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ABSTRACT
This paper describes our recent work on intelligently control-
ling a vehicle’s headlights using a forward-facing camera sen-
sor. Specifically, we aim to automatically control its beam
state (high beam or low beam) during a night-time drive
based on the detection of oncoming/overtaking/leading traf-
fics as well as urban areas from the videos captured by the
camera. A three-level decision framework is proposed which
includes various types of image and video content analysis,
an SVM-based learning mechanism and a frame-level deci-
sion making mechanism. Both video and context informa-
tion have been exploited to accomplish the task. Online test
drives as well as offline evaluations on tens of videos have
validated the robustness and effectiveness of the proposed
system.

Categories and Subject Descriptors: I.5.2 [Pattern Recog-
nition]: Pattern Analysis

General Terms: algorithm, design, experimentation

Keywords: Intelligent headlight control, camera sensor, SVM,
machine learning, image/video content analysis, driving context

1. INTRODUCTION
Driving at night is usually more dangerous than driving during

the day. Pedestrians and cyclists on the roads are especially at high
risk due to the limited visibility of motorists at night. In fact, a re-
cent study by University of Michigan Transportation Research In-
stitute (UMTRI) found that pedestrians are about four to six times
more vulnerable at night than during the day [1]. This raises the
importance of maximizing a driver’s forward vision for night-time
driving safety purpose. One way to achieve this is to improving the
utilization of the vehicle’s high-beam headlight so that the drivers
can look far ahead for traffic signs, road geometry, other vehicles,
pedestrians and potential hazards. Nevertheless, a recent study by
U.S. Department of Transportation shows that, on average, drivers
use their high beams less than 25% of the time during which con-
ditions justified their use [2].

This motivates the automobile industry to look into various in-
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telligent headlight control (IHC) systems, to aim for automatically
and optimally controlling the headlight of an automobile during a
night-time drive. Consequently, drivers no longer need manually
and repeatedly switch the beams and thus concentrate more on ac-
tual “driving”.

1.1 Related Work
To our best knowledge, only a few research efforts have been

published in this area, yet there are several such systems being
prototyped or deployed in the current market. For instance, the
SmartBeamTM , developed by Gentex [3], uses a customized
and forward-facing CMOS image sensor to acquire images in front
of the vehicle, which are then processed to detect the existence of
headlamps of oncoming traffic or taillamps of preceding vehicles.
Appropriate headlamp switching is then performed based on such
detection. With similar ideas, Mobileye [4] developed an adap-
tive headlight control system which also considers the scenario of
lit/urban areas, whileSmartBeamTM does not.

Recently, Mercedes-Benz announced that it is going to integrate
an Intelligent Light System and Adaptive Highbeam Assist system
into its future models [5]. Specifically, such system can adjust the
range of the headlamps automatically based on the distance to on-
coming vehicles or moving vehicles in front with their lights on.
Similar research efforts have been proposed before. For instance,
[6] employs a fully variable light distribution to realize a dazzle-
free high beam by using arrays of LEDs. Specifically, once another
vehicle is detected, only the LED that generates the spot covering
the detected vehicle is turned off, while all other regions are still
being illuminated by other LEDs. Likewise, Konninget al. argue
that a more advanced IHC system should be able to dynamically
adapt the position of the illumination cut-off just below the next
vehicle in front of the ego-vehicle [7].

Generally speaking, a common approach to intelligent headlight
control is to detect potential light objects using some image process-
ing algorithms, then apply certain heuristic rules to decide if high
beam should be used or not. While such solution is relatively eas-
ier and quicker to develop, it usually suffers from the drawbacks
such as difficult deployment to different geographical regions, lack
of robustness to the change of weather and road conditions, as well
as expensive system fine-tuning. Consequently, machine-learning
based approaches become more preferable. One such effort is re-
ported in [8], where a Real-AdaBoost learning machine is applied
to train 4 classifiers for small/non-small headlight, and small/non-
small taillight, using various appearance-based features. Neverthe-
less, other important features such as motion are neglected which
could have helped boost the learning performance. Moreover, street
lights, as another important light object, are not considered.

1.2 Proposed Approach



In this work, we aim to develop an intelligent headlight con-
trol system using a forward-facing camera sensor that works at real
time. Our target is to detect oncoming and leading traffic as far as
1000 meters and 400 meters away, respectively, on straight and flat
roads under dry weather condition. In addition, when an overtaking
vehicle or an urban area is detected, the system should also switch
to low beam as soon as possible. Note that here we define an urban
area as well-lit streets with lights.

To achieve such challenging target, we propose a three-level de-
cision framework as shown in Figure 1. Specifically, the first level
contains a blob detection module which, given an image captured
from a night-time drive, finds bright spots that stand out from the
dark background. The image shown in the figure contains an on-
coming vehicle with two headlights (and their road reflections) on
a country road.
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Figure 1: The proposed three-level decision frame-
work for intelligent headlight control (IHC).

In the second level, SVM (Support Vector Machine), selected
among many existing machine learning approaches due to its good
performance in a variety of tasks, is applied to recognize different
image blobs which include candidates of headlight, taillight, street-
light, and other object. Here the other objects mainly includes in-
frastructure elements such as traffic signs and road reflectors that
are reflected to bright by our own emitted light, as well as objects
that light up by themselves. A multi-class SVM classifier is trained
for this purpose.

Finally, in the third level, a frame-level decision making process
is carried out to determine the actual beam state (i.e., high beam
or low beam) of the vehicle for the current frame based on SVM
classification result, a set of heuristic rules and the driving context
derived from the vehicle’s CAN bus (Controller-area network). A
temporal smoothing process is further employed in this case to en-
sure an un-abrupt beam change.

The rest of this paper is organized as follows. Section 2 intro-
duces the system setup in a real car. Section 3 then briefly de-
scribes the blob detection module which forms the building block
of the entire IHC system. Section 4 presents the SVM-based learn-
ing and classification scheme where blob-level feature extraction
is detailed. In Section 5, we illustrate the final frame-level beam
decision making process. Extensive experiments and detailed per-
formance evaluation are reported in Section 6. Finally, we conclude
the paper in Section 7 with future plans.

2. SYSTEM SETUP
We have worked with a major Tier 1 automotive supplier (re-

ferred to as Company M) to set up a demo car so as to capture the
videos and test out the proposed system at realtime. This company
has many years of experience in the area of IHC, and has provided
us many valuable suggestions, as well as set requirements on the
design, installation and performance evaluation of the system.

The camera that we use for this work has a high dynamic range.
It captures colored video at640×480 resolution,420×31.50 field
of view, with 35 frames per second. It works with 12 bits per pixel
using a logarithmic curve, which is essential to avoid fully saturated
light spots. The camera is mounted on the windshield right behind
the rear mirror and faces forward. Its captured video is processed
by a PC installed on the car.

Figure 2 shows the detailed system setup framework. Specifi-
cally, PC 1 is solely used to capture and store the video from the
camera, while PC 2 is the main workhorse which hosts the entire
IHC system. Both computers interact with the CAN bus at real-
time. Finally, the IHC decision is passed on to the CAN bus con-
troller which puts it into real action.

This system setup also allows us to use multiple cameras when
needed, although some other issues such as camera synchronization
and decision fusion need to be considered in this case.
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Figure 2: The system setup framework.

3. BLOB DETECTION
This module applies a standard connected component analysis

to identify bright spots in an image which is taken during night-
time. These blobs are then passed onto the SVM classifier for type
recognition. Note that by applying such spatial attention function
at the first level of the system, a substantial computational effort
can be saved from running the classification engine at all possible
positions, scales or orientations within the image.

Two thresholds are used in such detection process:T0, which
thresholds all pixels that form the blob, andT1, which thresholds
the “core” pixels within the blob. As the core part is generally
brighter than its surrounding part (which we callhalo) within a
blob, we setT1 to be slightly larger thanT0. The image in Figure 1
shows an example of detected blobs (indicated by four bounding
boxes) containing the two headlights and their road reflections.

The last step of this module is to filter out blob whose area is
either too large or too small to be considered as potential headlight,
taillight or streetlight.

4. SVM-BASED BLOB LEARNING AND
CLASSIFICATION



The two major phases involved in this module are SVM training
and SVM classification. Specifically, the training phase produces
a multi-class SVM model which learns the following four different
types of blobs:headlight (HL), taillight (TL), streetlight (SL),
andother. The classification phase then uses such model to recog-
nize the type for an unknown blob. Note that we have also per-
formed cross validation to select optimal model parameters and to
avoid model over-fitting.

The detailed flowchart for such two processes is shown in Fig-
ure 3. Specifically, during the training phase, we first identify a
set of videos that contain representative data in terms of objects
of interest. Qualified blobs are then detected within each frame,
and their types are manually annotated. Next, we extract a list of
features from each blob, and such feature vectors (plus the proper
class labels) are finally used as training samples for SVM learning.
The LibSVM tool [9], which has been reported with ease of use
and good performance, is chosen for this work.
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Figure 3: The flowchart of SVM training and clas-
sification.

Now, during the classification phase, given a test video, we first
repeat the same process of blob detection and feature extraction to
form testing feature vectors. Then the LibSVM is used to recognize
each blob type using the pre-trained SVM model.

Below, we detail on the list of features extracted from each blob.

4.1 SVM Feature Extraction
In total, 26 features are extracted from each image blob, which

can be grouped into 6 categories as follows.
1. Position features, which include the x and y coordinates

of the gravitational centroid of the blob. This is motivated by the
observation that lights from different traffic (oncoming, leading,
crossing) and from street lamps are generally located at different
spatial locations within the image. The challenge is, when head-
lights, taillights and street lights are far away, they all appear to be
close to the vanishing point.

2. Brightness features, which include the average and vari-
ance of intensity of all pixels within the blob. The intuition is that,
close-by light objects are generally brighter than far away objects
or reflected objects. Also, headlights are generally brighter than
taillights. The challenge is, sometimes, reflected objects could be
very bright which causes potential false positives.

3. Shape features, which describe a blob’s shape in eight
different aspects. Specifically, they include: the area of the blob (in
unit of pixels); the ratio of the blob area over the size of its bound-

ing box; the aspect ratio and angle of the blob, which are calculated
from the moments; the average and variance of the blob’s radius;
size of the halo, and ratio of the halo over the blob’s area.

The intuition for selecting these shape features is that, blobs cor-
responding to the headlight, taillight and streetlight usually appear
to be round in the image, although their actual shapes could be
slightly different. Nevertheless, blobs for other objects are likely
to be of irregular shapes. The challenge here is that, the reflected
spots on the other objects tend to be of round shape as well.

4. Spatial relation features, which describes the spa-
tial relationship among image blobs. This is motivated by the ob-
servation that in most cases, headlights or taillights are in pairs,
while street lights are generally lined up along roadside in multi-
tude. Consequently, we propose to extract some features to capture
such spatial relationship among blobs based on both pair analysis
and line (or slightly curved line) analysis. For instance, the num-
ber of buddies for a blob within detected group; the mathematical
representation of detected line, and the horizontal/vertical distances
between the two ends of the line or pair.

Some of these spatial relation features have turned out to be very
effective, as verified by the feature saliency analysis; nevertheless,
challenges still exist. For instance, some urban areas have very
sparsely distributed street lights, which ends up with only one or
two street lights in each frame.

5. Color features, which describe the dominant hue (H),
average saturation (S) and average value (V) of each blob. Since
different types of lights generally present different colors, for in-
stance, taillight is reddish, headlight is usually bright white, while
street lights could be yellow, color features can be a big help for
SVM learning.

6. Motion features, which describe the trajectory of each
blob from frame to frame. This is motivated by the observation that
headlight, taillight and streetlight generally have different moving
directions. For instance, headlights are moving towards us, tail-
lights are moving away, while street lights are normally moving
outwards. In total, five motion features are extracted which include
the motion displacement and moving speed in both x and y direc-
tions, plus the moving direction of the blob. Theoretically, such
motion features are expected to be very useful, nevertheless, a big
challenge here is that when objects are far away, the extracted mo-
tion information tends to be less accurate.

5. FRAME-LEVEL BEAM DECISION
MAKING

After recognizing all blobs within each frame using the pre-
trained SVM model, our last step is to make the beam decision.
Below, we elaborate on the proposed decision making mechanism,
which is built upon a temporal smoothing process, some heuristic
rules and the driving context.

For the ease of illustration, we assume that each framef has two
beam states, thehidden state (HS) and the actualdisplay state
(DS). The difference between these two states is that, HS is deter-
mined based on what is happening in the current frame, while DS
is determined based on not only the current moment, but also the
past. In another word, it takes history into account.

We first describe how the HS of framef is determined. Assum-
ing that a high beam is the beam state by default, we apply the
following three rules to setHSf to low beam.

Rule 1: If there is at least 1 headlight or 1 taillight, or 3 street-
light blobs detected in framef , thenHSf is low beam. Note that
the 3-streetlight heuristic comes from some informal definition of
an urban area. In reality, strictly following such urban rule results



in decision errors, which will be detailed later.
Rule 2: If frame f contains more blobs than a pre-defined

threshold (which is set to 15 based on experiments), we setHSf

to low beam. This comes from the observation that in urban areas,
there are usually many city lights which results in a lot more blobs
than in videos containing only dark country roads.

Rule 3: If the weighted product of the ambient brightness and
the average edge energy in framef is greater than a pre-defined
threshold, we setHSf to low beam. This is based on the obser-
vation that a well-illuminated urban area usually demonstrates a
higher amount of ambient light than other situations. Moreover,
due to the existence of buildings in urban areas, we normally ob-
serve more edges in such videos.

Now, to determine framef ’s display state (DS), we take the fol-
lowing reality factors as well as heuristics into consideration.

1. The beam change should not be too frequent,i.e., there
should be an acceptable temporal period between two consecutive
beam changes, otherwise, it becomes annoying. Currently, we set
such temporal period to be equal with the video’s frame rate (fps).
During implementation, we use variablegapCount to track the
number of frames between two beam switches.

2. As blob recognition errors are unavoidable, we have proposed
the following two ways to address this issue: 1) we shall not make
the final beam decision solely based on the current frame, instead,
we apply a temporal smoothing process to take thebeam history
into account. A sliding window of sizefps is used for this pur-
pose; and 2) once we enter the low-beam state due to the detection
of headlight, taillight or streetlight, we start tracking such light ob-
jects from frame to frame, so as to correct occasional missed detec-
tions. Consequently, as long as the objects are consistently tracked,
a consistent beam decision will be maintained.

Keeping the above considerations in mind, we now detail the
four steps that determine framef ’s DS state.

Step 1. If frame f ’s HS is the same as its preceding frame’s
DS, then we directly display its HS without any change. This is the
perfect scenario.

Step 2. If we just have a beam change within a second,i.e.
gapCount < fps, then no matter what isf ’s HS, we shall main-
tain the existing beam state. No change is allowed in this case.

Step 3. If the existing beam state is low beam, which has been
on for a sufficiently long period, and if the current frame’s HS votes
for high beam, then we shall track the detected light objects from
the previous frame. If the tracking is successful, we stay with the
low beam.

Step 4. If a beam change is still likely needed, we shall confirm
such decision by polling the history. Specifically, we check the HS
state of all frames in the sliding window that covers the last one
second, and see if a certain percentage of them have the same HS
as suchHSf . If yes, a change decision will be confirmed, and we
setDSf to HSf ; Otherwise, we maintain the existing beam state
that is on display.

A thresholdTc is applied in this process, which is assigned to
different values depending on different situations. Specifically, if
we tend to change the beam from low to high, thenTc is set to
0.8, meaning that 80% of preceding frames in the window have to
support suchHSf in order to make the change happen. On the
contrary, if we will potentially change the beam from high to low,
thenTc is set to 0.3, meaning that we only need fewer preceding
frames to support such change. The theory behind such varying
preference is that, we want a quicker response to switch from high
beam to low beam, so as to avoid dazzling other drivers. On the
hand other, when it comes to switch from low beam to high beam,
we prefer a more assured decision by examining a few more frames.

5.1 Exploiting Driving Context
Driving context, which could be obtained from the vehicle’s CAN

bus, provides another type of important information that should
be considered to further improve the system performance. Con-
sequently, two additional rules, which exploit two types of such
context, namely, thesteering angle andspeed, have been applied.

Specifically, the first rule is applied to the scenario where the
road becomes curved or when there is a roundabout. In such situa-
tion, we tend to lose track of the streetlight or taillight, which have
been visible when the road was straight, due to the “forward-facing-
ness” of the camera. To address this issue, we constantly monitor
the road condition based on the steering angle value. Once such
value is above a certain threshold, we declare that a curved road is
identified. Consequently, we maintain the detection of street lights
and taillights if they are previously recognized. We continue with
such “assumed” recognition until the road goes back to straight.
After that, we resume the normal beam decision process as de-
scribed earlier.

In contrast, the second rule is applied to improve the robustness
of urban area detection. As pointed out earlier, due to un-robust
streetlight detection and poorly illuminated urban areas with very
few street lights, strictly following the “3-streetlight” urban rule
could result in missed detection. On the other hand, urban areas
all have strict speed limits to be observed by drivers. Based on
this, we propose that once we enter a confirmed urban area, a low
beam should be continuously maintained as long as there is at least
one streetlight detected, and the driving speed is below a certain
threshold.

6. PERFORMANCE EVALUATION
The proposed system has been evaluated in both online and of-

fline modes1. Specifically, the online mode refers to observing the
system performance at real time when taking the host car for a
drive. In this case, the performance is evaluated more qualitatively
and subjectively. For the offline mode, we test the system using tens
of night-drive videos recorded under dry weather, various road con-
ditions and in changing urban and country-side scenarios. Three
different metrics are then defined to measure the performance.

Due to the limit of space, we will not report the online test result
here, which is mainly conducted by our partnering company M.

6.1 Performance Metrics
The offline system performance is measured in terms of false

negative value (FNV), false positive value (FPV) and overall errors.
Specifically, the false negative value (FNV) is calculated as:

FNV =

MDX
k=1

η|toff
k − ton

k |+
LDX
i=1

δiη|ti − t0|+
EAX
j=1

δjη|tj − t0|+
FAX
k=1

η|ton
k − toff

k |, (1)

whereMD, LD, EA andFA stand formissing deactivation,
late deactivation, early activation andfalse activation, respec-
tively. These are four typical types of false negatives that leaves
high beam on by mistake. Moreover,t0 indicates the ideal switch-
ing moment given by the ground truth,ti andtj are the switching
moments indicated by the system. For a missing deactivation,toff

k

is the time when the high beam should have been deactivated, and
ton
k is the time when the high beam should have been re-activated.

1Note: The performance of the system presented here does
not reflect the performance of existing commercial offerings
of Company M



They are similarly defined for the case of false activation as well.
The twoδi andδj are used to accommodate for tolerable variance
(∆) between a system decision and a human decision. Specifically,
if ∆ is greater than 0.25 second, they are set to 1, otherwise, 0.
Finally, η is a weighting factor, which specifies how strongly each
error case should be punished. For now, it is equally set to be1/∆.

Similarly, the false positive value (FPV) is defined as follows.

FPV =

FDX
k=1

η|toff
k − ton

k |+
LAX
i=1

δiη|ti − t0|+
EDX
j=1

δjη|tj − t0|+
MAX
k=1

η|ton
k − toff

k |, (2)

whereFD, LA, ED andMA stand forfalse deactivation, late
activation, early deactivation andmissing activation, respec-
tively. These are four typical types of false positives that leaves low
beam on by mistake.

Finally, the overall error function is defined as

Error = 10× FNV + FPV, (3)

which clearly states that false negatives are more un-tolerable than
false positives. This also explains why we assign different values
to the thresholdTc during the decision making process. Note that
the factor of “10” in this equation is not randomly decided by our-
selves, but rather, it is derived based upon some automotive manu-
facturer’s requirement.

6.2 Performance Report
The SVM model used for the performance evaluation is trained

with 29 videos, which amounts to 30 minutes in total. The number
of headlight (HL), taillight (TL), and streetlight (SL) objects an-
notated for this training set are tabulated in Table 1. Moreover, we
have also reported the distinct or unique number of HL, TL and SL,
which gives readers a rough idea of how many oncoming/leading
vehicles as well as unique street lights are contained in this set.

Table 1: Statistics of the training set.

Number of HL objects 9773
Number of TL objects 12192
Number of SL objects 8462
Number of unique HL objects 93
Number of unique TL objects 15
Number of unique SL objects 46

One interesting observation from table 1 is that, while we have a
fairly large number of taillight objects, the unique number of tail-
lights is much smaller than others. This is due to the fact that some
videos contain the same leading vehicle throughout the entire trip,
thus producing as few as 2 distinct taillights. Consequently, when
we choose the training videos, we have strived to obtain as many
unique light objects as possible, so that the SVM model can learn
diverse types of headlight, taillight and streetlight.

Below, we report the system performance in the following two
dimensions: 1) the blob classification performance; and 2) the IHC
system performance, as we consider them both important measure-
ments. Moreover, all test videos are from a different set than the
training videos.

For the former evaluation, we randomly selected 12 pre-annotated
videos, and measured their blob-level SVM classification results
against the ground truth in terms offalse rejection (FR), false ac-

ceptance (FA), and classification accuracy. Specifically, we calcu-
lated the FR and FA for each object class from the confusion matrix
constructed for each test video. As a result, we achieved around
90% average blob classification accuracy, and the average FR and
FA are both 0.1, which is quite acceptable. Moreover, please note
that the mis-classification between HL and TL does not really af-
fect the IHC system performance, since the same beam decision
will be made as long as either of them is detected.

For the latter evaluation, the best way is to compare our proposed
system with the state-of-art IHC systems on the market. Neverthe-
less, as it is practically impossible to obtain the software of these
proprietary systems, we are not able to conduct such fair compar-
ison during offline test. However, a general evaluation of our sys-
tem against the Gentex [3] was indeed conducted by our partnering
company M during the online test, and the overall observation is
that our system generally performs worse than Gentex.

The overall impression of our proposed IHC system is: 1) for
most of time, it quickly switches to low beam for oncoming traffic;
2) it performs generally well in well-illuminated urban areas; 3)
it fails to recognize leading traffic in a distance (yet still within
the targeted 400 meter range); and 4) on curved road, it tends to
generate false positives due to road reflectors and traffic signs.

Table 2 presents the offline performance measurement for 13 test
videos, which as will be discussed later, shows us how the system
performance varies with different driving situations. Note that all
performance data has been normalized by the video duration. For
these 13 videos, the first six are randomly selected from our test
set, while the rest are carefully chosen due to the diverse and chal-
lenging driving situations contained within them. All used ground
truth in this case, were collected during the video capturing process
from both the driver and the passenger in the front seat through
some special input device. While both of them have attempted to
be ”well-behaved” drivers who diligently use high-beams in justi-
fied conditions, we have observed quite some variations between
their behaviors.

Table 2: IHC performance evaluation on 13 videos.

Video Length (min) FNV FPV Error

Video 1 4.2 14.5 8.1 153.3
Video 2 3.3 2.7 24 50.5
Video 3 3.27 13.1 1.0 132.1
Video 4 1.5 0 0 0
Video 5 1.2 0 0 0
Video 6 1.9 0 0 0

Video 7 4.6 40.3 5.2 406.2
Video 8 5.3 66.5 24.6 686.53
Video 9 4.6 57.6 7.7 583.6
Video 10 8.4 31.4 10.0 326.5
Video 11 3.8 31.1 35.2 346.06
Video 12 10.6 11.8 10.8 129.1
Video 13 8.3 12.5 16.2 140.58

Below, we give a detailed analysis of the scenarios that have
caused false positives and false negatives as observed from the Ta-
ble 2. Specifically, the two major situations that lead to false posi-
tives are:

1. Road reflectors on curved road. In our test videos,
there are reflective markers installed along the roadside for the
safety and information purpose. Specifically, every 50 meters on
the road, there would be two markers symmetrically lined up on



each side. One such example is shown in Figure 4 (a). In this
case, when the road becomes curvy right in front of the controlled
vehicle, those reflective markers would appear like headlights of
oncoming cars, thus triggering a low beam decision.

2. Traffic signs on curved road. One typical scenario
that almost always causes false positive is when the controlled car
directly faces a curved road that has a set of curve signs on the
shoulder. One example of such sign is shown in Figure 4 (b). These
reflective signs contain directional arrows, and once they are di-
rectly shined upon, they tend to be recognized as headlights.

      
 

(a) (b)

Figure 4: (a) Reflective markers at every 50 meters
along the road, and (b) curve traffic sign on curved
road.

In contrast, false negatives tend to occur in the following scenar-
ios.

1. Leading traffic with distant taillights. This is the
number one reason that results in undesired high beams. Specifi-
cally, while the leading traffic is far away, yet still within reason-
able “viewable” distance, our system fails to detect its taillights,
and switches on high beam. Referring back to Table 2, videos 7-11
all contain heavy driving on a country road following some leading
traffic, and due to the failure of recognizing distant taillights, we
have thus observed fairly large number of false negatives. Exam-
ining further deeper into the system behavior, we discovered that
most of these distant taillights were missed by the blob detector in
the first place, due to their low intensities. This will be improved in
our next version of blob detector.

2. Dim urban areas. Sometimes, an urban area could be
poorly illuminated. For instance, when the vehicle drives at the
edge of a village where there are buildings on one side, yet fields
on the other side, or when it just enters a village. In such cases, not
only will no or fewer street lights be detected, but also not much
edge or ambient light are present. Consequently, the system tends
to turn on high beam. While it looks natural for the system to per-
form this way, it is however, required to use low beam as the vehicle
is within an urban area.

Referring back to videos 12 and 13 in Table 2, both of them con-
tain heavy driving in urban areas, and most of their false negatives
occur during such poorly illuminated situations.

Finally, there are three other issues that potentially affect the sys-
tem performance as well as its evaluation.

1. Defects in the object annotation. Various types of
defects in the annotation data such as duplicate object ID for differ-
ent objects and un-annotated blobs that correspond to valid objects,
would unavoidably affect the trained model and consequently the
classification result.

2. The unbalanced nature of the training data. The
current SVM model is trained with very unbalanced data among
the four object classes. Specifically, the training data of taillight is
much less than that of headlight and streetlight, due to the difficulty
of collecting it. On the other hand, the “other” object class has

significantly too much data. Such unbalanced nature of the training
data has unavoidably affected the performance of the trained model.

3. The un-justified parameters (∆ and η) in the
performance metrics. Currently, the∆, which captures the
variance between different human drivers, is set to 0.25 second.
However, our study on driver variance shows that it could go up to
2 seconds. Moreover, an even bigger variance between drivers from
different countries has been observed. On the other hand, since
some scenario like missing deactivation is more severe than others
like late deactivation, we may consider using different weighting
factors (η) accordingly.

7. CONCLUSION AND FUTURE WORK
A three-level decision framework is proposed in this paper which

aims to automatically control the switch between high beam and
low beam of an automobile during a night drive using a forward-
facing camera sensor. Specifically, it consists of an image blob de-
tector at the lowest level, an SVM-based blob learning and recogni-
tion module in the middle, and a frame-level decision making at the
highest level. Various types of information including image, video
and driving context, has been exploited to achieve the task.

Extensive offline evaluation as well as some online evaluation
have proved the effectiveness of the proposed framework. On the
other hand, the current performance is still lagging behind the lead-
ing IHC product on the market, and we are planning to improve the
system performance in the following ways: 1) enhance the current
blob detector so as to detect both bright (HL- and SL-like) and dim
(TL-like) blobs; and 2) train the SVM model with weighting fac-
tors so as to accommodate the un-balanced training data, or to try
multiple binary classifiers instead of a single multi-class classifier.
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