
From Competitive to Social Two-Player Videogames
Jesús Ibáñez-Martínez
Universitat Pompeu Fabra

Barcelona, Spain

jesus.ibanez@upf.edu

Carlos Delgado-Mata
Universidad Panamericana

Aguascalientes, Mexico

cdelgado@up.edu.mx

ABSTRACT
In this paper we present a strategy to design social videogames
(from classic competitive ones) which allow parents to play with
their children and have fun in spite of their different levels. A first
tennis videogame (based on the classic Pong) which implements
this strategy has already been developed. In the paper we first
motivate this work and briefly survey related work. Then we
describe the general strategy and its application to the case of the
tennis videogame.

Categories and Subject Descriptors
I.6.8 [Simulation and modeling]: Types of Simulation – gaming.
K.8.0 [Personal computing]: General – games.

General Terms
Algorithms, Design, Human Factors

Keywords
Two-player Videogames, Automatic Adaptation

1. MOTIVATION
When an adult plays with a little child in the physical world, the
adult usually adapts his abilities to the particular level of the
child, especially when the child is learning to play. For instance, a
father can be proficient playing tennis, but when playing with his
little son who is starting to play tennis, he does not try to compete
with his son. On the contrary, he hits the ball softer than he does
when playing with his friends, and he tries to hit the ball so that it
gets near his child so it is easier to hit back. In other words, he
presents his child with situations which are feasible for him to
achieve so that he gets engaged instead of frustrated. He tries to
facilitate the learning process by motivating him.
Playing tennis in this way is not competitive for the father. As a
tennis game (as a sport), it is not exciting for him. However, it can
be emotionally gratifying. The father can enjoy playing and
chatting with his son. However, from the adult perspective, this
kind of scenario is funny for a short time. If the parent plays
tennis for a long time with his child he will get bored.

When playing two-player videogames instead of real world games
the situation is pretty similar. Two-player videogames are
competitive videogames where one player competes against other
one. In this kind of games, the parameters that depend on the
degree of difficulty of the game (like the speed of the ball in a
tennis videogame) are usually the same for both players (even if
these parameters can be configured). Thus, the game is as difficult
(or as easy) for both players. Moreover, usually this kind of game
includes an option for a player to play against the computer
(instead of against another human player) and some games allow
the player to select the degree of difficulty in this case.
If we translate the father-child situation we mention above to the
digital context, we would have a little kid who is learning to play
a two-player videogame (more concretely a tennis videogame) and
his father who is proficient playing digital tennis wanting to play
with his kid. In this case there currently are three possible
scenarios. In the first scenario the child plays against the computer
in order to learn to play so he can play against his father once he
acquires certain abilities. The problem here is that the game lacks
social interaction, chat, empathy, etc. In the second scenario the
father plays against his child setting a low degree of difficulty so
that the child does not get unmotivated nor frustrated. The main
problem here is that the father can get bored as the game will be
too easy for him. In the third scenario the father plays against his
child setting a higher degree of difficulty so that he does not get
bored (he thinks). The problem here is that the child will get
unmotivated and frustrated as he won’t be able to do anything as
the game is too difficult for him. Moreover, the father will get
bored as he wins without any opposition.
In this paper we propose a novel strategy which provides a fourth
possible scenario which fits the abilities of both players better. It
is a strategy to design two-player videogames which are able to
adapt themselves to the level of the players who are playing at
each moment. If a player is playing too badly (the game is too
difficult for him), the game gets easier for him so he does not get
frustrated. If a player is playing too well (the game is too easy for
him), the game gets more difficult for him so he does not get
bored. Thus, the players can benefit from social interaction, chat,
empathy, etc. while playing, in spite of their levels.
The strategy has already been successfully applied to the design
and development of a new version of the classic Pong videogame.
Pong was a pretty simple game with simple rules: hit the ball
across the playing field and try your best to hit it past your
opponents paddle on the other side (see Figure 1).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI-MLMI’09 Workshop on Child, Computer and Interaction
November 5, 2009, Cambridge, MA, USA.
Copyright 2009 ACM 978-1-60558-690-8/09/11 ...$10.00.

Figure 1. The Pong videogame
The structure of the paper is as follows. First we review related
work. Next we describe the general strategy and its application to
the case of the tennis videogame. We also show the development
of the tennis videogame. Finally we show the conclusions and
point out future work.

2. RELATED WORK
The concept of flow [3] described by Mihaly Csikszentmihalyi is
very relevant to our objective. Flow is the mental state of
operation in which the person is fully immersed in what he or she
is doing by a feeling of energized focus, full involvement, and
success in the process of the activity. Flow is a mental state of
enjoyment shared by people in a variety of situations, such as
rock-climbing, chess-playing, composing music, and playing
videogames. Colloquial terms for this or similar mental states
include: to be on the ball, in the zone or in the groove. The
concept of flow, in [4], refers to an individual’s optimal
experience. In a state of flow, the individual experiences intrinsic
enjoyment from undertaking a task that feels almost effortless and
natural, while also causing the individual to feel focused and
challenged. One of Csikszentmihalyi’s inspiring achievements is
the definition of the Flow Channel (see figure 2).

Flow
Anx

iet
y

Bore
do

m

Abilities

C
ha

lle
ng

e

Figure 2. The Flow Channel

In order to maintain a person’s Flow experience, the activity
needs to reach a balance between the challenges of the activity
and the abilities of the participant. If the challenge is higher than
the ability, the activity becomes overwhelming and generates
anxiety or frustration. If the challenge is lower than the ability, it
provokes boredom. Thus, the relation between game difficulty and
player ability is crucial for enjoying the game.

Dynamic difficulty adjustment (DDA), also known as Dynamic
game difficulty balancing or Dynamic game balancing is the
process of automatically changing parameters, scenarios and
behaviours in a videogame in real-time, based on the player's
ability.
There are few works dealing with DDA. Literature includes works
which explore the use of concrete techniques (inventory theory
[10][11], dynamic scripting [13], genetic algorithms [8],
reinforcement learning [1], etc.) to control concrete elements
(inventory [10][11], agents behaviours [1][8][13], etc.) of
complex videogames. Unfortunately, implementing such systems
in complex videogames poses many challenges to game
developers. As a result, DDA techniques are not widespread.
Thus, while most works deal with concrete mechanisms for
concrete elements of complex videogames, our work is focused on
a general strategy for adding DDA to a simple kind of game where
two players play against each other (a sort of game not studied in
literature). We define a general strategy for this kind of games and
we apply the strategy to a concrete videogame.
Finally, to put this work in perspective, it should be noted that the
videogame we have designed and developed incorporating our
approach is based on the classic Pong. Pong, while not the first
videogame, was the first coin-op arcade game and the first
mainstream videogame that was available to almost everyone.
Pong was invented by Ralph H. Baer in late 1960s [2] and it was
later licensed to Magnavox, which successfully marketed it. An
arcade version of the game was developed by Atari, the company
founded by Nolan Bushnel, in the 1970's. Pong was a pretty
simple game with simple rules: hit the ball across the playing field
and try your best to hit it past your opponents paddle on the other
side. The origins of Pong lie with an abstract tennis game created
with an old oscilloscope and some vacuum tubes by Willy
Higinbotham, way back in 1958 [7].

3. STRATEGY
The ultimate objective of the strategy is that both players enjoy
the game, independently of their particular level. The game should
be neither very easy nor very difficult for any player, in order to
avoid that they get bored or frustrated. This general objective
should be more concretely defined according to some criteria
which depend on the concrete game. In the particular case of the
tennis videogame, we defined the following concrete objectives:

- the number of points per player should be balanced.
That is, the performance of both players should be as
similar as possible so they keep engaged.

- the number of hits per point should not be very small
nor very great. If there were very few hits per point the
game would be frustrating. If there were too many hits
per point the game would be boring.

In order to achieve these objectives, a set of parameters and an
algorithm (which varies these parameters to balance the level of
difficulty for each player) are defined.

3.1 Parameters
A set of parameters should be defined in order to control the
difficulty of the game for each player. These parameters must
allow increasing or decreasing the difficulty of the game for each
particular player without affecting the performance of the other
player.

In the case of the tennis videogame, each player level, L, is
modelled as a real value in (-1, 1). The initial value of each player
is 0. Positive values of L indicate that the player is playing well
and negative values of L indicate that the player is playing badly.
The level of the player determines the value of three parameters
(which are modelled as real numbers):

- RL, the player’s racquet length, MinRL ≤ RL ≤ MaxRL
- RS, the player’s racquet speed, MinRS ≤ RS ≤ MaxRS
- BS, the ball speed when the player’s opponent hits the

ball, MinBS ≤ BS ≤ MaxBS
Every period of time, the level of each player (L) is recalculated
by the algorithm described in the next section. The value of L
determines then the value of the three parameters by following
simple proportional rules as shown in Table 1. MinRL, MinRS
and MinBS are the minimum values of RL, RS and BS
respectively. These are also the initial values for theses
parameters. MaxRL, MaxRS and MaxBS are the maximum values
of RL, RS and BS respectively. Note that L and BS are directly
proportional while both L and RL and L and RS are inversely
proportional.

Table 1. Parameters
L RL RS BS

1 MaxBS

0 MinRL MinRS MinBS

-1 MaxRL MaxRS

These parameters allow increasing or decreasing the difficulty of
the game for one player. On the one hand, the first two parameters
(RL and RS) are used in order to make the game easier for a
player who is playing badly. The smaller the player level, the
greater both the racquet length and the racquet speed are. On the
other hand, the last parameter (BS) is employed in order to make
the game more difficult for a player who is playing very well. The
greater the player level, the greater the ball speed when the
opponent hits the ball.

3.2 Algorithm
Every period of time the performance of both players is evaluated
and compared. If there is a great difference of level between both
players (one of them is playing much better than the other), the
algorithm balances the difficulty degree of the players by varying
the parameter values. Moreover, even if there is no great
difference of level between both players, the algorithm still tries to
evolve the game in order to improve the engagement of the
players.
In the concrete case of the tennis videogame, we consider that a
player is playing much better than the other one in a given time
period if the first player has scored many more points than the
second one during that period.
There are two possible reasons for a great difference between
players. On the one hand, maybe one of the players is playing very
badly. If this is the case, the game should be simplified for this
player by setting appropriate parameter values. On the other hand,
maybe one of the players is playing very well. In that case, the
game should be made more difficult for this player.
In the case of the tennis videogame, we distinguish between these
two cases by taking into account the mean number of hits per
point in the time period. If there are very few hits per point we

consider this a symptom that at least one of the players is playing
badly. As we have already detected that there is a great difference
between both players, then we can assume that the player with the
worst performance is playing badly. On the other hand, if there
are enough hits per point we consider this a symptom showing
that both players are playing at least relatively well. As we have
already detected that there is a great difference between both
players, then we can assume that the player with the best
performance is playing very well.
As we said above, even if there is no great difference of level
between both players, the algorithm still tries to evolve in order to
improve the engagement of the players. If both players are playing
very well (the game is too easy for them), the game should be
made more difficult for both players so they do not get bored. If
both players are playing badly (the game is too difficult for them),
the game should be simplified for both of them. Again, in the case
of the tennis videogame we detect that the players are playing
badly if there are too few hits per point. They are playing very
well if there are too many hits per point.
Thus, the general algorithm for the case of the tennis videogame is
as follows:
00 every period of time:
01 if muchBetter(player1, player2)
02 if fewHitsPerPoint()
03 decreaseLevel(player2)
04 else if manyHitsPerPoint()
05 increaseLevel(player1)
06 else if muchBetter(player2, player1)
07 if fewHitsPerPoint()
08 decreaseLevel(player1)
09 else if manyHitsPerPoint()
10 increaseLevel(player1)
11 else if fewHitsPerPoint()
12 decreaseLevel(player1)
13 decreaseLevel(player2)
14 else if manyHitsPerPoint()
15 increaseLevel(player1)
16 increaseLevel(player2)
17 updateParameters()

Where muchBetter(player1, player2) is a Boolean function
which returns true if player1 has scored many more points than
player2 during the last period of time. It returns false in any other
case. fewHitsPerPoint() is a Boolean function which returns true
if the mean number of hits per point in the period is smaller or
equal than a given threshold value. It returns false in any other
case. manyHitsPerPoint() is a Boolean function which returns
true if the mean number of hits per point in the period is greater
than a given threshold value. It returns false in any other case.
decreaseLevel (P) is a function which decreases the value of the
variable L (level) of the player P according to a particular
function, if it is possible (if the value of L is not the minimum
value). increaseLevel(P) is a function which increases the value
of the variable L of the player P according to a particular function,
if it is possible (if the value of L is not the maximum value).
updateParameters() is a function which updates the parameters
RL, RS, and BS of both players accordingly to current players’
level (L) as shown above in section “Parameters”.
As a consequence of this updating of parameters, if a player has
been playing too badly during the last period (the game is very
difficult for him), his racquet will grow and it will also be quicker
so that it is easier for him to reach the ball. If a player has been
playing too well (the game is very easy for him), the ball will
move quicker when hit by his opponent so that the game is more
challenging and funny for him.

4. DEVELOPMENT
We designed and developed the tennis videogame implementing
the described strategy (see figure 3). We employed design patterns
for the software design, as we wanted the videogame to be easily
modifiable and extended. In particular, we used the strategy
design pattern where possible so that programmers can easily
supply variants of the different algorithms. This allows for
exploring new mechanisms to change the level of the game.
Furthermore, the current design of the videogame facilitates the
creation of new videogames implementing the general strategy.
The programmer still has to program the concrete algorithms for
making the new game easier or more difficult, but he can reuse the
general structure.

Figure 3. Two players enjoying the developed videogame
The game was developed in Java [9] (Java has recently been
claimed as a good language for videogame development [5]),
employing Java2D [12] for graphics. Thus, the game is portable.
It can be played on any PC. The game is also highly configurable.
All the game parameters, including the parameters we have
mentioned above (MinRL, MaxRL, etc.), can be configured
through a configuration file.

The current version of the videogame runs as a Java application
and it is visualized on a window. We are creating two new
versions of the game at the moment. The first one runs on a full-
screen display, while the second one runs on an applet so the
users can play the game on a web browser.

The game supports two different kinds of input device. On the one
hand, the players can use the PC keyboard. On the other hand,
they can utilize a gamepad (in particular we use the Logitech Dual
Action gamepad). We have employed the JInput library [6] for
programming the gamepad support.

5. CONCLUSIONS AND FUTURE WORK
We have introduced a novel strategy to design videogames which
allow parents to play with their children and have fun in spite of
their different levels. A first tennis videogame which implements
this strategy has already been developed and it has been described
in the paper. Even though we have not yet carried out formal user
studies, the players who have played the game so far have found it
funny.

As future work, we are preparing a study with users in order to
evaluate the player experience when playing the designed
adaptive tennis videogame in comparison to when playing the
game without the adaptation mechanisms. In addition, we will
explore the application of the defined strategy to design other
adaptive videogames.

6. ACKNOWLEDGMENTS
We would frankly like to thank Leticia Lipp for generously
proofreading. This work has been partially funded by the Spanish
Ministry of Science and Innovation in the Learn 3 project
(TIN2008-05163/TSI).

7. REFERENCES
[1] Andrade, G., Ramalho, G., Santana, H., and Corruble, V.

2005. Challenge-Sensitive Action Selection: an Application
to Game Balancing. In Proceedings of the IEEE/WIC/ACM
international Conference on intelligent Agent Technology
(September 19 - 22, 2005). IAT. IEEE Computer Society,
Washington, DC, 194-200. DOI=
http://dx.doi.org/10.1109/IAT.2005.52

[2] Baer, R. H. 1972. Television Gaming Apparatus and Method.
U.S. Pattent 3,659,285. Filed August 21, 1969.

[3] Csikszentmhalyi, M.1990. Flow: The Psychology of
Optimal Experience. HarperCollins Publishers.

[4] Csikszentmihalyi, M. 1996. Creativity: Flow and the
Psychology of Discovery and Invention. HarperCollins
Publishers.

[5] Davison, A. 2005. Killer Game Programming in Java.
O'Reilly Media, Inc.

[6] Davison, A. 2007. Pro Java 6 3D Game Development: Java
3D, JOGL, Jinput, & JOAL APIs: Java 3D, JOGL, Jinput,
and JOAL APIs. Apress Academic.

[7] DeMaria, R. and Wilson, J. L. 2002. High Score! The
Illustrated History of Electronic Games. Osborne/McGraw-
Hill.

[8] Demasi, P., and Cruz, A. 2002. Online Coevolution for
Action Games. In Proceedings of The 3rd International
Conference on Intelligent Games And Simulation (London,
2002), 113-120.

[9] Flanagan, D. 2005. Java In A Nutshell. O'Reilly Media, Inc.
[10] Hunicke, R. 2005. The case for dynamic difficulty

adjustment in games. In Proceedings of the 2005 ACM
SIGCHI international Conference on Advances in Computer
Entertainment Technology (Valencia, Spain, June 15 - 17,
2005). ACE '05, vol. 265. ACM, New York, NY, 429-433.
DOI= http://doi.acm.org/10.1145/1178477.1178573

http://dx.doi.org/10.1109/IAT.2005.52
http://doi.acm.org/10.1145/1178477.1178573

[11] Hunicke, R., Chapman, V. 2004. AI for Dynamic Difficulty
Adjustment in Games. In Proceedings of the Challenges in
Game AI Workshop, Nineteenth National Conference on
Artificial Intelligence (AAAI '04) (San Jose, California)
AAAI Press.

[12] Knudsen, J. 1999. Java 2D Graphics. O'Reilly Media, Inc.

[13] Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. 2004.
Difficulty Scaling of Game AI. In Proceedings of GAME-ON
2004: 5th International Conference on Intelligent Games and
Simulation (eds. El Rhalibi, A., and D. Van Welden)
(Belgium, 2004), 33-37.

	1. MOTIVATION
	2. RELATED WORK
	3. STRATEGY
	3.1 Parameters
	3.2 Algorithm

	4. DEVELOPMENT
	5. CONCLUSIONS AND FUTURE WORK
	6. ACKNOWLEDGMENTS
	7. REFERENCES

