has been
reached.

Our algorithm achieves the same optimal function val-
ues as the interior point method, while requiring less
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Table 2. Metric learning problem: synthetic data. Time to
Q > 0.99 for different dimensions and function values at
those times.

d Alg. f value Sec. to Q>0.99

50 PG 3.94e-05 1.44
50 IP 3.57e-06 3713
50 This paper 3.37e-06 1.39

100 PG 5.62e-05 8.48
100 IP 1.21e-06 9048
100 This paper 1.19e-06 2.34
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Figure 3. Metric learning problem: Synthetic data.

time than the PG method. For larger dimensions we
plot the results in Figure 3. As it can be observed,
our algorithm is considerably faster than PG on these
larger dimensions. We omit the IP method here, as
this scales badly with increased dimension.

3.3. Sparse PCA

As a third problem we consider the sparse principal
component analysis problem (sparse PCA). For a given
covariance matrix A ∈ Rn×n, sparse PCA tries to
find a sparse vector x that maximizes xTAx, i.e. a
sparse principal component of A. This problem can
be relaxed into the following SDP (d’Aspremont et al.,
2007):

min ρ
∑

(i,j) |Xij | −A •X
s. t. Tr(X) = 1

X � 0,
(6)

where A•X denotes Tr(ATX). In a subsequent round-
ing step the largest eigenvector of the solution to Prob-
lem (6) is returned as the solution vector x. The pa-
rameter ρ controls the tradeoff between the sparsity of
x and the explained variance xTAx.

Problem (6) is not in form (1). However, one can
easily transform it into an unconstrained semidefinite
problem by defining the functions g(X) = X

Tr(X) and
f(X) = ρ

∑
(i,j) |Xij | − A •X. Hence, Problem (6) is

equivalent to
min f(g(X))

X � 0. (7)

Note that f(g(X)) is again a convex function over

the set of semidefinite matrices without the zero ma-
trix. However, f(g(X)) is not smooth. Smoothness of
f(g(X)) can be achieved either by implicitly smooth-
ing it, e.g. using Nesterov’s smoothing technique (Nes-
terov, 2005) or by explicitly smoothing it and replac-
ing the absolute function |.| with the scaled Huber-loss
HM . The Huber-loss is defined as:

HM (x) =

{
x2 if |x| ≤M
2M |x| −M2 if |x| > M

By appropriate scaling one can achieve an arbitrary
small difference between |x| and HM (x). We obtain
a smooth, convex function fHM by replacing the ab-
solute function with the Huber-loss in function f . In
our experiments we set M = 10−6 such that functions
fHM and f differ only marginally from each other.

We again follow the experimental setting of (Kleiner
et al., 2010) and we compare to an interior point
method and to a state-of-the-art algorithm, the
DSPCA algorithm (d’Aspremont et al., 2007) which
is specifically designed to solve Problem (6). We used
the colon cancer data set which contains 2000 microar-
ray readings from 62 subjects. We randomly sampled
readings in order to vary the dimension d. As standard
with this task, we normalized the data to mean 0 and
standard deviation 1. We set ρ = 0.2 in Problem (6)
to obtain sparse solutions for all d.

Table 3. Sparse PCA problem: colon cancer data. Func-
tion value at convergence, time to convergence, sparsity
and variance of the largest eigenvector x of the solution X.

d Alg. f value Sec. Spars. Var.

50 DSPCA -1.8326 0.22 0.50 2.53
50 IP -1.8675 140.5 0.88 2.53
50 This paper -1.8675 0.50 0.88 2.53

100 DSPCA -4.9235 1.27 0.81 6.30
100 IP -4.9550 11215 0.88 6.29
100 This paper -4.9550 0.72 0.88 6.29

200 DSPCA -6.27 9.65 0.82 8.06
200 This paper -6.35 3.31 0.89 8.05

400 DSPCA -16.34 64.29 0.84 19.81
400 This paper -16.48 19.91 0.87 19.78

800 DSPCA -31.74 595 0.86 38.40
800 This paper -32.00 99 0.87 38.37

1600 DSPCA -74.14 10034 0.86 81.29
1600 This paper -74.50 464 0.88 81.18

Table 3 reports the running time, the function value
at convergence, the sparsity of the solution and the
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captured variance for these data sets. As mentioned
above, we ran our algorithm on the function fHM , how-
ever we report the function value f(X) for the original
formulation (6). The solutions of our algorithm are ba-
sically identical to those of the interior point method.
However, it needs only a fraction of the time spent by
the interior point method. The DSPCA algorithm pro-
vides accurate solutions within short time even with
increasing dimension, however our algorithm is still
considerably faster, especially for large dimensions.

4. Analysis

4.1. The Duality Gap

In this section we provide a duality gap for Problem (1)
and analyze the running time of Algorithm 1. Let
Problem (1) have finite optimal solution denoted by
f∗ obtained at X∗. Let t be an upper bound on the
trace norm Tr(X∗). Such a trace bound always exists
if f∗ > −∞. Then the optimization Problem (1) is
equivalent to:

min f(X)
s. t. Tr(X) ≤ t

X � 0
(8)

In order to simplify some technicalities in the proof we
change Problem (8) into:

min f̂(X̂)
s. t. Tr(X̂) = t

X̂ � 0.
(9)

Problems (8) and Problem (9) are equivalent if we de-
fine

f̂(X̂) := f(X),

where

X̂ =
(
X 0
0 t′

)
and t′ = t − Tr(X) ≥ 0. Note that X̂ is positive
semidefinite whenever X is positive semidefinite. This
transformation is only done here for simplifying the
analysis of Algorithm 1. It does not alter Algorithm 1.

We denote by St := {X ∈ Rn×n |X � 0, Tr(X) = t}
the set of all positive semidefinite matrices with trace
constraint t.

Hence, we have that Problem (1) is equivalent to

min f(X), s. t. X ∈ St. (10)

By convexity of f , we have the following linearization,
for any X,Y ∈ St:

f(Y ) ≥ ∇f(X) • (Y −X) + f(X).

This allows us to define the Wolfe-dual of (10) for any
fixed matrix X ∈ St as follows,

ω(X) := min
Y ∈St

∇f(X) • (Y −X) + f(X)

= f(X)− max
Y ∈St

−∇f(X) • (Y −X)

and the duality gap as

g(X) := f(X)− ω(X)
= max

Y ∈St
−∇f(X) • (Y −X).

By the definition of the objective function f , the gra-
dient ∇f(X) is always a symmetric matrix and there-
fore has real eigenvalues, which will be important in
the following.

Lemma 1. The duality gap can be written as

g(X) = t · λmax (−∇f(X)) +∇f(X) •X.

Proof. We will prove the claim by showing that for
any symmetric matrix G ∈ Rn×n, one can equiv-
alently reformulate the linear optimization problem
maxY ∈St G • Y as follows:

max
Y ∈St

G • Y = max G •
n∑
i=1

αiuiu
T
i

= max
n∑
i=1

αi(G • uiuTi ),

where the latter maximization is taken over unit vec-
tors ui ∈ Rn, ‖ui‖ = 1, for 1 ≤ i ≤ n, and real
coefficients αi ≥ 0, with

∑n
i=1 αi = t.

For Y ∈ St let Y = UTU be its Cholesky factoriza-
tion. Let αi be the squared norms of the rows of U ,
and let ui be the row vectors of U , scaled to unit
length. From the observation Tr(Y ) = Tr(UTU) =
Tr(UUT ) =

∑
i αi = t it follows that any Y ∈ St can

be written as a convex combination of rank-1 matrices
Y =

∑n
i=1 αiuiu

T
i with unit vectors ui ∈ Rn.

It follows

max
Y ∈St

G • Y = max
n∑
i=1

αi(G • uiuTi )

= max
n∑
i=1

αiu
T
i Gui

= t · max
v∈Rn,‖v‖=1

G • vvT

= t · max
v∈Rn,‖v‖=1

vTGv

= t · λmax (G) ,
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where the last equality is the variational characteriza-
tion of the largest eigenvalue.

Finally, both claims follow by plugging in −∇f(X) for
G.

By construction the duality gap g(X) is always an up-
per bound on the primal error h(X) = f(X)− f(X∗).
This can also be used as a stopping criterion in Algo-
rithm 1. If g(X) ≤ ε then f(X) is an ε-approximation
to the optimal solution.

4.2. Runtime and Convergence Analysis

In this section we will show that after at most O( 1
ε )

iterations Algorithm 1 returns a solution that is an
ε-approximation to the global optimal solution. The
proof is along the lines of (Clarkson, 2008) and (Hazan,
2008). However, we improve by lowering the needed
accuracy for the eigenvector computation from O(ε2)
to O(ε). This in turn lowers the computational effort
for a eigenvector computation from O( 1

ε ) to O( 1√
ε
) per

iteration when using the Lanczos method.

Let the curvature constant Cf be defined as follows:

Cf :=

sup
X,Z∈St,α∈[0,1]
Y=X+α(Z−X)

1
α2

(f(Y )− f(X)− (Y −X) • ∇f(X)) .

The curvature constant is a measure of how much the
function f(X) deviates from a linear approximation in
X, and hence can be seen as an upper bound on the
relative Bregman divergence induced by f . Now we
can prove the following theorem.

Theorem 2. For each i ≥ 1, the iterate Xi of Algo-
rithm 1 satisfies f(Xi) − f(X∗) ≤ ε, where f(X∗) is
the optimal value for the minimization Problem (1),
and ε = 8Cf

i+2 .

Proof. We have Xi = ViV
T
i . Let the sequence αi =

2
i+2 . For each iteration of Hazan’s rank-1 update, we
have that

f(Xi+1)
= min

α,β≥0
f(α · ViV Ti + β · vivTi )

≤ f((1− αi) · ViV Ti + αit · vivTi )
= f(Xi + αi(t · vivTi −Xi))
≤ f(Xi) + αi(t · vivTi −Xi) • ∇f(Xi) + α2

iCf(11)

where the first inequality follows from choosing α =
1 − αi and β = αi · t and the last inequality follows

from the definition of the curvature constant Cf . Fur-
thermore,

(t · vivTi −X) • ∇f(Xi)
= (Xi − t · vivTi ) • (−∇f(Xi))
= Xi • (−∇f(Xi))− t · vTi (−∇f(Xi))vi
≤ −Xi • ∇f(Xi)− t · (λmax(−∇f(Xi))− ε̃)
≤ −g(Xi) + t · ε̃
≤ −g(Xi) + αi · Cf .

The last inequality follows from setting ε̃ to a value at
most αi·Cf

t within Algorithm 1. Hence, Inequality (11)
evaluates to

f(Xi+1) ≤ f(Xi)− αig + α2
iCf + α2

iCf

= f(Xi)− αig(Xi) + 2α2
iCf . (12)

Subtracting f(X∗) on both sides of Inequality (12),
and denoting the current primal error by h(Xi) =
f(Xi)− f(X∗), we get

h(Xi+1) ≤ h(Xi)− αig(Xi) + 2α2
iCf , (13)

which by using the fact that the duality gap g(Xi) is
always an upper bound on the primal error h(Xi) gives

h(Xi+1) ≤ h(Xi)− αih(Xi) + 2α2
iCf . (14)

The claim of this theorem is that the primal error
h(Xi) = f(Xi) − f(X∗) is small after a sufficiently
large number of iterations. Indeed, we will show by
induction that h(Xi) ≤ 8Cf

i+2 . In the first iteration
(i = 0), we know from (14) that the claim holds, be-
cause of the choice of α0 = 1.

Assume now that h(Xi) ≤ 8Cf
i+2 holds. Using αi =

2
i+2 in Inequality (14) we can now bound h(Xi+1) as
follows:

h(Xi+1) ≤ h(Xi)(1− αi) + 2α2
iCf

≤ 8Cf
i+ 2

(
1− 2

i+ 2

)
+

8Cf
(i+ 2)2

≤ 8Cf
i+ 2

− 8Cf
(i+ 2)2

≤ 8Cf
i+ 1 + 2

.

So far we only considered the progress made by Al-
gorithm 1 trough the rank-1 update. Running the
nonlinear improvement on f(ViV Ti ) in each iteration
only improves the primal error h(Xi) in each iteration.
Hence, the claim of the theorem follows.

We can set ε̃ = ε
4t throughout Algorithm 1. This will

ensure ε̃ ≤ αi·Cf
t as needed by the analysis of the al-

gorithm.
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5. Discussion

We have provided an algorithm that optimizes convex,
smooth functions over the cone of positive semidef-
inite matrices. It can be readily used for a variety
of machine learning problems, as many of these fall
into this framework or can be equivalently transformed
into such a problem. In this paper we have performed
experiments on three of such problems and we have
shown that our algorithm significantly outperformes
state-of-the-art solvers without the need of tuning it to
any of the specific tasks. Additionally, the algorithm
proposed has the advantage of being very simple, and
it comes with the guarantee to always converge to the
global optimal solution. In the future, we plan to im-
plement our algorithm in C++ for further speedups.
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