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ABSTRACT
Head pose and gesture offer several conversational ground-
ing cues and are used extensively in face-to-face interaction
among people. To accurately recognize visual feedback, hu-
mans often use contextual knowledge from previous and cur-
rent events to anticipate when feedback is most likely to
occur. In this paper we describe how contextual informa-
tion from other participants can be used to predict visual
feedback and improve recognition of head gestures in multi-
party interactions (e.g., meetings). An important contribu-
tion of this paper is our data-driven representation, called
co-occurrence graphs, which models co-occurrence between
contextual cues such as spoken words and pauses, and visual
head gestures. By analyzing these co-occurrence patterns
we can automatically select relevant contextual features and
predict when visual gestures are more likely. Using a dis-
criminative approach to multi-modal integration, our con-
textual representation using co-occurrence graph improves
head gesture recognition performance on a publicly available
dataset of multi-party interactions.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Motion; I.2.7 [Artificial Intelligence]: Natural
Language Processing—Discourse

General Terms
Algorithms

Keywords
Co-occurrence graphs, Contextual information, visual ges-
ture recognition, human-human interaction

1. INTRODUCTION
During multi-party interactions such as in meetings, infor-

mation is exchanged between participants using both audio
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and visual channels. Visual feedback can range from a sim-
ple eye glance to a large arm gesture or posture change. One
important visual cue is head nod during conversation. Head
nods are used for displaying agreement, grounding informa-
tion or during turn-taking [6, 7].

People do not provide feedback at random. Rather they
react to the current topic, previous utterances and the speaker’s
current verbal and nonverbal behavior [1]. More gener-
ally, speakers and listeners co-produce a range of lexical,
prosodic, and nonverbal patterns. Such feedback is an es-
sential and predictable aspect of natural conversation and
its absence can significantly disrupt participants ability to
communicate [3, 29]. Recognizing these visual gestures is
important for understanding all the information exchanged
during a meeting or conversation, and can be particularly
crucial for identifying more subtle factors such as the effec-
tiveness of communication [24], points of confusion, status
relationships between participants [25], or the diagnosis so-
cial disorders [20]. Our goal is to automatically discover
these patterns using only easily observable features of hu-
man face-to-face interaction (e.g. prosodic features and eye
gaze), and exploit them to improve recognition accuracy.

In this paper we describe how contextual information from
other participants can be used to predict visual feedback and
improve recognition of head gestures in multi-party interac-
tions (e.g., meetings). An important contribution of this pa-
per is our contextual representation based on co-occurrence
graphs which models co-occurrence between contextual cues
such as spoken words and pauses, and visual head gestures.
By analyzing these co-occurrence patterns, we show how to
automatically select relevant contextual features and predict
when visual gestures are most likely.

The following section describes previous work in visual
gesture recognition and explains the differences between our
context-based approach and other recognition models. Sec-
tion 3 discusses the contextual information available during
multi-party interactions. Section 4 introduces co-occurrence
graphs and Section 5 describes how to use them to encode
contextual information. Section 6 presents the way we col-
lected the data used for training and evaluating our model
as well as the methodology used to evaluate the performance
of our approach.

2. PREVIOUS WORK
Head pose and gesture offer several key conversational

grounding cues and are used extensively in face-to-face in-
teraction among people. Stiefelhagen developed several sys-
tems for tracking face pose in meeting rooms and has shown



that face pose is very useful for predicting turn-taking [22].
Takemae et al. also examined face pose in conversation and
showed that if tracked accurately, face pose is useful in cre-
ating a video summary of a meeting [23]. Siracusa et al.
developed a system that uses head pose tracking to inter-
pret who was talking to who in conversational setting [21].
The position and orientation of the head can be used to
estimate head gaze which is a good estimate of a person’s
attention.

Recognition of head gestures has been demonstrated by
tracking eye position over time. Kapoor and Picard pre-
sented a technique to recognize head nods and head shakes
based on two Hidden Markov Models (HMMs) trained and
tested using 2D coordinate results from an eye gaze tracker [11].
Kawato and Ohya suggested a technique for head gesture
recognition using between eye templates [12]. Fujie et al.
also used HMMs to perform head nod recognition [8]. In
their paper, they combined head gesture detection with prosodic
low-level features computed from Japanese spoken utter-
ances to determine strongly positive, weak positive and neg-
ative responses to yes/no type utterances.

Several researchers have developed models to predict when
backchannel should happen based mostly on unimodal in-
puts. Ward and Tsukahara [28] propose a unimodal ap-
proach where backchannels are associated with a region of
low pitch lasting 110ms during speech. Models were pro-
duced manually through an analysis of English and Japanese
conversational data. Nishimura et al. [19] present a uni-
modal decision-tree approach for producing backchannels
based on prosodic features. The system analyzes speech in
100ms intervals and generates backchannels as well as other
paralinguistic cues (e.g., turn taking) as a function of pitch
and power contours. Cathcart et al. [4] propose a unimodal
model based on pause duration and trigram part-of-speech
frequency. Lee and Marsella [13] mixed a trigram repre-
sentation and HMMs to predict speaker’s head nods. The
model was constructed by identifying, from the HCRC Map
Task Corpus [2], trigrams ending with a backchannel. In
contrast to these gesture generation systems, our approach
uses the contextual information from other participants to
improve gestures recognition.

Context has been previously used in computer vision to
disambiguate recognition of individual objects given the cur-
rent overall scene category [26]. In contrast to the idea of
fusing multiple modalities from the human participant to
improve recognition (e.g., Kaiser et al. work on multi-modal
interaction in augmented and virtual reality [10]), our ap-
proach takes its contextual information directly from the
other human participants. More closely related, Morency et
al. [15] encoded dialogue context using a static set of encod-
ing templates to improve head nod recognition during dyadic
interactions. Our work extends this approach in two main
aspects: (1) contextual representation using co-occurrence
graphs, and (2) context from multi-party interactions.

3. DIALOG CONTEXT DURING MULTI-
PARTY INTERACTIONS

Our goal is to quantify the relationship between contex-
tual information and visual gestures by looking at the time
distribution of visual gestures given a contextual event. In
our case, a contextual event can be a spoken word, a pause
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Figure 1: Examples of co-occurrence graphs. When
analyzing this relationship between head nods and
contextual events, three temporal patterns appear:
ignition, transition and negation.

or the end of a sentence. If a relationship exists between
a contextual event and a specific visual gesture (e.g., head
nod) then we will expect to see a structure in the relative
distribution. If no relationship exist, the relative distribu-
tion should be random.

We define context as the set of events happening from
other sources than the person of interest. For example, in
a multi-party conversation between four people, we define
context for one participant as the set of events coming from
the three other participants. Since our goal in this paper
is to recognize visual gestures, we focus on context events
related to spoken utterances:

∙ Prosodic cues Prosody refers to the rhythm, pitch
and intonation of speech. Several studies have demon-
strated that listener feedback is correlated with a speaker’s
prosody [19]. For example, Ward and Tsukahara [28]
show that short listener backchannels (listener utter-
ances like “ok” or “uh-huh” given during a speaker’s
utterance) are associated with a lowering of pitch over
some interval. As an approximation to prosody, the
punctuation of the transcription can be used.

∙ Pauses Listener feedback often follows speaker pauses
or filled pauses such as “um” (see [4]). Speakers will
often use pauses to get backchannel feedback from the
other participants.

∙ Lexical cues These type of contextual events include
all spoken words by other participants. Some conjunc-
tive words such as “and” will bring head nod since
one idea just ended but right after the conjunction,
head nods are less likely since a new sub-sentence (i.e.
phrases, constituent) will follow, during which visual
feedback is less likely.
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Figure 2: Cumulative number of head nods (Y axis)
in function of the time alignment with all contextual
events (X axis): spoken words, prosodic and timing.
We can observe a relationship between contextual
events and head nods between -5 and 5 seconds.
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Figure 3: Cumulative number of head shakes (Y
axis) in function of the time alignment with all con-
textual events (X axis). We can still observe a rela-
tionship between -5 and 5 seconds, but not as clear
as for head nods (most likely due to the smaller num-
ber of head shakes in our dataset).

3.1 AMI Meeting Corpus
To study this relationship between context and visual ges-

ture we looked at the annotations from the AMI meeting
corpus [5]. This corpus contains 46 meetings with anno-
tated head gestures and spoken words of all four partici-
pants1. Each meeting varies between 20-40 minutes. The
corpus contains follow-up meetings with the same partici-
pants. These series usually contain 3 or 4 meetings.

Participants were video recorded using a frontal camera
and a close-talking microphone. The video sequences were
manually annotated with spoken words, punctuation and
head gestures (head nods and head shakes). The dataset
contains 9745 head nods and 1279 head shakes. In our anal-
ysis, we used a total of 184 sequences (some meetings had
only 3 participants annotated with head gestures).

Following the context discussion of Section 3, the con-

1The corpus contains a larger number of meetings but we
used only the meetings that had both head gestures and
spoken words annotated

Figure 4: Schematic representation of the three
patterns observed when analyzing co-occurrence of
head nods and contextual events: (left) ignition pat-
tern, (middle) transition pattern and (right) nega-
tive pattern.

textual events were extracted from the spoken words and
punctuation. The lexical event were represented by specific
words and pair of words. The prosodic event were approxi-
mated by the punctuation cues annotated in each sequence.
The timing and pauses were also deduced from the punctu-
ation cues. The contextual events for a specific participant
consisted of all the lexical, prosodic and pauses events from
all 3 other participants.

4. CO-OCCURRENCE GRAPHS
Our goal is to analyze the relationship between contextual

events and visual gestures. Our approach is to create a co-
occurrence graph for each contextual event and each possible
type of visual gesture. The co-occurrence graph, centered
at the contextual event, represents how many visual gesture
instances happened around that event. The co-occurrence
graphs can be seen as temporal generalization of the co-
occurrence matrices introduced by Haralick et al. [9].

For each instance of a contextual event, we slide a window
of 0.1 second from -30 second before the event to 30 seconds
after the event. If a visual gesture happens during a specific
time window, the corresponding bin in the co-occurrence
graph is incremented. By doing this for each instance of
a specific contextual event, we get a time distribution of
visual gesture given the contextual event. Figures 1 shows
examples of co-occurrence graphs for different contextual
events.

Figures 2 and 3 show cumulative co-occurrence graphs for
head nods and head shakes. The cumulative co-occurrence
graph for head nods shows an interesting point: most of the
relationship between head nods and contextual event seems
to happen between -5 and 5 seconds. Past this time, the re-
lationship seems mostly random. The relationship between
head shakes and contextual events is not as clear, mostly
due to the smaller set of head shakes.

4.1 Patterns in Co-occurrence Graphs
By observing the co-occurrence graphs of Figure 1, three

patterns appear: ignition, transition and negation. These
patterns are illustrated in Figure 4.

∙ Ignition pattern The first pattern is the ignition pat-
tern (left) where a contextual event positively influence
visual gesture. This type of relationship means that
a visual gesture is more likely to happen around the
contextual event. This is true for the period which
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Figure 5: Top 25 contextual features. Horizontal
axis: maximum number of time a head nod hap-
pened in a window or +/-5 seconds around the con-
textual feature.

represents the end of a sentence. This is also true for
positive feed such as the word “yeah”.

∙ Transition pattern The second pattern is the tran-
sition pattern (middle) where a contextual event rep-
resents a mid-point between two phrases. This type of
relations will bring a high likelihood around or before
the event but right after the event this likelihood will
be lower. Two good examples of this type of events
are the comma and the word “and”. These events will
usually occur in the middle of a sentence, between two
constituents.

∙ Negative pattern The last pattern is the “negative”
pattern (right) where a contextual event negatively in-
fluence a visual gesture. This type of relations means
that a visual gesture is unlikely to happen after this
event. The words “the” and “to” are two good ex-
amples of this type of patterns. These words do not
bring visual feedback and usually following one of these
words will be a large number of other spoken words.

The analysis of the co-occurrence graphs shown in Fig-
ure 1 confirm our intuition that the context is related to
visual feedback (e.g., head nods). Also, these co-occurrence
graphs contains patterns that can potentially help to recog-
nize when a specific gesture is more likely.

4.2 Co-occurrence Ranking of
Contextual Features

A good contextual feature is an event (1) that happens
on a regular basis so that there is a good chance to see this
same event in a new meeting, and (2) that is related to vi-
sual feedback. One criterium that includes both advantages
is the maximum number of co-occurrence between the con-
textual event and the visual gesture. This criteria is equal
to the maximum peak of each co-occurrence graphs.

Figure 5 shows the top 25 contextual features. The top
feature is the period, which usually represent the end of a
sentence. This goes with our intuition that people usually
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You know , things might be...But we might as well .

... about yourself and then draw your ...

Yeah .

'I think it’s a lot to do with ...You should also...

let’s go to the user interface...

Uh just a real quick ...

Figure 6: Examples of contextual representation
using co-occurrence graphs. Taken from the AMI
dataset, each plot shows a spoken utterance (from
one of the meeting participant) and underneath how
context was encoded. The sentences are centered
around a specific contextual event shown in bold
(same as in Figure 1).

do grounding gesture at the end of a sentence. Also the
second feature is the comma which represents a pause in a
sentence. Pauses are also good timing for grounding gesture.
The other top contextual features are more interesting since
they are lexical features and bring interesting questions as
why they are related with visual gestures. The following
section shows how using co-occurrence graphs to represent
contextual features brings an intuitive feature representa-
tion.

5. CONTEXTUAL REPRESENTATION
USING CO-OCCURRENCE GRAPHS

Based on the observed relationship between contextual
events and visual gestures, in this section we present our
contextual representation using co-occurrence graphs. Our
goal is to encode contextual events so they keep their rela-
tionship with the visual gesture only when the relationship
is strong and useful.

As we observed earlier in the co-occurrence graphs, most
of the variation happens between -5 and 5 seconds. For
this reason, we define an inlier region (between -5 and 5
seconds) and an outlier region (outside -5 and +5 seconds).
The outlier region represents the number of visual gestures



randomly happening when the contextual event does not
have influence. The mean value in the outlier region can be
used as an estimate of this randomness.

The first step for computing the contextual representation
of an event is to re-center the co-occurrence graph by sub-
tracting the mean from the outlier region. By doing so, the
contextual feature will be set to zero if no (or random) in-
fluence. The final step is to re-scale the inlier co-occurrence
graph to be contained between 1 and -1. Figure 6 shows the
final representation of the top 10 contextual events.

During encoding of a new sequence, the value of a con-
textual feature will be computed from the time between the
current frame and the contextual event. If more than one
contextual event happens in short time, the highest value is
kept. If no contextual event happened in the last 5 seconds,
then the value for this contextual feature is zero.

Figure 6 shows examples of sentences from the AMI meet-
ing dataset. The sentences are placed so that the contextual
event is centered at zero. This figure gives concrete exam-
ples of the relationship between context and its feature rep-
resentation. Also, we can see how the three feature patterns
described earlier apply to different sentences.

6. EXPERIMENTS
We performed experiments to compare our context-based

recognition approach with a vision-only approach and context-
only approach.

6.1 Dataset
For our experiments, we used the AMI meeting corpus [5]

introduced in Section 3.1 which contains 46 different meet-
ings. The first four meetings were used to train and test our
visual gesture recognizer while the last 42 meetings were
used for computing the co-occurrence graphs as described
in Section 5. The total number of head nods in the first four
meetings was 1176 while only 103 head shakes occurred. The
results presented in Section 6.4 are for head nod recognition.

The video sequences from the first four meetings were pro-
cessed using the Watson software [17] to obtain the head
position and orientation of each participant in real-time.
Watson tracks the 6 degrees-of-freedom head pose using a
using a framework called Adaptive View-Based Appearance
Model with an average accuracy of 3.5∘ and 0.75in. The
library also recognizes two head gestures using a support
vector machines (SVMs): head nods and head shakes. The
head tracker is automatically initialized using frontal face
detection [27]. Two participants had to be left out because
of tracking problems (e.g., occlusion).

6.2 Context Integration
Following [18], we adopt a late fusion approach for context-

based recognition where first contextual prediction and vision-
only recognition are done independently and then their re-
sults are combined by a third module called multimodal
integrator. The contextual predictor outputs a likelihood
measurement at the same frame rate as the vision-only rec-
ognizer so that the multi-modal integrator can merge both
measurements. This late fusion approach has the advan-
tage that contextual predictor can be trained on a different
dataset then the multimodal integrator.

For the contextual predictor and the multimodal inte-
grator, we use Latent-Dynamic Conditional Random Field
models as it was shown in [14] to be well suited for context-
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Figure 7: ROC curves of head nod recognition com-
paring our context-based model to a vision-only
technique. The contextual events were encoded us-
ing co-occurrence graphs (described in Section 5).

based recognition. The LDCRF classifiers were trained us-
ing the objective function described in [16]. During evalua-
tion, we compute ROC curves using the maximal marginal
probabilities. During training, the number of hidden states
per label (from 2 to 6 states per label) and the regulariza-
tion term (with values 10k, k = −3..3) were selected auto-
matically using the validation set.

6.3 Methodology
The experiments were performed using a leave-one-out

testing approach. For validation, we did holdout cross-
validation where a sequence is randomly picked from the
training set and kept for validation. The optimal validation
parameters (number of hidden states and regularization fac-
tor) were picked automatically based on the equal error rate
on the validation set.

The dataset contained an unbalanced number of gesture
frames compared to background frames. To have a balanced
training set and to reduce the training time, the training set
was preprocessed to create a smaller dataset containing an
equal number of gesture and background examples. The
training set contained subsequences from either the back-
ground class, or from the gesture class with a buffer of back-
ground frames before and after the gesture. The size of the
buffer before and after the gesture randomly varied between
2 and 50 frames. Background subsequences were randomly
extracted from the original sequences with length varying
between 30-60 frames.

6.4 Results
We compared our context-based recognition approach to

a vision-only algorithm and context-only approach. Fig-
ure 7 shows the ROC curves comparing our context-based
approach with a vision-only technique. The ROC curves
present the detection performance for both recognition al-
gorithms when varying the detection threshold. Pairwise
one-tailed t-test comparison show a marginally significant
difference between the two approaches, with p = 0.05 for



the equal error rate. We should note that while 42 inter-
actions were used to create our co-occurrence graphs, only
4 interactions were used for the testing. We can expect a
better statistical significance as we increase the number of
test sequences.

Our experiments show that by using a contextual repre-
sentation based on co-occurrence graphs, contextual infor-
mation from other participants can improve the performance
of vision-based gesture recognition.

7. CONCLUSION
In this paper we described how contextual information

from other participants can be used to predict visual feed-
back and improve recognition of head gestures in multi-party
interactions (e.g., meetings). An important contribution
of this paper was our contextual representation based on
co-occurrence graphs which models co-occurrence between
contextual cues such as spoken words and pauses, and vi-
sual head gestures. By analyzing these co-occurrence pat-
terns we automatically selected relevant contextual features
and predicted when visual gestures was most likely. Using
a discriminative approach to multi-modal integration, our
data-driven context representation improved head gesture
recognition performance.
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