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ABSTRACT 
Autism is a major child development disorder with a prevalence 
of 1/150 in the US [22]. Although early identification is crucial to 
early intervention, there currently are few efficient screening tools 
in clinical use. This study reports a fully automatic mechanism for 
child autism detection/screening using the LENATM (Language 
ENvironment Analysis) System, which utilizes speech signal 
processing technology to analyze and monitor a child’s natural 
language environment and the vocalizations/speech of the child. 
We previously reported preliminary results in [19] using child 
vocalization composition information generated automatically by 
the LENA System employing an adult phone model. In this paper, 
some extensions have been made, including enlargement of the 
dataset, introduction of a new child vocalization decomposition 
with the k-means clusters derived directly from the child 
vocalizations, and its combination with the previous 
decomposition. The experiment and comparison consistently 
shows that the child vocalization composition contains rich 
discriminant information for autism detection. It also shows that 
the child vocalization composition features generated with the 
adult phone-model and the child clusters perform similarly when 
individually used, and complement each other when combined. 
The combined feature set significantly reduces the error rate. The 
relative error reduction is 21.7% at the recording-level and 16.8% 
at the child-level, achieving detection accuracies of 87.4% for 
recordings and 90.6% for children at the equal-error-rate points. 
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1. INTRODUCTION 
Autism Spectrum Disorder (ASD) has gained more and more 
attentions in recent years [1]. Significant increases in research 
grants have been reported [2]. Because of the importance of the 
early diagnosis for young children with ASD to access effective 
early intervention services, research and clinical practice have 
focused more and more on early diagnosis [3,4,7,23]. The 
American Academy of Pediatrics recommends ASD screening for 
all children at the 18- and 24-month checkups [5]. However, a 
survey completed in 2004 indicated that only 8% of primary care 
pediatricians routinely screen for ASD [6]. For parents with 
concerns, it typically takes at least 6 months to obtain a clinical 
diagnosis [3] due to the laborious nature of the existing 
screening/diagnostic procedures and an insufficient number of 
trained personnel relative to the large number of children in need 
of evaluation. Efficient and/or automatic tools for ASD detection 
can significantly facilitate the evaluation process. This study 
reports a fully automatic mechanism for early ASD detection 
using the LENA System, which utilizes speech signal processing 
technology to analyze and monitor a child’s natural language 
environment and the vocalizations/speech of the child. 
Preliminary results had been reported in [19]. This paper reports 
on recent progress in both data collection and detection methods. 

ASD is characterized by: (i) qualitative impairments in social 
interaction shown by abnormalities in such behaviors as eye gaze, 
body posture, sharing interests and emotions; (ii) qualitative 
impairments in communication shown by language development 
issues such as delayed status, problems initiating and sustaining 
conversations, repetitive patterns; (iii) a restricted repertoire of 
interests, behaviors and activities shown by an adherence to 
certain topics, routines, rituals, motor manners, parts of objects 
and sensory abnormalities [7]. In recent years, increased research 
efforts have been made towards earlier identification of ASD. For 
example, [8] reported on the discovery of early attention 
differences that may lead to earlier identification and new 
therapies for ASD; [9] reported unusual use of toys in infancy as 
an indicator of later ASD; [10] reported vocal differences and 
abnormalities in high risk infants at 12 months; [11] reported 
decreased responsiveness to their names in 12-month-old high-
risk children; [12, 13] focused on specific abnormalities in the 
prosody of children with ASD. These findings were based 
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primarily on subjective observations and rarely related to 
automatic or machine-generated objective measures. [14] showed 
the potential of an automatic measure for prosodic quality rating 
applied in a laboratory setting. In addition to the efforts associated 
with detection, there are reports on intervention employing a 
computer or robot. [15] and [16] described a computer-animated 
tutor for vocabulary and language learning and a robotic prosody 
therapist, respectively. 

The current standard diagnostic tools in clinical practice include 
the Autism Diagnostic Interview-Revised (ADI-R) and the Autism 
Diagnostic Observation Schedule-Generic (ADOS-G) [3]. Some 
of the existing screens for early identification of autism include 
the CHAT (the Checklist for Autism in Toddlers), the quantitative 
CHAT, the Modified CHAT, STAT (the Screening Test for 
Autism in Toddlers), PDDST-II (the Pervasive Developmental 
Disorders Screening Test-II), ESA (the Early Screening for 
Autism questionnaire), ABC (the Autism Behavior Checklist), 
ASQ (the Autism Screening Questionnaire) and The 
Developmental Behavior Checklist [3,23]. Because these 
instruments require parent participation and/or direct observation, 
rating, and scoring by a trained practitioner, they are labor-
intensive and necessarily include some degree of subjectivity. 
Evaluation in an unfamiliar clinical setting may also influence 
child behavior and potentially influence the evaluation. 

This study introduces an objective, unobtrusive, relatively easy 
tool for ASD identification based on audio recordings from the 
natural home environment. An overview of the system, the data, 
the methods and the most recent progress are provided in the 
following sections. 

2. SYSTEM OVERVIEW 
Although the LENA System has been described in detail 
previously [18,19], a system overview is briefly provided in this 
section for convenience. As shown in Figure 1, the LENA System 
begins with a small digital recorder (DLP – digital language 

processor) worn by the child in the pocket of specially designed 
clothing [17]. All sounds in a child’s environment, including 
his/her own voice, are recorded continuously in an unobtrusive 
way for an entire day. The audio data is uploaded to a computer 
and is analyzed, producing information about the natural language 
environment and the language development status of the child. 
Currently, the LENA System provides estimates for the number of 
adult words spoken near the child (adult word-count), the adult-
child interaction (turn-count), the number of distinct child 
vocalizations (child vocalization count), the amount of audible 
TV/electronic media, environment noise, overlapped speech, etc. 
within the child’s language environment, as well as information 
about the child’s development, including an automatic expressive 
language assessment or Automatic Vocalization Analysis score 
(AVA) and the automatic LENA Autism Screen (LAS) score. This 
hardware and software combination allows caregivers and 
professionals to obtain prompt information about a child’s 
environment/development and monitor improvement over time, 
providing the opportunity to intervene when necessary at an early 
age [18,19]. 

As described in [18,19], sounds in the natural environmental 
recordings are categorized into one of 8 classes: key child, adult 
male, adult female, other child, TV (including radio and other 
electronic media sound), noise, silence and overlap (that includes 
human vocal activity). All non-silence classes are further 
categorized into clear/faint sub-classes (related to near/far field). 
Overall, there are 15 sub-classes. After this segmentation and 
segment-ID process is performed, clear-adult-segments are further 
processed to produce an adult-word-count estimate. Key-child 
segments are further processed to delineate normal vocalizations 
from cries and other fixed signals as well as vegetative sounds. 
Clear key-child segments are also used to generate child 
vocalization composition features by using either the open-source 
Sphinx adult phone-model or the vocalization clusters derived 
directly from the child vocalization data in this study. The 
composition features are used to estimate the AVA score and the 
automatic autism screening score. As a practical consideration, it 
is required that the full processing time be within 0.5 real-time.  

As reported in [18]: the segmentation/segment-ID accuracy varies 
from 70.5 to 82.0%; the adult word-count performance in terms of 
the Relative Root Mean Square Error varies from 42% for 1 
minute measuring length to below 7-8% after 5 hours of 
measuring time; and the AVA scores correlate at r=0.75 with 
comparable scores assessed by human speech language 
pathologists using standard language assessments. The remainder 
of this paper focuses on the automatic ASD detection system 
utilizing child vocalization composition. 

3. CHILD VOC-DECOMPOSITION 
As mentioned above, childhood ASD is characterized by 
abnormalities in social interaction, communication, language 
development and repetitive stereotyped behavior. It is reasonable 
to assume that certain characteristics of these abnormalities could 
be exhibited and detected within a day-long audio recording. 
Specific abnormalities of vocalization and prosody in children 
with ASD in fact have been reported before [10,12,13]. For a fully 
automatic ASD detection/screening tool, one of the major 
considerations is to find a robust discriminant feature for ASD 
detection which can be automatically generated. It has been found 
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Figure 1:  Diagram of the LENA System 

 



in this study that the child vocalization composition contains rich 
information to distinguish the children with ASD from other 
children. The composition analysis is commonly used in 
Chemistry and other scientific areas to distinguish different 
materials. Moreover, the child vocalization composition is also 
robust to noise, interference and recognition error. As long as the 
majority of the child vocalizations are decomposed correctly, a 
moderate amount of interference and recognition error will not 
greatly change the overall composition statistics or destroy the 
discriminant information in the composition feature. The decent 
performance in this study somehow proved this to a certain extent. 

To the best of our knowledge, the prior research in early child 
vocal composition has not yet been approached in a similar 
detailed quantitative way. We believe that this is in part due to the 
lack of data, as estimation of child vocalization composition 
requires a large number of audio samples. The fully automatic 
LENA System now provides a relatively easy way to make the 
composition analysis possible by obtaining a large number of 
audio samples. 

The child vocalization decomposition with the open-source 
Sphinx adult phone-model is reported in [19]. One concern about 
this method is the appropriateness of applying an adult model to 
child vocalization/speech. It should be noted that the final purpose 
here is not to recognize phones produced by a child using adult 
phones as criteria. The phone decoder with an adult model here 
serves as a decomposer. As long as it works objectively and 
consistently, and the resulting composition contains rich 
discriminant information for ASD detection, it is not critical 
whether a particular vocalization is recognized as [a] or [i] or 
other categories using adult speech as criterion. Of course, one 
may argue that more accurate phone decomposition with adult 
speech as criterion may generate better discriminant information. 
This is an empirical question we leave for future research; we do 
not believe it is critical for the final purpose of ASD detection at 
the current stage. Based on similar reasoning, child vocalizations 
could be decomposed with self-organized clusters derived directly 
from the child vocalization data. This approach may have obvious 
advantages since there is no data-model-mismatch which is the 
major concern of using an adult phone-model. No matter what the 
reasoning, the current experiment shows that both the 
decomposition based on the adult phone-model and the one based 
on child-clusters perform similarly when individually applied, and 
complement with each other when combined, resulting in 
significant improvement in performance. 

As mentioned in [19], the clear key-child segments in a day-long 
recording are used for vocalization decomposition regardless of 
which decomposer is used. For the adult phone-based 
decomposition, the open-source Sphinx system is used, which 
contains 39 regular adult English phone models such as [t], [a] 
and 7 filler models to absorb pause, breath, hesitation, possibly 
crying and other categories in clear key-child segments. There are 
a total of 46 categories collectively referred to as uni-phones in 
the study. The frequency of a uni-phone is defined by the count of 
that uni-phone normalized by the total count of all uni-phones in a 
recording. All such frequencies constitute the uni-phone 
probability distribution (or probability density function – pdf if 
we regard a discrete distribution as a special case of the 
continuous distribution with the Dirac delta function as the bridge 
between discrete and continuous cases). The composition of a 

child’s vocalization can be quantified by this pdf function. In 
addition to the uni-phones, to make use of the dynamic 
information contained in phone-sequences, uni-phone pairs 
(called bi-phones) are also tested. Since the bi-phone pdf function 
has high dimensionality (roughly 46x46 = 2116), Principal 
Component Analysis (PCA) is used to reduce the dimensionality 
to 50 (called bi-phone-50 in the study) [18,19]. Similarly, tri-
phone and longer phone-sequences could potentially be utilized. 

To achieve the cluster-based decomposition, an unsupervised k-
means clustering method was applied to child vocalization data to 
generate phone-like clusters. Potentially, the advantage of this 
method is that the natural modeling units self-organized from 
child vocalization data itself can better and more naturally handle 
the issues of ill-defined child pronunciation and its large 
variation, avoiding the data-model-mismatch that can occur when 
an adult model is applied to child data. Currently, 64 clusters were 
generated on the acoustic feature of mel-frequency cepstrum (mfc) 
with an order of 13 and its first and second order derivatives, 
constituting the feature with 39 dimensions, which is also the 
feature used by the Sphinx adult phone-model. These clusters 
were generated during the previous AVA study before our ASD 
detection efforts. The data involved in the clustering were clear 
key child segments automatically obtained from 2979 day-long 
recordings with the LENA segmentation subsystem. These 
recordings were from typical and delayed children, no children 
with ASD were available at that time. With 64 self-organized 
phone-like clusters, child segments in a natural day-long 
recording can be decoded to produce cluster sequences and the 
pdf of clusters can be generated as the composition information of 
child vocalizations. This approach is called cluster-64. 

4. DETECTION & ANALYSIS METHOD 
Unlike most ASD detection research in which only a few variables 
are examined (e.g. attention [8], pitch range [13]), the uni-phone 
pdf, bi-phone-50 and cluster-64 pdf approaches utilize high 
dimensional features. Although each individual component in the 
uni-phone, bi-phone-50 or cluster-64 may not contain significant 
discriminant information, the combination of them can be 
powerful enough to achieve much better performance. A data-
driven approach is used to find the optimal transform to convert 
high-dimensional data into low- or 1-dimensional space. 
Specifically, Linear Discriminant Analysis (LDA) [20,24] is 
utilized to obtain the linear projection with optimal Fisher-Ratio. 
We started with a relatively simple method such as LDA and have 
not yet extended to more sophisticated methods such as support 
vector machine based on two considerations. The first one is the 
easy implementation of cross-validation with a simple method; the 
second is the natural choice of starting with a simple smooth-
enough model to study the basic characteristics of the task. With 
the LDA and certain assumptions, the posterior probability of a 
child’s recording belonging to the ASD-class can be estimated. A 
formal description of the method could be given as follows. 

For a day-long recording of a child, the uni-phone pdf, or bi-
phone-50, or cluster-64 pdf is calculated, annotated as 

T

idiii xxxX ),...,,( 21=  where i  is the recording index and 

d is the dimension of a pdf function. The child class-ID is coded 

1 for ASD and 0 otherwise, annotated as 
ic . A linear projection 
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With a decision threshold t , any recording with a posterior 

probability above t  could be considered belonging to the ASD-

class. By varying t  from 0 to 1, the performance ROC curve can 

be obtained and the equal-error-rate (EER) point on the ROC can 
be determined, i.e., the point with the miss-detection-rate equal to 
the false-alarm-rate. EER is used as the performance measure for 
comparison of different cases. It should be noted that the choice 
of the prior 

1p  or 
0p  does not affect the ROC and the 

corresponding EER. 

One important consideration for data-driven approaches is the 
generalization or the potential of models over-fitting to the  
training data. To obtain realistic performance estimation, cross-
validation is needed. To make full use of the data available, the 
leave-one-out-cross-validation (LOOCV) scheme [21] is utilized. 
As reported in [19], various levels of targets are left out for cross-
validation, including recording, child and recorder. In the 
recording-left-out test, the posterior probability (pp) of a 
recording is calculated with the LDA and Gaussian models 
described above trained using all recordings but the targeted one 
itself. The left-out designation is circulated through all recordings 
to obtain the pp for all of them. Similarly, in the child-left-out 
test, in addition to the target recording, all other recordings from 
the same child are left-out for the model training. In the child-and-
recorder-left-out test, all recordings from the same child or the 
same recorder as the target recording are left out for its model 
training. By performing various levels of left-out-cross-
validations, we are attempting to ensure that it is an acoustic 
signature of ASD captured by the models and reflected in the 
performance report, not the confounding signatures of a particular 
child or recorder. 

Because young children develop rapidly, the key ASD-related 
acoustic characteristics at different month-ages could be 
significantly different. To further improve the performance and 
test month-age effects, age-normalization is tested. For each 
month-age a , the mean and variance are estimated for each input 

parameter 
jx using the recordings from typically developing 

children of age range: ],[ bandabanda +− , where  band  is 

called age-band to control the size of age-range for the 
smoothness of age-normalization. The normalization results in 

transformed parameters with 0-mean and unit-variance for each 

month-age: 
jjjj stdagemeanagexx _/)_( −= . This 

transformation can be regarded as part of the modeling process 
and is tested under the leave-one-out-cross-validation scheme. 

As indicated above, one child may contribute multiple recordings. 
The posterior probability of an individual child being classified to 
the ASD-class could be estimated from the product of the 
individual recording probabilities, assuming the independence of 

different recordings: 
n

n

i

ipppp ∏
=

=
1

 where 
ipp  is the 

posterior probability of i-th recording and n  is the number of 

recordings for the child. 

The details and comparisons of different leave-out-cross-
validation and age-normalization were reported in [19], where a 
conclusion can be made that for a realistic performance estimation 
and comparison, it is necessary and good to use leave-one-child-
out-cross-validation with age-normalization inside the cross-
validation. In the remainder of this paper, only this scheme is used 
for performance analysis. 

5. DATA & EXPERIMENT RESULT 
The current study includes 2-stage data: Set-1 and Set-2. Set-1 
contains the samples of typically developing and language-
delayed children (i.e., children who do not have ASD, but have 
been diagnosed with a language delay). It also contains the sample 
of children with ASD, called “ASD-sample-1”. Set-2 currently 
contains only the ASD sample, called “ASD-sample-2”. The 
collection of additional typical and delayed samples for Set-2 is 
currently ongoing and not available yet for the current study. 

The Typically Developing Sample includes 76 typically 
developing children with 712 day-long recordings [25]. 
Expressive language development status for these children was 
confirmed by an evaluation by a certified speech-language 
pathologist. The PLS-4 standard scores (Expressive language 
standard scores for the Preschool Language Scale, Fourth Edition 
[28]) were averaged at 104.8 (SD=12.1). The month-age of this 
sample ranges from 8 to 48. 

The Language-Delayed Sample includes 30 delayed children with 
290 day-long recordings, confirmed by an evaluation by a 
certified speech-language pathologist [25], with PLS-4 [28] 
standard scores averaged at 86.2 (SD=13.3). The month-age range 
is from 10 to 40. 

ASD-sample-1 includes children between the ages of 16 months 
to 48 months who had been formally diagnosed with ASD. They 
were recruited from January to June 2008 nationwide; parents 
were required to provide documentation of an ASD diagnosis by 
one or more trained professionals and typically elected to mail 
photocopies of their comprehensive evaluations. All 
documentation was reviewed to confirm the validity of parental 
reports of a diagnosis of ASD. Parent-report assessments of 
symptom severity and language development were obtained 
during the course of the study. A total of 34 children (28 male, 6 
female) with 225 day-long recordings and average age of 33 
months (SD=7.9) were included in this sample. Average parent 
self-report symptom ratings for the Modified Checklist for Autism 
in Toddlers [26] were 9.7 (SD=4.9; Range 1-18) and for the 



Social Communication Questionnaire [27] were 19.8 (SD=6.1; 
Range 9-31).  

ASD-sample-2 includes children diagnosed with ASD, recruited 
from January to July 2009, following the same procedure as for 
ASD-sample-1. Parent-report assessments of symptom severity 
and language development were similarly obtained during the 
course of the study. A total of 35 children with 105 day-long 
recordings, ranging in age from 27-48 months (M=38.5, SD=6.6) 
were included in this sample. Parent self-report average symptom 
ratings for the M-CHAT [26] were 9.8 (SD=4.7; Range 0-19) and 
for the SCQ [27] were 18.2 (SD=5.7; Range 7-32). 

There are in total 140 children (1227 recordings) in Set-1 and 175 
children (1332 recordings) in Set-1 and Set-2 combined. Figure 2 
shows the recording distribution over age (Note that a child may 
have multiple recordings at different month-ages.) 

As mentioned previously, in this paper we focus on the equal-
error-rate of the leave-one-child-out-cross-validation on Set-1 and 
Set-2 combined together. The age-normalization is also cross-
validated under the same framework. There are 3 tasks tested. The 
first one is to detect the children with ASD (or their recording) 
from the children with language delays not including ASD, 
annotated as “a vs d”; the second is to detect the children with 
ASD (or their recording) from the typically developing children, 
annotated as “a vs t”; the third one is to detect the children with 
ASD (or their recording) from the typically developing children 
and children with language delays together, annotated as “a vs 

 

 

Figure 2: Recording distribution over age 

 
 

Figure 3: Recording-Level ROC for bi-phone-50 (circle-

blue), cluster-64 (x-green) and combined-feature of bi-

phone-50 and cluster-64 (star-red) for the task of detecting 

ASD-sample recordings from typical and delayed sample 

recordings 

 

Figure 4: Child-Level ROC for bi-phone-50 (circle-blue), 

cluter-64 (x-green) and combined-feature (star-red) for the 

task of detecting children with ASD from typical and delayed 

children 

 

Table 1: Recording-Level Equal-Error-Rate of Leave-one-

child-out-cross-validation on data Set-1 and Set-2 combined 

Task uni-ph uni-bi-p bi-ph-50 cl-64 b50-cl64 

a vs d  24.1% 20.7% 19.7% 21.2% 15.5% 

a vs t 14.5% 14.2% 13.2% 12.8% 11.5% 

a vs d+t 17.6% 15.8% 16.1% 16.3% 12.6% 

 

Table 2: Child-Level Equal-Error-Rate of Leave-one-child-

out-cross-validation on data Set-1 and Set-2 combined 

Task uni-ph uni-bi-p bi-ph-50 cl-64 b50-cl64 

a vs d  11.6% 13.0% 10.1% 16.7% 10.0% 

a vs t 11.6% 10.0% 11.6% 11.6% 9.2% 

a vs d+t 12.3% 13.0% 11.3% 10.4% 9.4% 

 

Table 3: ASD-Classification Error-Rate on Set-2 (ASD versus  

typical+delayed), using the model trained on Set-1 and the 

threshold of the equal-error-rate-point of the leave-one-child-

out-cross-validation-test on Set-1 

 uni-ph uni-bi-p bi-ph-50 cl-64 b50-cl64 

Recording 
Level 

20.0% 16.2% 14.3% 13.3% 14.3% 

Child 
Level 

14.3% 14.3% 11.4% 5.7% 5.7% 

 



d+t”. Table-1 shows the recording-level equal-error-rates for 5 
different features: Sphinx uni-phone (uni-ph); bi-phone-50 (bi-ph-
50); uni-phone and bi-phone-50 combined together (uni-bi-ph); 
cluster-64 based decomposition feature (cl-64) and the 
combination of bi-phone-50 and cluster-64 feature (b50-cl64.) As 
can be seen, the performance is significantly improved by 
combining bi-phone-50 and cluster-64 features. Figure 3 shows 
the corresponding recording-level ROC curves for bi-phone-50, 
cluster-64 and the combination of them. The ROC curves for bi-
phone-50 and cluster-64 are similar. However, the ROC of the 
combined feature is uniformly better than other features in the 
graph using any decision threshold. At the equal-error-rate point, 
the relative error reduction of the combined feature over the bi-
phone-50 is 21.7% ( = (16.1-12.6)/16.1). 

Table-2 shows the child-level equal-error-rates for 5 features. The 
combined feature of bi-phone-50 and cluster-64 is again 
significantly better than other features, resulting in the relative 
error reduction of 16.8% ( = (11.3-9.4)/11.3) over bi-phone-50. 
Figure 4 is the corresponding child-level ROC curves for bi-
phone-50, cluster-64 and the combination of them. Again, the 
combined feature is uniformly better than the other two features 
alone.  

Table-3 shows the error-rate of Set-2 using the model trained on 
Set-1 and the decision threshold at the equal-error-rate point of 
the leave-one-child-out-cross-validation on Set-1. It consistently 
shows the performance improvement of the combined feature over 
bi-phone-50. However, since Set-2 currently contains only ASD 
data, this result could be biased due to the choice of the decision 
threshold. Therefore, the result of Table-3 is not as solid as Table-
1 and Table-2, and should only be used for reference before the 
new samples of typically developing and delayed children for Set-
2 are available. 

6. CONCLUSION & DISCUSSION 
This study reports a fully automatic ASD detection method using 
the LENA System. This paper extends the results previously 
reported in [19] by incorporating additional data from children 
with ASD, introducing a new cluster-based child vocalization 
decomposition approach, and combining the child vocalization 
decomposition based on the Sphinx adult phone-model with the 
decomposition based on new clusters derived directly from child 
data. The following are points for conclusion and discussion. 

First, with more ASD data in the cross-validation test, a similar 
performance to that reported in [19] is obtained, which further 
confirms that the child vocalization composition contains rich 
discriminant information for ASD detection. This is one major 
discovery of the study. 

Child vocalization decomposition could be done using either adult 
phone-model or clusters derived directly from child vocalizations. 
Performance for the two methods are similar when applied 
individually. When combined together, the performance is 
significantly improved. This suggests that the two approaches may 
capture different discriminant information for ASD detection, and 
may complement each other when combined together. So far, 
using all available data, a 9.4% child-level equal-error-rate and 
12.6% recording-level equal-error-rate are achieved in the leave-
one-child-out-cross-validation test for ASD detection.  

Up to now, only smooth linear modeling has been attempted. In 
the future, non-linear models and large margin classifiers will be 
explored. It is possible that more and more unlabeled data will be 
available in the future. The semi-supervised approach may be 
considered to take advantage of the large amount of unlabeled 
data to further improve the performance. 

One major goal of automatic ASD detection is the early 
identification of children under 24 months, or even under 18 
months. Currently, the majority of our ASD sample data are from 
children older than 24 months of age. It is not clear how the 
model trained on our current data can perform for children under 
24 or 18 months of age. This might be a challenging task for 
future research. 

Future directions may also include modeling of other types of 
information in the audio recording, such as social interaction, 
emotion, etc. Reducing the variation of different recordings for a 
child is also important in order to reduce the cost of the multiple 
recordings currently necessary for improved detection 
performance. Combining the automatic ASD screen with other 
existing screening instruments may also be important.  Additional 
data and data diversity are always needed for more rigorous tests, 
especially when considering that ASD is a spectrum disorder and 
a practical screening tool should ultimately be a universal one. 
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