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ABSTRACT

This paper discusses a preliminary approach to matching
child movements with robotic movements for the purpose of
evaluating child upper limb rehabilitation exercises. Utiliz-
ing existing algorithms termed Motion History Imaging and
Dynamic Time Warping for determining areas of movement
and video frame mapping respectively, we are able to de-
termine whether or not a patient is consistently performing
accurate rehabilitation exercises. The overall goal of this re-
search is to fuse play and rehabilitation techniques using a
robotic design to induce child-robot interaction that will be
entertaining as well as effective for the child.

Categories and Subject Descriptors

J.2 [Physical Sciences and Engineering]: Engineering

General Terms

Algorithm

Keywords

Motion History Image, Dynamic Time Warping, Manhattan
Distance, Fuzzy Logic

1. INTRODUCTION
Mechatronic and robotic systems for neurorehabilitation

can be generally used to record information about the motor
performance (position, trajectory, interaction force/impedance)
during active movements [5]. A relatively new sensory-motor
rehabilitation technique based on the use of robotic and
mechatronic devices has been applied in stroke patients [3,
9,11–13,17,20,21]. Being able to objectively assess the per-
formance of a patient through repeatable and quantifiable
metrics has shown to be an effective means for rehabilitation
therapy [9,21]. However, to date, we are unaware of any re-
search regarding child upper limb rehabilitation techniques
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using robotic systems; rather, the majority of these systems
are only being applied to stroke patients.

Logically, children are naturally engaged by toys, espe-
cially those that are animate. However, while there are a
number of robotic toys that have been shown to be engaging
to children [1, 6, 10, 14, 15], many of the studies focus solely
on children with autism [1, 10]. The goal of this project is
to fuse play and rehabilitation techniques using a robotic
design to induce child-robot interaction that will be enter-
taining as well as effective for the child. Here, we discuss our
approach to matching child movements with robotic move-
ments for the purpose of evaluating rehabilitation exercises.
In Section 3, we provide preliminary results of our initial
implementation, and in Section 4 we discuss our thought
process for future work.

2. APPROACH

2.1 Motion History Imaging

2.1.1 Background

The initial step in determining a match between the robotic
upper limb movement and the human upper limb movement
is to produce images from the video sequence that will give
an overall representation of the recent movement. The most
common technique for attaining the three-dimensional in-
formation of movement is to recover the pose of the per-
son at each time instant using a three-dimensional model
[2]. This generally requires a strong segmentation of fore-
ground/background and also of individual body parts to aid
the model alignment process [2]. Many algorithms also uti-
lize a uniform background when processing images [8, 19].
However, it is our hope to enable the child to immediately
begin interaction with the robot, regardless of the back-
ground setting, thus decreasing the required waiting time
for the child.

Since we only wish to analyze the movement of specific
body parts, much like Campbell and Bobick’s method of
analyzing human body limb positions [4], our algorithmic
approach is to use temporal templates. While some algo-
rithms utilize sequences of static configurations, which re-
quire recognition and segmentation of the person [18], we
specifically form a motion-history image (MHI) to represent
how motion in the image is moving. This essentially allows
real-time processing of the input data.

2.1.2 Methodology



Figure 1: Motion History Image of the left arm

movement.

In a MHI, Hτ , pixel intensity is a function of the temporal
history of motion at that point [2]. Similar to Bobick and
Davis [2], we use a replacement and decay operator, as shown
in Equation (1), to obtain our MHIs:

Hτ (x, y, t) =



τ if D(x, y, t) = 1
max(0, Hτ (x, y, t − 1) − 1) otherwise

(1)
where D is a binary image sequence indicating regions of mo-
tion. The result, as illustrated in Figure 1, is a scalar-valued
image where more recently moving pixels are brighter.

Once the MHI has been determined for a specific frame, we
create a feature vector for said frame by dividing the MHI
into a 9x9 grid, calculating µ and σ from each grid, and
then constructing an 81 length feature vector; various size
grids could be used, but, after testing different grids, a 9x9
grid creates a relatively small feature vector which provides
sufficient data with a low processing time. Utilizing the
feature vectors of the reference image and the input image,
we calculate a normalized Manhattan distance, for ease of
use, between the two as shown in Equation (2):

d(−→x ,−→y ) =

n
X

i=1

|xi − yi| (2)

where x and y are the the feature vectors of the reference and
input frames. However, the normalized Manhattan distance
only gives us information on a per frame basis.

2.2 Dynamic Time Warping
In order to determine that an individual is correctly per-

forming a specific exercise, we need to utilize a sequence
of movements. Furthermore, there will, undoubtedly, be
variations in duration and segment lengths due to varying
velocities of movements (between the reference and input
sequences) that will make it difficult to determine a match.
Our approach to combat this issue is to implement Dynamic
Time Warping (DTW), which can be loosely defined as a
nonlinear stretching or squeezing of the input sequence to
line up optimally with the reference sequence.

Typically used in speech recognition, DTW has three basic
operations if a left-to-right time constraint is imposed [16]:

1. Repetition of the Reference Frame: The input frame
advances while the reference frame does not (“inser-
tion”).

2. Repetition of the Input Frame: The reference frame
advances while the input frame does not (“deletion”).

Figure 2: Pictorial representation of the basic oper-

ations of Dynamic Time Warping.

3. Both frames advance (“substitution”).

Figure 2 is a pictorial representation of the operations
previously described. We specifically use the Manhattan
distances calculated from our feature vectors, and stored in
matrix form, to determine the best possible choice between
the operations for a specific frame comparison. In other
words, the dtw matrix is populated by performing the fol-
lowing comparison:

dtw(m, n) = min

8

<

:

WId(m, n) + dtw(m − 1, n)
WDd(m, n) + dtw(m, n − 1)
WSd(m, n) + dtw(m − 1, n − 1)

(3)

where WI , WD, and WS are weights for performing an
“insertion”, “deletion”, or “substitution”, and d(m,n) is the
Manhattan distance, calculated earlier, between each frame.
The weights are chosen such that choosing to perform an
“insertion” or “deletion” has more of a penalty than choos-
ing to perform a “substitution” because the data has been
somewhat skewed in choosing the former. It should be noted
that the standard form of a DTW implementation assumes
a known starting and ending point in the sequence; however,
we do not assume that we aware of the starting and ending
points of the exercise. Thus, we employ DTW in order to
determine a minimal exit point.

Utilizing this method, we are able to calculate the least
costly path (i.e. the optimal matching sequence) and map
the input sequence to the reference sequence thus minimiz-
ing the effects of varying velocities. The reader is encouraged
to review [16] for a more detailed description of how to im-
plement DTW. The results of our DTW implementation are
presented in Section 3.

2.3 Fuzzy Logic
Finally, there must be some method of determining whether

or not the arm trajectory in the input sequence matches,
within a reasonable measure, with the arm trajectory of the
reference sequence. Our approach is to utilize a ground truth
from previously known images and costs and employ a fuzzy
logic system for determining the degree of “correctness” of
the exercise in question. The total cost is calculated by
summing each of the distances of the optimal path obtained
from the DTW output; logically, a high cost indicates that
the exercises are not similar. In order for the total cost to
be a consistent metric, we assume that the total number of
frames per sequence is the same; that is to say, the initial
number of reference frames is equal to the initial number of
input frames.

Utilizing a ground truth sequence, testing it against mul-
tiple sequences, and establishing the means and standard
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Figure 3: Metric for determining the degree of sim-

ilarity between sequences

deviations of the total costs per category enables us to es-
tablish the fuzzy logic graph shown in Figure 3 as a metric
for determining the degree of similarity between the input
sequence and reference sequence. Once the degree of “cor-
rectness” has been determined, the humanoid will be able
to inform the patient and/or physical therapist whether or
not an exercise should be repeated at an attempt to achieve
proper motion.

3. PRELIMINARY RESULTS
Currently, we have collected exercise data from three dif-

ferent participants; seven exercises for the first participant
spanning a two day period, nine exercises for the second
participant also spanning a two day period, and one exer-
cise for the third participant conducted in a single session.
Table 1 shows the averages and standard deviations of the
costs based on the criteria set forth for generating the fuzzy
logic memberships.

Table 1: µ and σ used to Create Fuzzy Logic Mem-

berships

Classification µ σ

Excellent 0.332 0.336
Good 2.05 0.553
Poor 3.24 0.654

Figure 4 illustrates the results of mapping a reference se-
quence provided by the first participant with a separate in-
put sequence provided by the same participant. As shown in
the graph, the input sequence was significantly longer than
the reference sequence; in essence, the participant performed
the exercise at a faster velocity in the input sequence as op-
posed to the reference sequence. Given that dark blue values
represent points of lower cost, an optimal path would con-
tain the maximum number of dark blue contours reaching
the end of each sequence; the black line shows the chosen
path for mapping the two sequences in this specific scenario.

As a comparison, Figure 5 illustrates the results of our
DTW algorithm mapping a reference sequence provided by
the first participant with a separate input sequence provided
by the same participant performing two different exercises.

Figure 4: Contour color map of DTW illustrating

the optimal path for mapping an input sequence to

a reference sequence for one participant with a sep-

arate input sequence provided by the same partici-

pant.

There are two important points to note from the graph.
First, although the DTW algorithm did find an “optimal”
path for the two sequences, the path contains orange con-
tours which are high values. Second, only 50 frames of the
160 possible frames for the input image provided comparable
feature vectors. In other words, this would not be considered
a match for movements.

4. FUTUREWORK
Although DTW enables us to map an input sequence with

a reference sequence, there are still uncertainties that must
be addressed. One potential issue is the variable heights and
arm spans of the individuals involved in rehabilitation. The
processed image of an individual with an arm span of 190cm
may be quite different from someone with an arm span of
140cm; the main difference is the overall size of the contours.
This variation may in turn create differences in our feature
vectors and, on the whole, our DTW outputs. Currently,
we foresee two directions that may combat this problem.
One approach could be to incorporate the exact wingspan
information gathered from the child and scale the contours
of our reference frames to match that of the child’s contours
based upon a predefined ratio. Another approach could be
to simply utilize a typical, minute range of wingspans for a
target age group. This would, of course, make our algorithm
less specific to the individual, but may increase robustness.

Our immediate future work is to incorporate a more intel-
ligent scheme. First, rather than utilizing the feature vectors
from the MHI output, which incorporates all areas of the im-
age, we intend to minimize this process. A possible way to
achieve this step is by using an edge detection algorithm and
assuming only the largest edge detected contour is of impor-
tance (i.e. the actual area of the arm trajectory). Following
this step, a shape matching algorithm such as matching by
correlation or matching through Maximally Stable Extremal
Regions [7] could be used for a more accurate method of
quantizing the two shapes. After quantizing the two shapes
(reference and input) based on this algorithm, there will still
be a need to employ a more scientific metric for categorizing
correct versus incorrect motions. A possible solution could
be to gather information from the field of Physical Therapy.



Figure 5: Contour color map of DTW illustrating

the optimal path for mapping a reference sequence

provided by the first participant with a separate in-

put sequence provided by the same participant per-

forming two different exercises.

The final step in our project is to equip the Manoi AT01,
shown in Figure 6, with a small camera and a Gumstix
OveroTM Earth that will enable the robot to perform its
movements, video capture, and image processing completely
on-board. The Manoi AT01 was chosen for its robust move-
ment capabilities and the entertaining affect that we expect
it to have when interacting with children.

5. CONCLUSIONS
In this paper we have discussed an approach to matching

child movements with robotic movements for the purpose
of evaluating child upper limb rehabilitation exercises. Uti-
lizing Motion History Imaging and Dynamic Time Warping
for determining areas of movement and video frame map-
ping respectively, we were able to illustrate how a cost-based
approach can be used to determine consistency in patient re-
habilitation exercises.

Figure 6: Illustration of the Manoi AT01.

(www.trossenrobotics.com/Manoi-AT01-Humanoid-Robot-Kit.aspx)
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