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ABSTRACT

In this paper, we review: (1) the acoustic and linguistic
properties of children’s speech for both read and sponta-
neous speech, and (2) the developments in automatic speech
recognition for children with application to spoken dialogue
and multimodal dialogue system design. First, the effect of
developmental changes on the absolute values and variability
of acoustic correlates is presented for read speech for chil-
dren ages 6 and up. Then, verbal child-machine spontaneous
interaction is reviewed and results from recent studies are
presented. Age trends of acoustic, linguistic and interaction
parameters are discussed, such as sentence duration, filled
pauses, politeness and frustration markers, and modality us-
age. Some differences between child-machine and human-
human interaction are pointed out. The implications for
acoustic modeling, linguistic modeling and spoken dialogue
system design for children are presented. We conclude with
a review of relevant applications of spoken dialogue tech-
nologies for children.

Categories and Subject Descriptors

I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Speech recognition and synthesis; H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Natural
language.

General Terms

Languages, Human Factor, Design

Keywords

Children’s speech analysis, Children’s speech recognition,
Spoken dialogue

1. INTRODUCTION
In recent years, significant progress has been achieved in

the field of automatic speech recognition (ASR) and effective
spoken dialogue systems have been built and deployed for a
number of applications. Most of this research effort, how-
ever, has been devoted to developing systems targeting adult
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speakers. Following the first studies that raised attention to
the poor performance of speech recognition systems for chil-
dren users, increasing attention has been paid to the area of
robust speech recognition technologies for children’s speech
in a variety of application scenarios such as reading tutors,
foreign language learning and multimodal human-machine
interaction systems.

Developmental changes in speech production introduce
age-dependent spectral and temporal variabilities in speech
produced by children. Such variabilities pose challenges for
spoken dialogue system design for children. Early spoken
dialogue application prototypes that were specifically aimed
at children included word games, reading aids and pronun-
ciation tutoring [60, 50, 57]. Recently a number of systems
have been implemented with advanced spoken dialogue in-
terfaces and/or multimodal interaction capabilities [51, 37,
11, 12]. Data collected from these systems as well as new
available corpora [7, 63, 8] have improved our understanding
of verbal child-machine interaction.

In this paper, we review some of the acoustic and linguis-
tic characteristics of read and spontaneous speech of children
aged 6 years and up. The main acoustic analysis results are
from [44], however, corroborating evidence from the liter-
ature is also presented. Then the acoustic and linguistic
properties of spontaneous child-machine interaction is re-
viewed. Finally we conclude with the applicability of these
results to speech recognition and spoken dialogue system
design. This paper is intended to provide the reader with a
concise overview of the challenges posed by children’s speech
in automatic speech recognition and spoken dialogue system
design and reviews the solutions investigated for the differ-
ent system components. Furthermore, the paper provides
suggestions for future research directions in the field.

The rest of this paper is organized as follows. Section 2
presents an overview of speech and multimodal corpora used
for carrying out relevant studies in the field. Section 3
attempts to summarize fundamental results of analysis of
acoustic and linguistic characteristics of children’s speech
and relates them with results achieved on adult speech. De-
velopments in acoustic and language modeling for automatic
recognition of children’s speech and in design of spoken di-
alogue systems are reviewed in Section 4, while Section 5
reviews relevant applications where ASR technologies have
been applied. Final remarks and suggestions for potential
research directions are given at the end of the paper in Sec-
tion 6.

2. CHILDREN CORPORA
Most of the databases of children recordings focus on the

6-18 age group (or a subset thereof) where collection con-
ditions can be more easily controlled and the subjects are
collaborating. Examples of corpora mostly used for acoustic



analysis and modeling are the American English CID chil-
dren corpus [44], the KIDS corpus [24], the CU Kids’ Audio
Speech Corpus [37] and the PF-STAR corpus available in
the following languages: British English, Italian, German
and Swedish [7].

As far as spontaneous speech is concerned, including child-
machine spoken dialogue interaction or multimodal interac-
tion a handful of corpora has been recently collected and
analyzed. In [11], the NICE fairy-tale corpus is presented,
where children use open-ended spoken dialogue to interact
with animated characters in a game setting. In [8], a child-
robot interaction corpus is presented; children interacted
with an AIBO robot in open-ended scenarios. In [51], a
corpus collected in a Wizard-of-Oz scenario, where children
used speech to play a computer game and interact with an-
imated characters on screen is presented and analyzed. In
[63], a corpus of child-machine interaction via a multimodal
voice and pen interface was collected and analyzed.

For the younger age group (up to 6 year old) there are
significant resources thanks to the efforts of the language
acquisition community. Most of the available corpora are
available via CHILDES, the child language component of
the TalkBank system used “for sharing and studying con-
versational interactions”. CHILDES contains over 100 dif-
ferent corpora [47]. Recent data collection efforts include
the daily audio-visual recordings of children in their home
environment (SpeechHome project) and the weekly audio-
only longitudinal recording using the LENA device (Info-
ture database). Unfortunately, neither of these databases
are publicly available.

More corpora will be made available as the interest in
multimodal spoken dialogue systems for children users in-
creases. Another trend in data collection for children is to
collect and quantitatively analyze the acoustic and linguistic
characteristics of children ages 2-6.

3. SPEECH ANALYSIS
The spectral and temporal characteristics of children’s

speech are highly influenced by growth and other devel-
opmental changes and are hence different from those of
adult speakers. These differences are attributed mainly to
anatomical and morphological differences in the vocal-tract
geometry, less precise control of the articulators and a less
refined ability to control suprasegmental aspects such as
prosody.

In a key study by Eguchi and Hirsh [22], and later summa-
rized by Kent [42], age-dependent changes in formant fun-
damental frequency measurements of children speakers aged
three to thirteen were reported. Important differences in the
spectral characteristics of children voices when compared to
those of adults include higher fundamental and formant fre-
quencies, and greater spectral variability [22, 42, 44]. Para-
metric models for transforming vowel formant frequency of
children speakers to the adult speaker space (vowel formant
frequency normalization) were considered in [34, 49, 54].
Similarly, a detailed comparison of temporal features and
speech segment durations for children and adult speakers
can be found in [43, 44]. Again, distinct age-related differ-
ences were found. On average, the speaking rate of children
is slower than that of adults. Further, children speakers
display higher variability in speaking rate, vocal effort, and
degree of spontaneity.

Many of the early acoustic studies were somewhat limited
in terms of the size of the database especially the number
of subjects. In a related study, variations in the temporal
and spectral parameters of children’s speech were investi-
gated using a comprehensive speech data corpus (23454 ut-
terances) obtained from 436 children ages between 5 and 18

years and 56 adults [44]. Key findings from that study that
focuses on the acoustic properties of the vowels, including
results on formant scaling are summarized in the next sec-
tion. For recent work on acoustic properties of consonants
see [31].

3.1 Age trends of acoustic correlates
To obtain insights into age-dependent behavior in the

magnitude and variance of the acoustic parameters, mea-
surements of spectral and temporal parameters were made
through a detailed analysis of the American English vow-
els [44]. Recent work on the analysis of the acoustic char-
acteristic of children’s speech in other languages provided
similar results, e.g., see [28] for Italian. Results showed a
systematic decrease in the values of the mean and variance
of the acoustic correlates such as formants, pitch and dura-
tion with age, with their values reaching adult ranges around
13 or 14 years. A specific result that is especially relevant
for speech modeling is the scaling behavior of formant fre-
quencies with respect to age. As can be seen from Fig. 1(a),
the vowel space (boundaries marked by the four-point vow-
els /AA, IY, UW, AW/ in the F2-F1 plane plotted in mel
frequency scale) changes with increasing age in an almost
linear fashion. The movement of the vowel quadrilateral is
in the direction toward smaller F2-F1 values with increas-
ing age corresponding to the lengthening of the vocal tract
associated with growth. Also, it can be noticed that the
the vowel space becomes more compact with increasing age
indicating a decreasing trend in the dynamic range of the
formant values. The changes in the F2-F1 values are almost
linear. A more detailed account of the scaling behavior can
be obtained by plotting the variation in the formant scaling
factors (calculated as a ratio of average formant frequency
values for a specific age group to the corresponding values
for adult males). The plots in Fig. 1(b) show a distinct and
an almost linear scaling of each of the first three formant fre-
quencies with age. The scaling trend for females and males
is similar until puberty suggesting underlying differences in
anatomical growth patterns. Moreover, the first three for-
mants scale more uniformly for males. Formant frequencies
of females, on the other hand, show a more nonlinear scaling
trend for the various formants especially after puberty.

The intra-speaker variability (i.e., within subjects) was
larger for young children, especially for those under 10 years.
Fig. 1(c),(d) shows a decreasing trend in intra-subject vari-
ability with age in terms of cepstral distance measures of
variability both within a token and across two repetitions.

It is generally believed that both the acoustics and lin-
guistic correlates of children’s speech are more variable than
those of adults. For example, the area of the F1-F2 formant
ellipses is larger for children than for adults for most vowel
phonemes [22] and children speech contains more disfluen-
cies and extraneous speech [60]. An important point is that
such results are highly dependent on whether the data was
read or spontaneous speech.

3.2 Linguistic Analysis
Some insights regarding the acoustic and linguistic char-

acteristics of children’s spontaneous speech can be obtained
from the results in [53, 25]. The analysis is based on data
from a Wizard-of-Oz study using 160 children playing a
voice-activated computer game (Carmen Sandiego corpus
[51]). Results show significant age and gender trends.

As far as duration and speaking rate metrics are concerned
there is a significant difference between the results for read
speech reported in [44] and spontaneous speech reported
in [30]. Specifically, vowel durations are significantly lower
and speaking rate is higher for spontaneous than for read
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Figure 1: (a) Changes in F1-F2 vowel space as a function of age. The vowel space boundaries are marked by
average formant frequency values for the four point vowels /AA, IY, UW, AE/ for the age groups: 7, 10, 13,
15 and adults. (b) Scaling factor variation in first three formant frequencies with respect to age for male and
female children (scaling with respect to adult males). Intra-speaker variability as a function of age: (c) Mean
cepstral distance between the two repetitions of the same vowels and (d) Mean cepstral distance between the
first– and second–half segments within the same vowel realization (from [54]).

speech. The age trend (reduction in duration, increase in
speaking rate) was similar for read and spontaneous speech,
but adult-level values were reached 1-2 years earlier for spon-
taneous speech. In general, these differences in duration
could be attributed to the cognitive load incurred by the
reading task.

In general, the ability of the children to use language
efficiently to achieve a task improves with age. Disfluen-
cies decrease with age and children reach adult-skill level at
around 12-13 years of age (somewhat earlier for boys than
girls). The age trend is reversed for hesitations. The high
number of hesitations for girls aged 10-11 compared to boys
of the same age group is hard to interpret and could be
due to social reasons (rather than linguistic skill). Chil-
dren use less words per utterance to convey the same mes-
sage, and, in general, use linguistically simpler constructs
as they become more adept with using language over the
years. Linguistic variability is reduced with age and older
children keep repeating linguistic patterns that have been
successful at achieving a specific task. It is interesting to
note that for girls in the 12-14 age-group the linguistic vari-
ability increases as does the average sentence length. In fact,

sentence length increases also for girls aged 10-11 compared
to the 8-9 age group. In general, girls show more linguistic
exploration than boys in the 12-14 age group. This trend
seems to emerge around 11 years of age. It is unclear if this
trend also correlates with the fact that the specific game is
“easy” for older children, i.e., for girls aged 12-14 the game
is no longer challenging and thus the opportunity emerges
to explore more complex and interesting linguistic patterns.
One might conclude that girls ages 12 and older consider
language as part of the game not just a tool to successfully
complete the game.

In [11], significant differences in the duration and language
usage where found in child-machine dialogue compared to
human-human dialogue. Specifically children ages 8-15 com-
municated with fairy-tale characters in a computer game
scenario, using shorter utterances, slower speaking rate and
much less filled pauses, filler words and phrases, compared
to human-human dialogue.

In [63], the multimodal integration patterns of children
ages 7-10 were investigated for a speech and pen interface.
It was found that the modality usage was similar between
children and adults, although children tend to use both input



modes simultaneously rather than sequentially.

4. ASR TECHNOLOGIES
As shown in the previous section, acoustic and linguistic

characteristics of children’s speech are widely different from
those of adults’ speech and vary rapidly as a function of
age. As a consequence, automatic speech recognition sys-
tems trained on adults’ speech tend to perform poorly on
children’s speech [62, 55, 15]. However, even in case of a
system trained on adequate amount of age-specific speech
data, recognition performance reported for children is usu-
ally significantly lower than that reported for adults on the
same task and it improves as the children’s age increases [62,
55, 37, 23]. This correlates well with results of experiments
of human perception of speech from children aged 6-11 which
have shown that the human word recognition error rate in-
creases as the age of the child decreases [18]. Main factors
that concur to make recognition of children’s speech more
difficult than recognition of adult speech have been analyzed
in the previous section.

ASR systems for children’s speech widely borrow archi-
tectural choices, approaches and algorithms from state-of-
the-art ASR systems developed to recognize adult speech.
For example, speech signal is often parametrized by mel
frequency cepstral coefficients (MFCCs) [39], speech units
are almost always modeled by (context-dependent) hidden
Markov models (HMMs) [39], and the language model is
usually represented by a statistical language model based
on n-gram statistics [39]. Over the years, a better under-
standing of characteristics of children’s speech has allowed
to design and implement solutions suitable for recognizing
speech from children of different ages. This section aims at
reviewing most relevant developments in automatic recog-
nition of children’s speech and spoken interaction system
design.

4.1 Acoustic modeling
Despite many studies confirming the acoustic difference

between adult and children’s speech, the relative scarcity of
large, publicly-available corpora of children’s speech induced
researchers to study the possibility to employ speech recog-
nizers trained on adult speech to decode children’s speech.
Earlier works focused on compensating the acoustic varia-
tions induced by difference in vocal tract length, which is one
of the major source of acoustic variation between adult and
children’s speech, by using vocal tract length normalization
(VTLN) [13, 55, 15, 20]. VTLN is a speaker normalization
method that aims at reducing inter-speaker acoustic vari-
ability due to different vocal tract length by warping the
frequency axis of the speech spectrum of each speaker [5].
In [56] a strong relationship between the optimal warping
factor and the age of the speakers was shown when the
warping factor selection is performed with respect to HMMs
trained on adult speech. Investigations using VTLN show
that when a speech recognizer trained on adult speech is
applied to decode children’s speech, VTLN is able to signif-
icantly improve recognition performance [13, 55, 15, 20, 59,
32, 23, 17, 28]. However, recognition results achieved with
this compensation approach are still sub-optimal as there are
other factors, in addition to differences in vocal tract length,
that concur to make adult speech different from children’s
speech. For this reason, in addition to VTLN, general acous-
tic model adaptation techniques such as maximum a posteri-
ori and maximum likelihood linear regression adaptation can
also be used to further improve recognition performance [23,
28].

To ensure better recognition performance, age-dependent
acoustic models (AMs), trained on speech collected from

children, are commonly employed [62, 55, 15, 20, 32]. In
principle, training specific models for each target age, or age
group, should lead to best performance [62, 37, 19, 23, 14].
However, in order to reduce the amount of data to be col-
lected for robustly training acoustic models, children are of-
ten treated as a homogeneous population group and acoustic
models are trained with speech from children of all ages [55,
20, 32]. When training acoustic models on children’s speech,
VTLN is often adopted to further reduce inter-speaker vari-
ability [32, 37]. Furthermore, popular speaker adaptive
acoustic modeling methods commonly adopted to train large
vocabulary continuous speech recognition systems for adults
were also shown effective to train AMs for children [38, 33].

Recently, the availability of larger amounts of children’s
speech data allowed the investigation of age-dependent
and speaker adaptive acoustic modeling, in the context of
medium and large vocabulary continuous speech recognition
tasks. For example, in [38] a reading tutor addressing ele-
mentary school children is presented. AMs are trained on
children speech by employing speaker adaptive training and
VTLN. With a medium size vocabulary, about 1000-2000
words, recognition results achieved on read speech are in
the order of 10% word error rate (WER). A noticeable appli-
cation which makes use of large vocabulary speech recogni-
tion for children is presented in [52], where a speech-oriented
guidance system with adult and child discrimination capa-
bilities is described. This system has a recognition vocab-
ulary size of 40k words and makes use of different acoustic
and language models for adults and children. Thus, even if
the system addresses users of all ages, the models used for
recognition are still age-dependent and the system relies on
its discriminative capability to use the best models to deal
with a particular user.

Lately a different approach was proposed in [27, 29] by
considering adults and children, in the age range 7-13, as
a single population of speakers. Age-independent acous-
tic models were first conventionally trained by exploiting a
small amount (9 hours) of children’s speech and a more sig-
nificant amount (57 hours) of adult speech, for a total of 66
hours of speech. When these age-independent models were
used to recognize adult and children’s speech, performance
decreased for both adults and children compared to the use
of age-dependent AMs, trained separately on adults and chil-
dren’s data. Using speaker adaptive acoustic modeling tech-
niques when training on the unbalanced mixture of adults
and children’s data ensured recognition performance, for
both adults and children, as good as that achieved with age-
dependent models. Additional experiments with a recogni-
tion vocabulary of 64k words and a trigram language model
were carried out on two parallel corpora consisting of the
same sentences read by adults and children in the age range
8-12. The WER achieved for children, 10.2%, was only 24%
(relative) higher than the WER achieved for adults, 8.2%,
thus demonstrating that for the age-range considered, large
vocabulary recognition of read children’s speech is a feasible
task.

Additional areas of potential improvement of recognition
performance for children’s are represented by acoustic fea-
ture extraction, speech pattern duration modeling and pro-
nunciation modeling [62, 55, 45]. The effect of frequency
bandwidth reduction on recognition of children’s speech was
investigated in [20, 45]. In particular, in [45] the sampling
rate for children’s speech was downsampled from the origi-
nal 20kHz to 2kHz. Similarly was done with adult speech,
but starting from the original sampling rate of 16kHz. For
each sampling rate an HMM set was trained and then used
to recognize the test set. For children, the decrease of per-
formance was relatively small down to 6kHz. A significant



degradation in performance was observed between 4kHz and
2kHz for both children and adults, but degradation was
much greater for children. It was observed that most val-
ues of the third formant for children’s speech fall outside
telephone bandwidth, and this could explain well the low
recognition performance reported for telephone applications
with children [62].

As mentioned above, the acoustic front-end of an ASR
system for children is often based on standard MFCCs. At-
tempts to find out better acoustic features for children’s
speech did not result in significant improvements. For exam-
ple, in [62] the effectiveness of LPC-based cepstral parame-
ters and mel based cepstral features were compared in the
context of a connected digit recognition task with telephone
speech. The use of mel based cepstral features resulted in
better recognition performance. In [61] a special variation
in the mel filter bank was investigated, consisting of the nor-
malization of the spectral envelopes using a technique called
weighted overlapped spectral averaging. Using this front-
end with adult and children’s speech it was shown that it
is more appropriate to assume that the spectral envelopes
of any two speakers are scaled version of one another rather
than whole magnitude spectrum including pitch harmonics.

Idealized baseforms in the pronunciation dictionary of an
ASR system may result unsuitable for children with a poor
pronunciation or for younger children. The use of a user cus-
tomized pronunciation dictionary was investigated in [45]. It
was found that a simple modification of the pronunciation
dictionary improves ASR perforce only to a limited extent.
In [14] the use of a customized pronunciation dictionary for
a specific target age group was investigated. A specific pro-
nunciation dictionary was developed for preschool Japanese
children deriving new pronunciation rules by looking into
training data on how words were actually pronounced by
preschool children with respect to the expected standard
pronunciation. Based on these rules, extra pronunciation
variants were then added into the standard pronunciation
dictionary. Significant performance improvements were ob-
served in comparison to when using the standard pronun-
ciation dictionary, however these improvements were found
vanishing when acoustic models were trained mainly with
speech data from preschool children. This is because pro-
nunciation variations, specific of preschool children, were al-
ready “learned” by the acoustic models during training ex-
ploiting the standard pronunciation dictionary.

Despite many works confirming the difference in speech
pattern duration between adult and children’s speech and
between children of different ages (see the previous section),
duration modeling in automatic recognition of children’s
speech is a topic not yet well investigated.

4.2 Spoken Dialogue
Voice interaction as a component of the multimedia ex-

perience fabric is an input modality greatly desired by chil-
dren users. The addition of conversational capability to chil-
dren’s multimedia applications contributes to more natural
user interaction and improved user experience. Although
higher variability and different interaction patterns create
additional challenges, there has been notable efforts in the
literature for designing, implementing and testing prototype
multimodal systems for children. Early spoken dialogue ap-
plication prototypes that were specifically aimed at children
included word games for pre-schoolers [60], aids for reading
[50] and pronunciation tutoring [57]. Recently a number of
systems have been implemented with advanced spoken dia-
logue interfaces, multimodal interaction capabilities and/or
embodied conversational characters [51, 37, 11, 12]. A well-
known dialogue system for children was developed in the

context of the NICE project [36]. In this project users of
all ages interact with lifelike conversational characters in a
fairy-tale world inspired by the Danish author H.C. Ander-
sen. Almost all of the aforementioned systems have focused
on the age group 6-15. In [40], a task oriented multimodal
dialogue system for preschoolers with fantasy and curios-
ity elements was implemented and evaluated. It was shown
that speech interaction was a motivator for young children
to finish the tasks at hand.

Building successful spoken dialogue systems requires both
good technology and good interface design. In addition to
building acoustic models customized to children as outlined
above, pronunciation and language modeling is also an is-
sue. The importance of using customized language mod-
els in recognition of spontaneous children’s speech has been
pointed out in several works [20, 51, 14]. Effectiveness
of training the language model by exploiting task related
written text or manual transcriptions of utterances collected
from past users of the system has been shown.

Experience for building and evaluating multimodal dia-
logue systems for children shows that emphasis has to be
placed on interface design. For example, it has been found
that using animated sequences to communicate information
and adding ‘personality’ to the interface significantly im-
proved the user experience. In addition, the flexible choice
of input modality (any of speech, natural language, com-
mands or buttons) makes the application easy to use even
for novice users or users that are not adept at using a spe-
cific modality, e.g., pre-school children are not efficient users
of keyboard/mouse.

For children (especially young children) learning and play-
ing are intertwined activities. Thus the main goal of a suc-
cessful dialogue system is to provide fun, excitement and
engagement. In [40], it is shown that fantasy and curiosity
elements in task-oriented dialogue systems for preschoolers
increase user satisfaction and in some cases also user engage-
ment. In general, balancing exploration (e.g., open-ended
games, story telling) and exploitation (e.g., task-oriented
games, arcade games) in spoken dialogue and multimodal
systems for children is an open research issue that requires
more attention. Interface and application design recommen-
dations for children are expected to be both age- and gender-
specific, e.g., it is well known that the attention span for
children grows with age and that girls prefer games with a
strong social interaction aspect.

4.3 Emotion
An essential step toward building natural and respon-

sive spoken interaction systems, especially for children, is
to analyze and detect age- and gender-dependent user be-
haviors. In [4], polite and frustrated behavior of children
during spoken dialogue interaction with computer charac-
ters in a computer game was analyzed. Results were consis-
tent with research results from language acquisition show-
ing that even six and seven year-old children have awareness
and command of varying levels of politeness [4]. It has also
been shown that children use impoliteness (insult) more fre-
quently than adults when interacting with spoken dialogue
system [10].

The analysis in [6] showed that children aged 10-11 were
significantly more polite and less frustrated than older and
younger children. As far as gender is concerned, girls are
significantly more polite and less often frustrated than boys.
The frustration age trend can be partially attributed to the
game challenge factor and task completion, e.g., verbal ex-
pressions of frustration occurred more than twice as often
in games that ended up in a loss than in those that were
won [6]. Frustration went up significantly when recognition



errors were involved (similar results are reported for adults
[35]). Recognition errors seem to be irritating certain chil-
dren much more than others. The age trend in the level of
politeness was partially explained by the “social standing”
that the child attributes to the animated characters, as well
as, the challenge that the game provides.

Overall, girls are more polite and are less often frustrated
than boys in spoken child-computer interaction. In addition,
child age, social roles, and game design significantly affects
children’s choices about politeness and frustration. Anal-
ysis also showed that some common “warning words” were
especially salient in indicating polite and frustrated behav-
ior. In addition to lexical markers, pragmatic markers, e.g.,
repetition, were good indicators of frustration.

As far as emotion recognition is concerned, results in
[64] show that lexical cues have more discriminative power
than acoustic and dialogue cues for detection of politeness,
whereas dialogue and acoustic cues are better for frustra-
tion detection. This is in agreement with the analysis re-
sults that show that politeness is more explicitly marked in
language usage, while repetitions and corrections (due to
system errors or task difficulty) lead to frustration. Based
on the results of both two-way and three-way classification
experiments it is clear that by augmenting acoustic features
with lexical and contextual information classification perfor-
mance improves significantly. The results also showed age
and gender trends, e.g., classification performance was bet-
ter for girls than for boys.

Another comprehensive study on emotion recognition, fo-
cusing on mono-modal systems with speech as only input
channel, is reported in [58]. The main results are achieved
on the FAU AIBO Emotion Corpus, a corpus of spontaneous,
emotionally colored speech of children at the age of 10 to 13
years interacting with the Sony robot AIBO. In this work
a classwise averaged recognition rate of almost 70% for the
4-class problem ‘Anger’, ‘Emphatic’, ‘Neutral’, and ‘Moth-
erese’, has been reported by combining both acoustic and
linguistic features.

Initial results for emotion recognition of preschoolers in-
teracting in a task-oriented multimodal dialogue system can
be found in [41].

5. APPLICATIONS
As soon as the ASR technology started to become more

robust, it was exploited for building prototype systems for a
variety of applications. Some relevant examples are briefly
described below.

Language learning and assessment.
Teaching a foreign language, as well as assessing a child’s

reading abilities, requires personal attention by teachers,
which is a time-consuming process. Several ASR-based ap-
plications have been developed to partially alleviate teach-
ers’ workload, by teaching and assessing students individ-
ually. Following first attempts to use ASR technologies in
automated pronunciation [57] and reading [50] tutors, sev-
eral system prototypes have been developed and assessed in
real operating environments. Some noticeable examples are
listed below.

In the LISTEN project [9], CMU researchers are develop-
ing an ASR-based tutor that listens to children read aloud
and analyzes student’s oral reading (grades 1-5). The Uni-
versity of Colorado’s Foundations to Literacy program is a
comprehensive reading program designed for beginning and
poor readers [38]. It consists of a set of tightly integrated
computer-based multi-modal learning applications in which
children interact with a virtual tutor, Marni, to learn to
read well. The TBALL project [3] concerns the design and

realization of an automatic system for assessing and evalu-
ating the language and literacy skills of young children. The
system aims at automatically assessing the English literacy
skills of mainly Mexican-American children in grades K-2,
and is composed by several assessment modules that make
use of ASR-based technology.

In the area of second language and foreign language learn-
ing ASR technology has found a natural application espe-
cially for speech-recognition-based pronunciation training.
In this area there are already several commercialized sys-
tems targeting children [1, 2].

Diagnosis and remedial treatments of pathological
speech.

A variety of ASR technology enabled applications for chil-
dren with special needs have been addressed. Two notewor-
thy system prototypes are described below.

In [16], the experience acquired using Baldi, an animated
conversational agent, in daily classroom activities with pro-
foundly deaf children is presented. One key component
of this system is an automatic speech recognition mod-
ule able to recognize a deaf child’s speech. This is an
extremely challenging area for ASR which involves recog-
nition of deaf children’s speech and properly rejection of
incorrectly-pronounced words.

PEAKS is an automatic assessment system of the intelli-
gibility of speech which can be accessed via the internet [48].
This tool allows, for example, to assess speech from children
with cleft lip and palate (CLP). CLP is one of the most com-
mon alterations of the face. Speech of children with CLP
shows particular characteristics, which can result in speech
disorders also after surgical treatment. In this context, the
diagnosis of speech disorders is of crucial importance for the
improvement of speech quality.

The use of ASR and spoken dialog technology in the con-
text of other applications including those targeting children
with cognitive processing difficulties such as in Dyslexia [21,
46] and Autism Spectrum Disorders [26] is also emerging
and offers new challenges for interactive speech technology
design and development.

Toys and games.
The toy industry has been moving towards the target of

interactive toys in the past two decades. Although speech
plays an increasingly important role in toys, speech interac-
tion is often one way, i.e., toys speak prerecorded prompts
activated by pressure sensitive sensors. Starting from TI’s
Speak and Spell, there has been a variety of toys that incor-
porate speech recognition or speech identification capabil-
ities, e.g., toys with voice passwords. In the past decade,
robotic toys and interactive pets with the ability to un-
derstand a limited vocabulary have emerged, e.g., Sony
AIBO, Mattel’s Diva Petz, MGA’s Commando-Bot. Re-
cently, robotic toys are becoming increasingly interactive
and able to understand complex commands.

In the past two decades, there have been numerous ef-
forts to incorporate speech recognition technology in desk-
top games. In most cases, these efforts had limited success,
as game developers considered speech as just another input
modality, rather than re-designing the application and inter-
face around the speech modality. A good example from the
research world of how to design multimodal dialogue games
is the NICE project, where an open-ended story-telling en-
vironment was enhanced by incorporating interactive ani-
mated characters [36]. In the past few years, speech recog-
nition technology has found its way into all major console
gaming platforms. Development of successful spoken dia-
logue games should follow, provided that game developers



will do away with the notion of speech as just another com-
mand and control modality, and embrace the conversational,
social and interactive aspects of speech interaction.

6. CONCLUSIONS
We know that children speech is quite different from adult

speech both in terms of absolute values and variability of
acoustic and linguistic correlates. However, despite these
differences that make acoustic and linguistic modeling for
children more challenging than for adults, efficient algo-
rithms now exist for modeling children speech that provide
good performance. Further research is necessary to improve
these algorithms and apply them to spoken dialogue system
design for children.

We have only started to formally investigate the acoustic,
linguistic and interaction patterns of children when interact-
ing with computers, toys or animated characters. Further
research is needed to better understand spoken and multi-
modal child-machine interaction, as well and formally ana-
lyze children speech in very young ages (2-5 years of age).
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