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ABSTRACT
Object recognition from images in a home environment is challeng-
ing since the object usually has low resolution in the image and the
scene is usually cluttered. However, many objects have specific
functions to the user and the interactions between the user and the
object provides useful contextual information to recognize the ob-
ject. In this paper, we use Markov logic network (MLN) to model
such context information as relationship between the objects and
user activities. We demonstrate that Markov logic network pro-
vides a flexible way in the syntax of first-order logic to incorporate
relational context information. It is also a probabilistic graphical
model which handles uncertainty in the knowledge base, observa-
tions and decisions. In our experiment, objects in the living room
and kitchen in a home are recognized based on only user’s activity.
The user’s activity is analyzed from images of cameras installed in
the home. Relationship between user activity and objects is defined
in a knowledge base with MLN. Experiments show that objects in
the home can be recognized irrespective of their position, size and
appearance in the image.

Categories and Subject Descriptors
I.4.8 [Scene Analysis]: Object recognition; I.2.4 [Knowledge Rep-
resentation Formalisms and Methods]: Relation systems

General Terms
Algorithms

Keywords
Object recognition, statistical relational models, smart homes

1. INTRODUCTION
Most approaches for object recognition from images are based

on image features such as local appearance models, grouping geo-
metric primitives [3, 7] and image contexts [10]. However, many
objects in the environment such as chairs and desks have varied ap-
pearance and shapes. It is difficult to recognize such objects with
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fixed appearance models. On the other hand, many objects are in-
trinsically defined by their functions to users which entails a cer-
tain human activity associated with them. In this situation, user
activities and their relationship with the objects are important con-
text information to recognize such objects. Methods on recogniz-
ing objects by observing human activities have been investigated in
previous works [11, 5, 6]. In [5], Moore et al. propose to use exist-
ing objects in the scene as context information to suggest specific
models to recognize activities. They also use context information
of other objects in the scene and user activities to recognize un-
known objects. Veloso et al. define object classes with affordance
properties and recognize them through human interactions [11]. In
[6] image region patches are classified into object categories in an
office room also by observing human interactions.

One common feature of the above work is the use of prior knowl-
edge, in which the objects are defined through their interaction with
humans. The above methods use Bayesian networks to model such
relationships. While Bayesian network is a powerful tool for rela-
tional models, design of such a model becomes increasingly diffi-
cult when the number of objects/activities becomes large.

In this paper we propose to use a statistical relational model –
Markov logic network to incorporate user activity as context infor-
mation for object recognition. A knowledge base of user interac-
tions with objects is constructed. In smart environment applica-
tions, context information is often conveniently expressed as rules
and is often relational. Such relationships can be effectively repre-
sented in MLN in the syntax of first-order logic. A Markov logic
network combines both probability and first-order logic [8]. First-
order logic intuitively and compactly represents knowledge, while
the probabilistic graphical model handles uncertainty effectively.
With a Markov logic network it is flexible to construct or mod-
ify our prior knowledge on relations, since they are in the form of
first-order logic formulas, while working directly on the graphical
model itself can be difficult especially when the size of the model
is large.

The system proposed in this work consists of three parts. 1. An-
alyze user’s activity through a camera network. 2. Model prior
knowledge of object functions in Markov logic network. 3. Infer
location and identity of objects from observations of user activity.
Instead of segmenting the image and labeling patches, we calculate
the user’s position in the room with calibrated cameras, and then
infer the objects’ location in the room coordinate.

The rest of the paper is organized as follows. In Sec. 2, we differ-
entiate relationships between objects and user activities into three
types, and introduce the objects that are recognized in our experi-
ments. Sec. 3 presents the MLN knowledge base used to recognize
objects. In Sec. 4, user activity recognition and object recognition
results in our experiments are presented.
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Figure 1: Examples of the three types of relations between the
object and user pose/activity. (a) Direct relationship; (b) Spatial
relationship; (c) Temporal relationship.
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Figure 2: The Philips HomeLab floor-plan and camera views.

2. RECOGNIZING OBJECTS FROM USER
ACTIVITIES

We define three types of relationships between objects and user
activities (Fig. 1):
• Direct relationship of the object with user activities, in which

the user’s activity at time t and location l directly implies the
likelihood of an object at location l. In Fig. 1(a), the sitting and
lying activities of the user hint that there is probably a sofa, while
the appearing and disappearing places of the user are likely to be
doors.

• Spatial relationship between user activities and the object. Some-
times the user interacts with certain objects at a distance. The
activity features such as the attention region of interest give us
clues to infer the object’s existence and location. For exam-
ple, if the user is observed looking at a fixed direction for some
duration, the likelihood of a TV at that location can increase
(Fig. 1(b)).

• Temporal relationship between user activities may imply a single
or several objects. This means that to use the object a sequence
of actions are normally taken. For example, in Fig. 1(c), if the
observation is that in the kitchen the user first takes out some-
thing from a place and then puts it into another place, it is likely
that the first position implies a fridge while the second implies a
microwave.
In this paper, we describe an embodiment of our proposed method

to recognize objects in the living room and kitchen at Philips Home-
Lab. Cameras are installed on the walls, as shown in Fig. 2. Home-

Features, Attributes
foreground in images, location, height, 
motion segmentation, face detection, 
etc.

Activities
Walking, seated, lying, etc.
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Vision processing cameras

Event detection

Events
Change in room location, 
seated with local motion, 
standing still at a location, 
etc,
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Figure 3: Flowchart of the system.

Lab is part of the ExperienceLab at Philips ([1]), which is a pro-
totyping environment to experiment with various technologies. Ta-
ble. 1 lists the recognized objects in our experiment, their location
(living room or kitchen), and the type of relationship with user ac-
tivities used to define them.

2.1 Time-driven v.s. event-driven formulation
Fig. 3 shows the flow of the operation. Vision processing in each

camera extracts features from the images. The camera network is
calibrated, so geometric features such as the position and height
of the user can be calculated. A conditional random field (CRF)
is used to infer the user’s activity being walking, seated or lying,
based on features composed of aspect ratio of the foreground in the
image and the height of the user. The event generation block is used
for the event-driven formulation, and this block is skipped for the
time-driven formulation. In the highest level, observations are used
to ground the MLN into a Markov random field. For each grid of
the room, its probability of being an object type at each time step
can be inferred.

In our knowledge base, objects with direct and spatial relation-
ships (Table. 1) are defined using time-driven formulation, where
each time step is a frame. Objects with temporal relationships are
defined using event-driven formulation.

In our embodiment of the method for inferring objects in the
HomeLab, the environment under observation is divided into grids
of 50cm×50cm (Fig. 4). A dynamic model is used to reason object
type of each grid at each time step. Therefore, it is necessary to
handle sequences between time steps explicitly because MLN is a
graphical model in general but not a dynamic model. So the rela-
tionships between user activity and objects need to specify how the
object type updates based on the current knowledge of the object
type given current observation at each time step, i.e., the object type

Table 1: The following objects are recognized in the system.
living room kitchen

Direct relationship floor, chair, sofa workspace
Spatial relationship TV

Temporal relationship dining table fridge, sink



a grid

Figure 4: The environment is divided into grids. Probability of
each object type is inferred for each grid.

of gridi at time t not only depends on observations at t, but also
on the object type of this grid at time t − 1. Therefore, we need
to use a predicate “Next(t2, t1)” in MLN to indicate sequencing
in time, which means t2 is the next time step after t1. If we up-
date the object type at t based on only observations at t and the
current knowledge on the object type at t − 1, Next(t2, t1) is suf-
ficient since we only need to link neighboring time steps. We call
this the time-driven formulation since each time step has the same
length, and observations are input to MLN at each time step. Time-
driven formulation applies to direct and spatial relationship. For
objects with direct and spatial relationships, user activity of each
frame (the smallest time step for the video sequence) is input as
observation to the MLN.

However, in temporal relationship, an object may relate to a se-
quence of past observations at different time steps, and such obser-
vations have to be in order. In this case, Next(t2, t1) is unable to
describe observations not next to each other in time. So we intro-
duce another predicate “After(t2, t1)” to describe that t2 is after
t1 in time, but the interval between them can vary. Therefore, in
the event-driven formulation, events related to our knowledge base
are detected based on user activities and attributes, and such events
are input to MLN only when they occur. The sequential order of
events is indicated by the predicate After(t2, t1). Note that direct
and spatial relationships can be formulated as event-driven as well,
if we treat user activity of each frame as an action event, and input
it to MLN at each frame. Next(t2, t1) can be replaced directly
by After(t2, t1). But for temporal relationship only event-driven
formulation is able to handle time relations with varied intervals.

3. INFERRING OBJECTS WITH MARKOV
LOGIC NETWORKS

Our knowledge base of relations between objects and user activ-
ities/events is encoded in the form of MLN [8]. An MLN has the
syntax of first-order logic. It is a set of first-order logic formulas
{Fi}, with a weight attached to each of them {wi}. This weight in-
dicates confidence of the relationship represented by the formula.
With evidence an MLN is grounded into a Markov random field
(MRF). Each formula Fi corresponds to a feature function fi(X)
in the MRF, and the weight of the formula wi equals the weight for
the feature function, as in the log-linear probability density func-
tion of the MRF:

P (X) =
1

Z(w)
exp
�X

i

wifi(X)
�

(1)

where Z(w) is the partition function. The feature function fi(X)
is an indicator function. fi(X) = 1 when Fi holds given the set of
variables X, and fi(X) = 0 otherwise.

General inference methods on graphical models such as Markov
chain Monte Carlo (MCMC) may be problematic to apply to MLNs
when there are many hard constraints in the knowledge base. The
hard constraints divide the state space into separate subspaces, which
cannot be all traversed by a single run of MCMC. Even if initial-
ization is at different positions, it is difficult to guarantee a proper
coverage of all subspaces. [2] describes MC-SAT which combines
satisfiability testing and MCMC. The satisfiability solver finds the
separated subspaces by flipping the atoms (a predicate applied to
a constant or variable, which is a binary random variable in the
MRF) to maximize the number of satisfied formulas. This initial-
izes MCMC and enables it to find the correct optimal quickly. The
strength of MC-SAT is most evident when there are many hard con-
straints, which will be demonstrated in Sec. 4.2.1. The following
two sections describe the two types of formulation of our knowl-
edge base to recognize objects listed in Table. 1.

3.1 Knowledge construction for objects with
direct and spatial relationships

Our first experiment recognizes objects in the living room through
direct and spatial relationships. As in Table. 1, floor, chairs and sofa
are defined with direct relationships, and TV is defined with a spa-
tial relationship. The same knowledge base is applied to each grid,
i.e., an MLN is constructed for each grid. The knowledge base for
this experiment is listed in appendix A.

There are three predicates for this MLN:
• Hastype(obj, t) means the grid has object type obj at time t.

obj is a variable which can be one of {floor, chair, sofa, TV ,
unknown}.

• Hasact(act, t) means the user has activity act at this grid at
time t. act is a variable which takes one of {walking, seated,
lying, watching, unknown}. Here watching indicates that
this grid is in the coverage of the user’s gaze direction (inferred
from head orientation), while the user is not necessarily in this
grid. So watching spatially relates this grid with the user at a
distance.

• Next(t2, t1) is used to specify sequencing between time steps
as explained in Sec. 2.1.

3.2 Knowledge construction for objects with
temporal relationship

Our second experiment recognizes the fridge, sink and workspace
in the kitchen, and the dining table in the living room. These objects
all relate directly or indirectly to activities in the kitchen. Fridge,
sink and dining table are defined with temporal relationships, while
workspace is defined with a direct relationship. A single MLN is
constructed which reasons for all grids. The knowledge base for
this experiment can be found in appendix B.

Events relevant to the knowledge base are defined in predicates:

• EnterEvent(type, t) indicates the user changes room location
at time t. EnterEvent(type1, t) means the user enters the liv-
ing room from outside; EnterEvent(type2, t) means the user
enters the kitchen from the living room; EnterEvent(type3, t)
means the user enters the living room from the kitchen.

• ActEvent(act, t) indicates there is an event related to the user’s
activity at time t. ActEvent(SS, t) means the user is stand-
ing still; ActEvent(FS, t) means the user is standing still for
the first time after changing room location; ActEvent(SM, t)
means the user is seated with local motion observed.
Predicates representing object types include the following: IsFrdg

(grd, t) means whether a grid grd is fridge at time t. Similarly,



IsSink (grd, t), IsTable (grd, t), IsWS (grd, t) are predicates
for sink, dining table and workspace, respectively. The predicate
IsAt (grd, t) is used to specify the position of the user (at grid
grd) at time t. After (t2, t1) states that t2 is a time step after t1,
so that all the other atoms with t2 or t1 establish sequential orders.

4. EXPERIMENTS
In this section results from two experiments are described. In

the first experiment, a time-driven formulation of the knowledge
base is used to recognize floor, chair, sofa and TV in the living
room. In the second experiment, an event-driven formulation of
the knowledge base is applied to recognize the dining table in the
living room, fridge, sink and workspace in the kitchen. Activity
recognition and event generation modules are presented in Sec. 4.1.
Results of object recognition are shown in Sec. 4.2.

4.1 Analyzing Activities and Events
Based on the object types of interest and our knowledge base, the

user’s activity is classified into walking, seated, lying and unknown
with a conditional random field model (Sec. 4.1.2). Other activi-
ties such as watching and hand motion are detected separately with
different image features (Sec. 4.1.1). Human activity analysis has
been extensively studied with different image scenes, activity mod-
els and techniques. In [4] Moeslund et al. provide a comprehensive
review for various levels of activity recognition and corresponding
methods. In our sequences we face the challenge of an uncontrolled
environment, where the lighting conditions may change and occlu-
sion of the user may happen often. Besides, the image resolution
is only 320×240, and the area occupied by the user may be very
small since sometimes the user is far away from the camera. Con-
sidering the above conditions, robust low-level visual features need
to be chosen.

4.1.1 Image features
Each camera implements background subtraction with adaptive

density estimation ([12]) to retrieve the foreground. Given cali-
brated camera parameters, the position and height of the user can
be calculated from foreground bounding boxes of individual cam-
eras. If only one camera sees the user and the bounding box does
not touch the bottom of the image, the lowest edge of the bounding
box is assumed to be on the ground plane z = 0 to calculate the
position (x, y) of the person. If multiple cameras detect the user,
back-projecting the center vertical axis li of the bounding box from
the camera center Ci gives intersecting planes. The (x, y) of the in-
tersection line (which is vertical) is taken as the user’s position. So
even when the user is partially occluded by tables or chairs from the
cameras, the center axes of bounding boxes from multiple cameras
help resolve the user’s location.

In addition to the location and pose, frontal and profile faces are
detected to provide an approximate gaze direction of the user. If
a face is detected, the center-line of the gaze is taken as the user-
camera direction (in case of a frontal face) or its orthogonal direc-
tion (in case of a profile face). The gaze area is generated by adding
an angle range δ around the center-line.

Local motion is detected as indicators for hand motion when the
user is doing some tasks with hands. Motion segments with their
directions are recorded for each frame. Within a window of se-
quential frames, if the position of such segments changes within
a small region, and if the histogram of their directions is close to
uniform (hand movement is likely to have random directions), then
local motion is declared.

4.1.2 Activity recognition with CRF

Table 2: Confusion matrix of activity recognition with CRF.
walking seated lying NA

walking 0.900 0.028 0.018 0.054
seated 0.107 0.808 0.063 0.022
lying 0.004 0.116 0.794 0.086
NA 0.006 0 0 0.994

Probability 0 1

(a)

(b)

(c)

(d)

(e)

Floor NK

Floor TV

Floor TV

SofaChair

Chair Sofa

Figure 5: Probability maps of the objects at several time in-
stances (a darker grid represents higher probability). Please
refer to the text for a detailed explanation.

A temporal conditional random field is used for activity recog-
nition in our experiment. CRF is used by Sminchisescu et al. in
[9] to classify activities such as walking, jumping, running, pick-
ing or dancing based on 2D silhouettes or 3D joint positions. They
demonstrate that contextual information helps to resolve ambigu-
ities of similar gestures in the activity sequences. In our experi-
ment, there is actually no underlying model for the user’s body and
his activities, since different users may have different patterns of
walking, lying, etc. Thus a CRF model works well under this as-
sumption since it does not assume a state model. The state variable
can take walking, seated, lying or unknown. The observation is
a two-dimensional feature vector, the aspect ratio of the foreground
bounding box and the height of the user.

The CRF is trained on 6 sets of video sequences (each with 3
views) consisting of 3 subjects. Each segment is about 90 seconds
long, with a total of 6 ∗ 3 ∗ 90 ∗ 10frm/sec = 16200frames
of training samples. During inference, activity is inferred for each
camera based on its bounding box aspect ratio and the user’s height
calculated collectively by the network. The test set is the same size
as the training set. The confusion matrix of activity recognition on
the test set is shown in Table 2.

The next task is to choose the camera with the most reliable ac-
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Figure 6: Four objects are recognized after observing three
users. They are shown in four colors (Probability of the object
is shown besides the grids).

tivity inference. Choosing the camera which has the highest proba-
bility of its activity inference is problematic, since we observe that
lying is more difficult to recognize than seated, and seated is
more difficult than walking. The reasons are that when the per-
son is seated or lying on the sofa, he may be occluded from some
views, and that image features can be nonrepresentative from some
views. For example, when the person is lying, the frontal camera
detects a more discriminative bounding box, while others may have
bounding boxes confusing to other activities. Therefore we give de-
creasing priorities to lying, seated and walking. That is, if one
camera deducts lying, it is selected and the deduction is set to the
state of the user.

The recognized activity is input to the MLN as an atom Hasact
(act, t) to each grid at each frame in the time-driven formulation.

4.1.3 Event generation
In the event-driven formulation in our experiment, event gener-

ation after activity recognition is needed to extract relevant events
based on our knowledge base. The events can be easily derived
from activity (Sec. 4.1.2) and other image features and user at-
tributes (Sec. 4.1.1). The events include the following. EnterEvent
(type, t) is detected from the location of the user, assuming that
the limits of each room are defined. ActEvent (SS, t) is triggered
when the user is standing and his location doesn’t change for a
given duration. ActEvent (FS, t) describes an ActEvent (SS, t)
that follows an EnterEvent (type, t). ActEvent (SM, t) trig-
gers when the user is seated with local motion observed.

4.2 Results of object recognition from MLN
In the first experiment with time-driven formulation, evidence

atoms in the form of predicates in Sec. 3.1 are used to ground the
MLN. Weights in the MLN are learned from 6 sequences includ-
ing 3 users. Each sequence is about 1.5 mins (10 fps). The test
set includes 4 subjects with 2 sequences each. Probability of each
grid being a certain object is inferred at each time step. Fig. 5 illus-
trates object probability maps at six time instances when different
objects are discovered (the darker the grid, the higher the probabil-
ity). In Fig. 5(a), the user has been to only half of the living room.
Most parts are still not known, which can be seen from the dark
probability map of “NK”. Some floor area is revealed. In Fig. 5(b),
the user has been observed seated on the sofa chair on the right
side of the living room, on a chair at the dining table, and on the
sofa. Note that both Pr(Chair) and Pr(Sofa) get higher because of
the rule that if “Seated” is observed it is likely to be either chair
or sofa. In Fig. 5(c), the user has lied on the sofa. So in the sofa
area, Pr(Sofa) increases while Pr(Chair) diminishes. In Fig. 5(d)

Figure 7: Activity of the user and the corresponding object
probability curve. The first row shows different activities in
colors (yellow: unknown; black: walking; blue: seated; red:
lying; green: watching). Probability of object types from three
inference methods are also shown in colors (blue: floor; green:
chair; red: sofa; yellow: TV; black: unknown). The second
row shows results from MC-SAT, and the third row shows re-
sults from Gibbs sampling.

when the user begins to watch TV the possible TV area is inferred
from his gaze. It covers a big area because only three approximate
face angles (0◦,±90◦) are detected from the camera which are then
added with ±δ (e.g., ±15) degrees as the gaze range. But later on
more activity clarifies some grid identities in the possible TV area
(Fig. 5(e)). After the user sits at different places and walks around
the coffee table to exit the living room, some more area is declared
to be either chair or floor instead of TV. In the end the TV area is
further confined.

In the second experiment, an event-driven formulation is used
to recognize the fridge, sink, and workspace in the kitchen and
the dining table. Evidence atoms of the MLN are described in
Sec. 3.2. From three sequences from 3 users, the recognized ob-
jects are shown in Fig. 6. Compared to the room layout in Fig. 2,
two grids are inferred as the fridge, whereas the right grid is a false
positive. This is because our knowledge base doesn’t agree with the
user’s behavior in this case (e.g., after the user comes back from
grocery, he puts everything directly on the workspace instead of
into the fridge). Three locations of the dining table are identified,
since the three users sit at different chairs around the dining ta-
ble. The sink is correctly recognized. The three grids recognized
as workspace are either where the user cooks on the stove, or the
bench area besides the fridge where the user puts things temporar-
ily.

4.2.1 Comparison of inference methods
Fig. 7 illustrates an example of performance comparison between

MC-SAT and Gibbs sampling on inference on MLN. The sequence
of observations are walking, seated, and lying with different du-
rations. The result of MC-SAT shows that before frame 16 Pr(floor)
rises, then Pr(chair) and Pr(sofa) rise with the same speed (since
only the seated action is observed), and finally the lying activity
increases Pr(sofa) and decreases all others. But Gibbs sampling
does not yield correct inference as defined in the knowledge base,
since the samples are initialized in the wrong subspace.

5. CONCLUSION
In this paper we consider user activities as context information to

recognize objects in a home environment. This involves modeling
prior knowledge of the relationship between the user’s activity and
objects. We use a Markov logic network to construct the knowl-
edge base since it allows for intuitive and scalable construction of
rules in first-order logic formulas. The knowledge base constructed



in our experiments is described. The whole system consists of fea-
ture extraction in the camera network, activity recognition with a
CRF model, and object category inference with MLN. Experiments
show that the system is able to locate objects that are defined in the
knowledge base in the room coordinate.

Appendix A: Knowledge base of MLN – the time-driven for-
mulation

1. The user’s activity and the grid’s object type are mutually
exclusive.
∞ (ac!=ac’)∧Hasact(ac,t)⇒¬Hasact(ac’,t)
∞ ∀t ∃ac Hasact(ac,t)
∞ (ob!=ob’)∧Hastype(ob,t)⇒¬Hastype(ob’,t)
∞ ∀t ∃ob Hastype(t,ob)

2. If the activity is walking, it indicates that the grid is floor. wi

Hasact(walking,t) ∧ Hastype(obji,t’) ∧ Next(t,t’) ⇒ Hastype
(floor,t). wi corresponds to different obji, which can be walk-
ing, seated, lying, unknown.

3. If the activity is seated, it increases likelihood of the grid be-
ing chair and sofa, given that current knowledge of the grid
is unknown. However, if the grid is already sofa, it doesn’t
change its object type. wi Hasact(seated,t) ∧ Hastype (un-
known,t’) ∧ Next(t,t’) ⇒ Hastype(sofa,t) ∨ Hastype(chair,t).
∞ Hasact(seated,t) ∧Hastype(sofa,t’) ∧Next(t,t’)⇒ Hastype
(sofa,t).

4. If the activity is lying, it increases the probability of the grid
being sofa. wi Hasact(lying,t) ∧Hastype(obji ,t’)∧ Next(t,t’)
⇒ Hastype(sofa,t).

5. If the grid is under the gaze range of the user, and there
haven’t been other activities on this grid so far, then it is
likely to be TV. wi Hasact(watching,t) ∧ (Hasact(unknown,t’)
∨ Hasact(TV,t’)) ∧ Next(t,t’) ⇒ Hastype(TV,t).

6. If there is no activity, do not change any inference. ∞ Has-
act(unknown,t) ∧Hastype(ob,t’) ∧ Next(t,t’)⇒ Hastype(ob,t).

Appendix B: Knowledge base of MLN – the event-driven for-
mulation

1. Consider the situation when the user comes home from gro-
cery. If he first enters the living room from outside, then
goes directly to the kitchen, and then stays at a location, it
is possibly the fridge where he puts the grocery in. There
is a pair of formulas. The first is w1 EnterEvent(type1,t1)
∧ EnterEvent(type2,t2) ∧ After(t2,t1) ∧ ActEvent(FS,t3) ∧
IsAt(g,t3) ∧ After(t3,t2) ∧ IsFrdg(g,t2) ⇒ IsFrdg(g,t3). The
second formula is very similar to the first, but it changes the
last atom on the left hand side IsFrdg(g,t2) into !IsFrdg(g,t2),
and the weight to w2. The difference between the two formu-
las is that it updates our belief on fridge differently given the
current knowledge of it being or not being a fridge. We as-
sign a bigger value to w1 than w2, since in the first formula,
the events confirm our previous knowledge that this grid is a
fridge.

2. If the user goes from the kitchen to the living room, and
then sits at a location, with local motion observed, he is as-
sumed to be eating at a dining table. There is a pair of for-
mulas as well. The first one is w3 EnterEvent(type3,t1) ∧
ActEvent(SM,t2) ∧ IsAt(g,t2) ∧ After(t2,t1) ∧ IsTable(g,t1)
⇒ IsTable(g,t2). The second one changes IsTable(g,t1) to
!IsTable(g,t1) and w3 to w4.

3. If the user is first observed seated with local motion, then he
goes to the kitchen and stops at a location, he is assumed to
be eating at the beginning and then puts plates into the sink
in the kitchen. w5 ActEvent(SM,t1) ∧ EnterEvent(type2,t2)

∧ After(t2,t1) ∧ ActEvent(FS,t3) ∧ IsAt(g,t3) ∧ After(t3,t2)
∧ IsSink(g,t2) ⇒ IsSink(g,t3). The second formula changes
IsSink(g,t2) to !IsSink(g,t2), and w5 to w6.

4. If the user stays still at certain locations in the kitchen, they
are workspace. w7 ActEvent(SS,t2)∧ IsAt(g,t2)∧ After(t2,t1)
∧ IsWS(g,t1) ⇒ IsWS(g,t2). The second formula changes
IsWS(g,t1) to !IsWS(g,t1), and w7 to w8.
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