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Abstract 
Children engage with the world with their whole bodies, and we 
suggest here that during dialect learning, as during other learning 
activities, technology be capable of responding in whole body 
ways. As the child becomes more engaged in a shared-reality 
environment, the coordination of the whole-body behaviors 
between the VP and child should increase, thereby enhancing the 
experience. In this paper, we present our work on developing a 
virtual agent that embodies whole-body behaviors and a shared-
reality environment that encourages children to use whole-body 
expression in the context of learning dialect, and science talk. 

Categories and Subject Descriptors 
H.5.1 [Multimedia Information Systems]: Artificial, 
augmented, and virtual realities 

General Terms 
Design, Human Factors 

Keywords 
Embodied Conversational Agent, Culture, Analysis and modeling 
of verbal and nonverbal interaction 

1. INTRODUCTION 
The achievement/opportunity gap between African American and 
Euro-American children is well known and persistent in the 
American educational system [1].We propose a technology to 
address this gap, in the domain of science learning by engaging 
African American English (AAE) speaking children in a bridge 
building and discussion task with a Virtual Peer (VP) that allows 
the children to explore the use of Mainstream American English 
(MAE), at the same time as they engage in the evidence-based 
science talk that classrooms prize. But, as Crowder (1993) shows, 
children’s science talk also includes the use of the body [2]. We 
believe that a shared-reality environment with a VP can leverage 
learning by encouraging these whole-body behaviors.  

2. BACKGROUND 
The innovation of the interface is that children actually engage in 
collaboration with the virtual peer, as they use instrumented Legos 
to build a Lego bridge that will meet in the middle, and that they 
switch roles from being peers to taking turns playing the teacher.  
The innovation of the design process is that we base our work on 
a deep analysis of a long period of data collection with the 
community of interest.  In this particular paper we discuss a new 
way of processing the corpus of human-human data in order to 
implement behaviors for the virtual agent. 
We first observed 40 African American and Euro-American 
children engaging in a collaborative bridge building exercise 
using Lego® Duplos. The children were instructed to build a 
bridge strong enough and wide enough to allow “people” (small 
figurines) with “bags of food” (weighted cloth bags) to cross a 
dangerous river. Once the bridge was finished, the children were 
told that they might want to practice their sharing time description 
of what they had done by alternating playing the teacher, asking 
or answering questions about the dyad’s choices in designing and 
building the bridge. We transcribed and annotated the interactions, 
to create a child-child corpus. This corpus serves as the basis for 
the VP’s verbal and non-verbal behavior, and we believe that this 
tight loop between the observation of real children and the design 
of virtual children will ensure our VP conveys culturally authentic 
peer-like behavior that elicits whole-body behavior on the part of 
a real child user. 

The current workshop paper is a report of work in progress as we 
experiment with different methods of processing the corpus using 
machine learning techniques, and we are currently in the final 
stages of implementing a working shared reality system composed 
of a multimodal Virtual Peer, a Wizard of Oz (WoZ) interface 
driven by statistical models, and context sensors on the Lego 
pieces and table on which the children build.  

2.1 Virtual Peer 
The agent that plays the role of peer was designed to be 
ethnically-ambiguous [3] and to suggest the age of a 3rd-grade 
student.  As we have shown, ethnic ambiguity is possible, and it 
allows us to manipulate the perceived ethnicity of the VP based 
solely on its verbal and non-verbal behaviors, rather than 
imposing our stereotypes of ethnicity [3]. The VP can produce 
(recorded human) speech in two dialects of English: Mainstream 
American English (MAE) and African American English (AAE). 
The VP code-switches (shifts its dialect), based on the context. 
For bridge building, the agent speaks in AAE. During the teacher-
student classroom phase, the agent speaks MAE. The goal is to 
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elicit the use of “classroom English” in the context of science 
explanation. Because the VP embodies a culturally-authentic peer 
that uses head, body, and language in ways observed during real 
children’s interaction, we find that children who play with the 
peer tend to also express their understanding of science concepts 
through a combination of linguistic skills and whole-body 
movements, as they do with their real peers. 

2.2 Wizard of Oz 
An ideal virtual peer system of this sort would be completely 
autonomous, and could serve as a stand-alone system in a 
classroom. However, current technologies in the fields of speech 
recognition, Natural Language Understanding, and Text-to-
Speech cannot reliably understand or believably generate the 
language of AAE-speaking children. There are indications that 
adaptations can be made to help with children’s speech 
recognition [4], [5] but these modifications are beyond the scope 
of our current effort. Our goal, therefore, is to create a VP that is 
semi-autonomous, where a human operator plays the role of 
speech recognition and natural language parsing through the use 
of a Wizard of Oz (WoZ) interface, with pre-recorded speech 
output.  

Although we find it necessary to involve a human operator in the 
input process, we want to limit as much as possible the degree to 
which his/her subjective judgments about how children behave 
influence the VP’s behavior. Therefore we integrate 
conversational planning through statistical models that take input 
from context sensors and from the WoZ interface, and generate 
the VP’s system output in the form of Behavior Markup Language 
(BML) [6]. The first stage of the statistical model is a Markov 
Model (MM) generated off-line from the corpus of interactions 
between AAE-speaking children performing the same bridge 
building and teacher-student conversation. We annotated this 
corpus with utterance categories (e.g. Question, Exclamation, etc) 
and calculated transitional probabilities for each utterance 
category given Markov chains of preceding turns in the 
conversation. Given these chains as input, the MM selects the next 
utterance category based on the distribution found in the corpus. 
The calculations of these probability distributions are explained in 
greater detail in the next section. During an interaction with a 
child, the WoZ operator listens to what the real child says, and 
then quickly annotates the input with a predefined set of utterance 
categories by pressing the respective button on the WoZ. The 
WoZ then displays a small set of utterances that a child might 
have responded with in the same context, and the WoZ operator 
chooses one of these utterances as a response. Given that there is 
no propositional understanding, the fact that there is a set of 
utterances gives the operator the ability to pick an utterance more 
relevant to the previous utterance. 

Once the utterance has been chosen, gestures and head 
movements appropriate to the utterance are looked up in an 
assignment table calculated off-line probabilistically selected by 
the system. Gestures are associated directly with individual 
utterances, since they are often specific to what is being said. For 
example, a waving gesture is associated with the “Hi, I’m Alex” 
utterance. A more general gesture, such as pointing, might be 
associated with several utterances according to where it appears in 
the corpus. The gestures are probabilistically weighted according 
to the corpus as well. 
Eye gaze for an utterance is selected according to a statistical 
model based on utterance type and the context This more general 

method is supported by work such as [7], which links gaze 
behaviors to utterance types.  This information is calculated 
directly from the corpus for eye gaze at the beginning, middle and 
end of Alex’s turns as speaker. Most turns were too short for the 
motion planner to blend three animations together, so we 
implemented gaze targets at utterance beginning and end. 
Just as important as the nonverbal accompaniments to speaking 
behavior are Alex’s listener behaviors. Our future plans for the 
system include incorporating eye gaze detection, as has been done 
in previous systems, in order to generate appropriate responses 
when Alex is listening [8], [9]. However, as the system is still 
under development, our current strategy is for the WoZ operator 
to manually cue verbal and nonverbal feedback by pressing 
buttons on the WoZ.  

2.3 Data Model 
We are currently experimenting with choosing the virtual peer’s 
next utterance by building off-line a Markov Model chain of 
utterances in the child-child corpus. We then look for similar 
chains of utterance types and predict Alex next utterance on the 
basis of the child-child corpus. Since we are concerned with 
generating the next system utterance after a turn boundary, the 
history contains utterances immediately before turn boundaries. 
The chains used to construct the model consist of such histories of 
utterances before turn boundaries followed by the first utterance 
after the last turn boundary for each chain. Using this information, 
we can construct probability distributions of what utterance types 
are likely to occur given every possible history chain. 

In building such a system, given the exigencies of transcribing 15 
minutes of child-child conversation along with non-verbal 
behavior, the issue of sparseness of data must be addressed. For 
example, a 10-15 minute child-child interaction generally includes 
about 300 utterances per child. We are using a history of length 3 
to predict an utterance, so this means that the Markov chains used 
to construct the model are of length 4 (a history of 3 plus the first 
utterance to be emitted after the history). The chains are based on 
utterance type categories 15 (or more, depending on the task). So 
a 4th order chain with 15 utterance types gives 154 = 50,625 
possibilities.  Even if our data sets consisted of conversations that 
counted in the tens of thousands of utterances, there would still be 
a good chance that chains not present in our child-child corpus 
would occur during child-VP interaction. Therefore, we have to 
use a method that allows us to predict utterances for unseen 
conversation histories. To solve this problem we are trying out a 
Katz backoff model with Good Turing estimation, as described in 
[10]. We used the SRILM toolkit [11] to implement this model. 

The Katz-Backoff model is a generative model that is popular in 
speech recognizers. This model can compensate for sparse data by 
considering longer event histories when they are represented in 
the data, and backing off to shorter histories when they are not. 
This method necessitates the proper distribution of probability 
mass, since we are considering event sequences that have not been 
seen and therefore are not accounted for in a direct probability 
distribution. Good-Turing estimation provides such a method, by 
smoothing the probability distribution in such a way that unseen 
events are assigned a nonzero probability. 

2.4 Context Sensors 
Some of the output utterances have tags that indicate that they are 
specific to the physical context. For example, “Use the blue 
block” requires that there be a blue block on the table. Because 



the WoZ operator’s attention will already be focused on quickly 
annotating the child’s speech, and won’t have time to scan the 
scene, we are currently in the process of equipping our system 
with sensors that can specify whether pre-defined contextual 
conditions hold true (e.g. “Is there an X colored block?” or “Is the 
bridge partially built?”). 
Patel, Bosley et al, (2006) demonstrate that situational awareness 
can improve believable social experiences with robots [12]. The 
contextual awareness of their robot was achieved using software 
controlled by a human. For our situated environment, we believe 
giving our VP contextual awareness that relates to bridge building 
(e.g. progress of the bridge, color of blocks, location of blocks on 
table, width vs. height of bridge, etc) is important in engaging a 
child participant. Our VP’s awareness of the physical context will 
result from sensors on the blocks and table. 

During the early stages of development, we used Infrared LED’s 
and a Nintendo Wii Remote to track the movement of a Lego 
block moving across a table in the real world. As the block moved 
across the table, real-world coordinates were collected by the Wii 
Remote and reported to the VP System. The system could then 
convert these coordinates to virtual-world coordinates that the 
VP’s gaze behavior (i.e. the direction the VP’s head and eyes are 
pointed) could follow. Because of the amount of computation 
required to accurately and smoothly track a single object with 
gaze and head movements, we felt that this very dynamic 
behavior was actually limiting, and therefore did not integrate this 
sensor in our experiments.   

Currently, we have been using object-tracking software and a 
camera pointed toward the table space where the bridge is built. It 
provides information about the objects in view such as size, 
position, movement, and proximity to one another. It “blobs” 
objects in close proximity to form a single object (i.e. when 
blocks that were once separate are connected, they become one 
object in the system). Using this data, we can make interpretations 
about the current context using predefined criteria. For example, if 
there have been no new blocks placed on the table for a while, the 
system can either assume the child is stuck and in need of 
suggestions or that the child has completed his/her bridge.  

For the next iteration of context sensors, we are looking at using 
RFID tagging. Our hope is that RFID will be as informative as the 
object tracking software, but require less computation.  

2.5 Tangible Interface 
With sensors, the Lego blocks are objects of play, but also a 
tangible interface for interaction between the real and virtual peer. 
Barakonyi, et al (2005), extend Augmented Reality (AR) by 
providing virtual agents with contextual awareness. Cameras are 
used to generate information about objects in the context. For 
example, the virtual repairman assists the user in building a robot. 
The agent overlays a virtual piece in the AR at the position the 
real piece should be placed.  By looking at the context, the virtual 
agents can provide feedback to the user [13]. Our system relies on 
multimodality in the form of nonverbal embodied output for the 
agent, but also bridge-building actions by the child and agent. 
Data on what stage in the bridge building process the child is at 
and how successful or unsuccessful the child has been in 
designing and building the bridge is analyzed by the system to 
generate response behaviors. For example, if the child has been 
unsuccessful at building a stable bridge, the VP’s gaze may shift 
from its own blocks to the child’s blocks, and it might suggest a 
strategy. Similarly, in Gebhard and Klesen (2005), the agent’s 

discourse is affected by what the user has built [13, 14]. Likewise, 
sensors change the state of the VP’s dialogue based on the current 
state of the child’s bridge. For example, it would not be 
appropriate for the VP to comment on the integrity of the child’s 
bridge until the child has a freestanding bridge. In this way, the 
child is influencing what sort of discourse ensues not just by what 
is spoken but also by his/her actions. 

The blocks also serve as a mode for generating reactive behavior, 
or behaviors that occur between 0 - 1 seconds [15]. The sensors 
can detect quick movements that a real person would react to 
automatically, without thinking, such as if the bridge collapses in 
a heap during testing. The system will have a reactive layer [15] 
that can then respond to the quick change in context by having the 
agent look in the direction of the child’s bridge. 

The work with the Wii Remote software, mentioned earlier, led us 
to create important invisible objects or “gaze targets” in the virtual 
world that would map to real world objects. One such gaze target 
is the “child’s table”, which directs the VP’s eyes and head toward 
a point in the virtual world that makes the VP appear to be 
looking at the table in the real world. Using these gaze targets, the 
data from the sensors, and the predefined criteria, the reactive 
behavior of responding to a bridge collapsing becomes possible in 
a virtual agent. 

We are continuing to work on criteria for reactive behaviors that 
we can observe and determine to be important in our child-child 
corpus. 

3. DISCUSSION 
Interactions with a virtual agent displaying and reacting to whole 
body interactions are not new [16, op cit], and are enjoyed by 
participants, as well as giving them a greater sense of co-presence 
with the agent [17]. In the work we are pursuing here whole-body 
interaction includes language, nonverbal behavior, the actions of 
collaborating on building a bridge, and the responses of each 
agent (human and virtual) to each of these forms of embodied 
behavior on the part of the other.  

In the next sections we describe observations from our initial pilot 
studies that support our work in the direction of action as well as 
nonverbal linguistic behavior in with VPs, especially in learning 
contexts. 

3.1 Rigid vs. Whole Body 
[17] found many participants had a rigid stance when first 
immersed in a “virtual reality”. As participants realized the 
response capabilities of the system, their body movements 
relaxed. Similarly, children first introduced to the VP, stood 
rigidly in front of the screen, staring at the projected image. As 
children observe the VP interact with its environment (i.e. the 
virtual blocks), they are no longer solely looking at the VP, they 
look at what is happening in the VP world. Blocks are removed 
from a bucket and a bridge is being built. Children quickly relax 
and in fact act as they might with a close friend (“it’s not that I’m 
bored,” said one child to the VP, “I just don’t know what to build 
next”). 
Children’s body movements begin to synchronize to the VP’s 
movements. For example, when the VP picked up a bag of “food” 
to test the bridge, one child asked the VP to wait and while the VP 
was holding the bag just above the table, the child hurriedly 
finished her bridge and then held her weighted bag above the 
bridge so that they could test their halves of the bridge at the same 



time. The child recognized that the VP was waiting and responded 
by working more quickly.  

We also found that children synchronized non-bridge-building 
aspects of their behavior.  At one point in the interaction, the VP 
sings or hums a familiar song featured in well-known movies and 
covered by gospel artists (that we heard in our child-child corpus) 
and then fades out. Virtually all of the children pick up the singing 
and continue the next verse. Later in the interaction, those same 
children are likely to sing or hum another tune and do a small 
dance without it being initiated by the VP.  

In the child-child corpus, embodied behaviors around the table did 
take a different form than when they were interacting with the VP, 
along one dimension. Some children stood atop their chairs to get 
better views, while others walked around the whole table to get 
access to the whole play surface. Because of the VP’s projection 
screen, children are a little more restricted, but still move to the 
different sides of the table and utilize their whole body to express 
themselves, including clapping to celebrate a solid bridge that 
successfully held the weighted bags. 
Interestingly, fewer embodied behaviors occur during the teacher-
student task, when children tend to sit with a straight back and 
folded hands, as they would with a real teacher.   
As discussed earlier, our VP generates non-verbal behaviors 
according to the probabilistic distribution of occurrence in our 
child-child corpus. Foster and Oberlander (2007) show that agents 
whose non-verbal behavior occurred on the basis of a distribution 
of actions that occurred in their corpus were more liked as 
compared to agents whose non-verbal behavior occurred as a 
function of selecting the non-verbal behavior with the highest rate 
of occurrence in their corpus [18]. These distribution-based 
behaviors make the VP appear less robotic in that participants 
cannot predict the non-verbal behavior of the VP. 

Children become highly attuned to what our VP can and cannot 
do. Before we incorporated a model of eye-gaze that included 
gaze at the other child and at the actions of the child with the Lego 
blocks, and decided to build block sensors into the system, one 
child took a block and held it in the air in front of her and to the 
right. She stared directly at the VP and stated, “Look at this.” She 
was testing the VP’s reaction to see if the VP would look at the 
block or perhaps follow the child’s eye movements. Another child 
exclaimed, “Did you see that […]?” after his bridge had fallen, 
and then looked at the VP. The VP was looking straight ahead, 
instead of at the fallen bridge. Both children appeared 
disappointed that their expectations of how the VP should act or 
react were violated, and no longer looked at the VP as they were 
playing, much like the results in [7]. This suggests that the shared 
reality encourages children to respond with “playing and talking 
in familiar ways” [19]. While the technology in VP systems is 
often limited and children will inevitably find the shortcomings of 
the system, VP systems needs more whole body behavior, 
including action as well as linguistic behavior. Children become 
more engaged as they discover the Virtual Peer can effectively 
embody behavior that is familiar to the child.  

4. CONCLUSION 
We believe that our reliance on a child-child corpus allows our 
VP to believably model peer-like culturally-specific language and 
nonverbal behaviors.  By so doing, it situates the child user in an 
environment in which they are encouraged to use their whole 
body as a scaffold to learning, and to follow the VP’s lead in 

switching dialects between the bridge building and discussion/ 
classroom tasks. For example, children were observed enacting 
physical forces with the use of their movements. One child said, 
"So it would not fall."  On the word ‘fall’, she put her arms 
overhead and swung them down next to her sides while bending 
her knees, demonstrating her understanding of forces she 
observed through her own physical embodiment. Pilot data also 
shows that AAE-speaking children playing with the VP reduce 
their rate of AAE feature production when engaged in the 
classroom phase as opposed to the bridge building phase. We 
have also observed that children mimic aspects of the VP’s 
language, posture and bridge building actions. Given these 
observations, we are motivated to continue to see if these 
preliminary observations can be substantiated.  
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