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ABSTRACT
One of many skills required to engage properly in a conversa-
tion is to know the appropiate use of the rules of engagement.
In order to engage properly in a conversation, a virtual hu-
man or robot should, for instance, be able to know when
it is being addressed or when the speaker is about to hand
over the turn. The paper presents a multimodal approach to
end-of-speaker-turn prediction using sequential probabilistic
models (Conditional Random Fields) to learn a model from
observations of real-life multi-party meetings. Although the
results are not as good as expected, we provide insight into
which modalities are important when taking a multimodal
approach to the problem based on literature and our own
results.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Discourse; I.2.11 [Artificial Intelligence]: Distribu-
ted Artificial Intelligence—Intelligent agents

General Terms
Performance, Theory

Keywords
Multimodal, End-of-Turn Prediction, Machine Learning

1. INTRODUCTION
With recent advancements in human-like robotics [26, 19]

and virtual humans the age of active androids in our society
draws nearer. Before this age is here, a lot of research will
be needed to be able to generate human-like conversational
behavior that is as fluent as real-life conversations between
humans. Over the years many dialogue systems have been
developed. In the eighties and nineties of the previous cen-
tury most of these relied on speech or keyboard input and
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produced either speech or text output only. The TRAINS
dialogue system can be considered a classic example [28].
Since the start of this century the study and development of
embodied conversational agents and humanoid robotics has
lead to consider also nonverbal means of communication in
tandem with speech and natural language [6] (see also the
proceedings of the Intelligent Virtual Agents conference).

Engaging properly in a conversation requires many skills.
On the input side, it involves skills such as being able to pro-
cess the speech, understand what is being said and inferring
what is intended. In making a contribution to a conversation
one not only needs to be able to formulate and articulate an
utterance properly, but also needs to know the proper rules
of engagement, i.e. knowledge of when it is appropriate or
desired to say something. For this a robot or virtual human
should know when it is being addressed or when the speaker
is about to hand over the turn. This latter point is what we
will address in this paper.

Most current dialogue systems are purely reactive when it
comes to deciding when it is their turn to speak. They sim-
ply (or mainly) rely on the detection of a significant pause in
the speech of the speaker to determine when to start a con-
tribution. In real life conversations, people may anticipate
the ending of a turn from what is being said or from par-
averbal and nonverbal cues. Thus they may start as soon as
the turn ends or even before the end of a turn with the next
contribution. This idea of anticipation can already be found
in Sacks et al. [25] account of turn-taking. In this paper
the authors claim that turn-taking decisions must be based
to some extent on prediction of end-of-speaker-turns that
does not depend on pauses because pauses between turns
are sometimes shorter than pauses within turns. Consider-
ing this, reactive systems are prone to make errors using a
pause threshold as ‘the’ cue for turn-taking. Instead, a pre-
dictive model needs to be developed in order to improve the
turn-taking behavior of dialogue systems.

In this paper we present a multimodal probabilistic ap-
proach to the prediction of end-of-speaker-turns in multi-
party meetings. In Section 2 we will discuss the state of the
art in the field of end-of-speaker-turn prediction and how
our approach differs from previous research. Our approach
is explained in more detail in Section 3. The methodology
we used for our experiments is reported in Section 4 and
the results of these experiments are discussed in Section 5.
We conclude this paper with suggestions for future work in
Section 6.
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2. RELATED WORK
We are not the first to tread on the path of end-of-speaker-

turn prediction. Schlangen [27] tried to predict end-of-spea-
ker-turns using a machine learning approach. In his work he
used prosodic and syntactic features to learn a model which
classified words to be the ‘last word’ in a turn or not and
compared the results of his system to humans performing
the same task. He made comparisons between approaches
which use pause thresholds and shows that the problem in-
creases in complexity when no pause information is available,
thus shifting the problem from detection to prediction. He
reaches an F1 score of 0.355 in the condition that no pause
information is used.

Atterrer et al. [2] expand on the work of Schlangen by
introducing more syntactic features to the feature set. The
study also focuses more on end of utterance prediction in-
stead of end-of-speaker-turn prediction. Although they call
their research detection their approach could as well be called
prediction, since no information of pause at the end of an ut-
terance is used, only features that are available from the turn
itself. They compare results between the prediction of end
of utterance words for utterances which are turn internal
and utterances which are turn final. Furthermore the au-
thors compare results between different feature sets. They
reach an F1 score of 0.564 with a feature set using word/POS
n-gram features.

When detection is considered instead of prediction, higher
F1 scores are achieved. Fuentes et al. [11] report an F1 score
of 0.841. The authors utilize left-right-filters for the gener-
ation of their features. Since information from the future is
used in their approach, it is not suitable for real-time dia-
logue systems. Fung et al. [12] report an F1 score of 0.679
for English spoken conversations. They report that pause is
their best feature, a feature which we do not intent to use,
since we are interested in predicting end-of-speaker-turns.

Note that all these studies look at two person face to face
conversations, whereas we will look at multiparty interac-
tion.

To the best of our knowledge no computational approach
up until now, whether it entails prediction or detection of
end-of-speaker-turns, have combined prosodic and syntacti-
cal features with visual cues. This is remarkable since the
literature has proposed several visual cues that play a role
in turn-taking.

Barkhuysen et al. [3] performed a study in which they
compare the performance of humans in the task of end of
utterance detection by providing them fragments of utter-
ance varying in length from 1 to 2 words. These fragments
were played to the participants with auditory cues only, vi-
sual cues only or both auditory and visual cues. They found
that humans performed best when having both modalities
available to them. Although differences are small, humans
performed better with only visual cues than with only au-
ditory cues. This supports our feeling that incorporating
visual cues to end-of-turn prediction is key to mastering the
task.

One of the visiual cues relevant for turn-taking is gaze
behavior. Duncan [9], Kendon [17], Argyle and Cook [1],
amongst others have studied the relation between gaze and
turn-taking. According to this research speakers tend to
look away from the listener as a turn begins and towards
the listener when the turn draws to a close. In the study by
Cassell et al. [7] it appeared that information-structure is

an important factor in this behavior. Goodwin [13] also dis-
cussed several patterns of gaze related to the start of turns.
For instance, at the start of a turn, a speaker may gaze to
the addressees to check whether they are paying attention
and pause or restart when this is not the case.

The shift in focus of attention signaled by gaze is often
accompanied by a head shift [10]. It has also been observed
that speakers often make tiny nods or shakes at the end of
questions, eliciting confirmation from the addressees [15, 14,
24]. Barkhuysen et al. [3] found in their fragments that turn-
final fragments included more head nods than non turn-final
fragments.

Given these observations we decided to consider a multi-
modal approach including visual cues.

3. APPROACH
The goal of our research is to predict the end of a speaker

turn based on multimodal features. The model we use to
predict the end of a speaker turn is introduced by Morency
et al. [21, 20]. Based on multimodal features this model is
able to learn human behavior from recordings of real life
conversations between humans through means of machine
learning. The approach uses sequential probabilistic models
such as Conditional Random Field [18] and Hidden Markov
Models [23] to learn the relations between the observations
from the real life conversations and the desired behavior.

In this approach the observations are represented by fea-
tures which are sampled at a frame rate of 30Hz. From
these features a model is inferred. The learned model re-
turns a sequence of probabilities. The probabilities returned
by the model are smoothed over time. The model can be
used for generation by identifying peaks in this probability
curve. These peaks represent good opportunities to display
the learned behavior. The height of the peak can be used as
the predicted probability of this opportunity. This proba-
bility can be used to adjust the expressiveness of the model.

This model has proven to improve the state of the art in
backchannel prediction and generation [21] as well as back-
channel recognition [20]. Since the comparable nature of the
task at hand we deem this approach suitable to predict the
end of a speaker turn.

4. EXPERIMENTS
In this section the experiments we conducted are dis-

cussed. In Section 4.1 the data set we used for our experi-
ments is described. What we define as features and which
features we derived from the data set is explained in Sec-
tion 4.2. The way we use these features is explained in Sec-
tion 4.3 and finally the methodology used for the machine
learning is presented in Section 4.4.

4.1 Data
For the experiments we use the AMI Meeting Corpus [16].

This is a multimodal data set consisting of 100 hours of meet-
ing recordings. From this data set we use the 14 meetings1

for which dialogue act, focus of attention and head gesture
annotations are available. We use the close-talking micro-
phone audio recordings for the audio based features.

1These meetings are: ES2008a, IS1000a, IS1001a, IS1001b,
IS1001c, IS1003b, IS1003d, IS1006b, IS1006d, IS1008a,
IS1008b, IS1008c, IS1008d and TS3005a
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Each meeting has 4 participants. Since we only use the
features of the individual speaker for end-of-turn prediction
at this point we can regard each participant in a meeting as
a separate session. This gives us 56 (= 4 × 14) sequences
totalling approximately 24 hours of usable data.

4.2 Feature Extraction
We define a feature as a series of events. An event is

defined as the time window (defined by a start and end time)
in which the criteria describing the feature are met. Using
this structure we can capture the different modalities in a
uniform format. This makes the addition of extra modalities
to our model an easy process.

From the data set we extract a total of 40 features which
are divided into 4 modalities. In Table 1 an overview of the
features is presented.

The first modality of features concerns the dialogue act
annotations. We extracted the features in this modality us-
ing the annotations available in the AMI Meeting Corpus.
Annotators have divided the meetings into segments and la-
belled each segment with the dialogue act according to the
coding scheme. The coding scheme identifies 15 different
dialogue acts [16], namely Inform, Offer, Suggest, Assess,
Comment, Elicit Inform, Elicit Offer, Elicit Assess, Elicit
Comment, Backchannel, Stall, Fragment, Be Positive, Be
Negative and Other. We use 14 of these dialogue acts as
features for our model. The only dialogue act we do not use
in our experiments is Other. This dialogue act is not useful
in the prediction model of end of turn. Even if it proves to
be useful, there is no way to use it in a real life system since
it is basically the garbage bin of the coding scheme.

The second modality of features is focus of attention. The
features in this modality are also extracted using the anno-
tations available in the AMI Meeting Corpus. In the coding
scheme seven relevant places are identified and the eye gaze
of the participants are labelled according to them [16]. These
seven places are Participant A, Participant B, Participant C,
Participant D, Table, Slidescreen, Whiteboard. We use each
of these seven places as a feature. We add an eighth feature
which we calculate by combining the features Participant A,
B, C and D. We argue that it is not relevant whether the
speaker is looking at participant A or B, but the fact that
he/she is looking at a person. By combining the four fea-
tures of the individual persons we capture this information.

The third modality of features are head gestures for which
we also use the annotations from the AMI Meeting Cor-
pus. These annotations reflect the intention of the produced
head gesture rather than form of the gesture. In the cod-
ing scheme a distinction is made between the communicative
head events and the remaining head events [16]. We only use
the six communicative head events. These events are Con-
cord, Discord, Negative, Turn, Deixis and Emphasis. Note
that the turn event is a head gesture from a listener to take
the speaking turn rather than from the speaker to keep the
speaking turn.

The final modality are the prosodic features we extracted
from automated computations of pitch and intensity of the
audio signal. For this computation we used PRAAT version
5.1.03 [4]. We extracted the signals at 10ms intervals. From
these raw signals we extracted 12 features, 6 based on the
pitch signal and 6 based on the intensity signal. The features
we extract from these signals are partially based on the work
of Ward et al. [31].

After calculating the raw pitch signal at intervals of 10ms
and with a lower and upper boundary for 50Hz and 500Hz
respectively, we cleaned up the signal as PRAAT calculated
pitch at times at which no speech was present, but only
breathing into the microphone. The pitch values of those
moments were between 50 and 150 Hz. Therefore we decided
to filter out all pitch values below 150 Hz.

The first feature we derived from the pitch signal is Pit-
ched. An event in this feature starts when the signal becomes
larger than 0 and ends when it becomes 0 again. The next
features are Rising Pitch and Falling Pitch. These events
start when the pitch rises or drops for at least 100ms and end
when they stop rising or falling. The next two features are
Fast Rising Pitch and Fast Falling Pitch. These events start
when the pitch rises or drops at least 10Hz every 10ms for at
least 50ms. Another pitch feature is Low Pitch. These events
start when the pitch drops below a certain threshold and
stays there for at least 100ms. The threshold is determined
by the taking the mean of the lowest encountered pitch and
average pitch of the speaker. The final pitch feature is High
Pitch. The threshold of this feature is obtained by taking
the mean of the average pitch and the highest encountered
pitch. Events started after the pitch is above this threshold
for at least 100ms.

The first feature we derived from the intensity signal is
Intensity Above Noise. An event of this feature starts when
the intensity level rises above the standard noise level. The
threshold of the noise level is determined by calculating the
histogram of the intensity signal and smoothing it. We look
up the first local minimum and use this as our threshold.
The events in the feature Long Intensity start when the in-
tensity rises above noise level for at least 700 ms. Just as
with the pitch feature we also have Rising Intensity and
Falling Intensity which record moments of at least 50ms of
rising or falling intensity. The features Fast Rising Intensity
and Fast Falling Intensity records events of at least 30ms of
rising or falling intensity by at least 5 dB per frame.

The class feature we use for learning is based on the dia-
logue act annotations. O’Connell et al. [22] define a turn as
follows: “all of the speech of one participant until the other
participant begins to speak”. This formed a first condition
for our definition of turn. But someone may interrupt the
speaker while the turn was not yet finished. We therefore
also required that the speaker had finished his dialogue act.
Backchannels or other short utterances are also included in
this definition. However as we are more interested in pre-
dicting the end of a longer utterance we only looked at turns
longer than 5 seconds. Since we are interested in predicting
the end of a turn we label the last second of a turn as our
class feature. Our data set contains a total of 1327 class
labels.

4.3 Feature Representation
We represent the events of each feature in more than one

way to enrich the information provided by each feature.
This is done by using the encoding dictionary introduced
by Morency et al. [21, 20]. By representing the events in
various ways we simulate the different kind of relationships
the feature may have with the to be predicted behavior. We
use three different encoding templates for our features and 9
different encodings in total. These encoding templates and
the number of encodings we use of each template are:
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Modality Source Features

Inform, Offer, Suggest, Asses, Comment, Elicit Inform, Elicit Offer,
Dialogue Acts Annotation Elicit Assess, Elicit Comment, Backchannel, Stall, Fragment,

Be Positive, Be Negative

Focus of Attention Annotation
Person, Participant A, Participant B, Participant C, Participant D,
Table, Slidescreen, Whiteboard

Head Gestures Annotation Concord, Discord, Negative, Turn, Deixis, Emphasis

Pitched, Rising Pitch, Falling Pitch, Fast Rising Pitch, Fast Falling Pitch,
Prosody Automatic Generation Low Pitch, Intensity Above Noise, Long Intensity, Rising Intensity,

Falling Intensity, Fast Rising Intensity, Fast Falling Intensity, High Pitch

Table 1: Overview of the 40 features we used in our research. The features are divided into four modalities.
In the second column the source of the features is presented.

XXXXXX
XXXXXX

Ramp

Step

Binary

width
-�

delay
-�

event
-�

q q q q q q q q q q
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q q q q Signal

Figure 1: Explanation of the encoding dictionary. The top graph represents the raw signal of a feature, in
this case the pitch signal. For instance if we create a feature which represents the areas where the pitch
signal is above 0, we record all the events where this happens. With binary encoding the resulting feature
looks like the second graph. A step encoded version of this feature with a delay of 0 and a width of 1 looks
like the third graph. A ramp encoded version of the feature with a delay of 0.5 and a width of 2 looks like
the bottom graph.

• Binary (1 encoding)
• Step (9 encodings)
• Ramp (9 encodings)

The first encoding template we use is Binary. This is the
most straightforward encoding in which the signal of the
encoded feature is 1 between the start and end time of the
event and 0 in between events. The result of this encoding
is shown as the second graph in Figure 1. This encoding is
useful when the fact whether or not this event is happening
in itself is a condition for behavior. For instance it may be
the case that it is unlikely that someone stops talking when
he is not looking at the listeners [7].

The Step encoding template models events in a way which
captures timing since the start of an event and a limited time
window. Two parameters are introduced in this encoding
representing the delay after the first occurrence of the event
and the width of the time window. The signal of the encoded
feature is 1 after the delay since the start time has passed

and will remain 1 for the width of the time window. This
encoding is useful if for instance only the first second since
the start of the event is relevant (delay 0, width 1). An
example encoding with a delay of 0 and a width of 1 is
shown as the third graph in Figure 1. In our experiments
we use 9 variations of this encoding, namely (delay, width):
(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2).

The third encoding template we use is Ramp. We use
the same two parameters as in the Step encoding template.
Instead of remaining 1 for the width of the time window, the
signal of the encoded feature will now decrease linearly from
1 to 0. The influence of a feature may change over time and
this template captures this. An example encoding with a
delay of 0.5 and a width of 2 is shown as the bottom graph
in Figure 1. In our experiments we use 9 variations of this
encoding, namely (delay, width): (0,0) (0,1) (0,2) (1,0) (1,1)
(1,2) (2,0) (2,1) (2,2).
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Features Set F1 Precision Recall

Head Gestures 0.090 0.070 0.149
Dialogue Acts 0.063 0.061 0.081
Prosody 0.047 0.025 0.339
Focus of Attention 0.032 0.020 0.101

Multimodal all 0.061 0.041 0.225

Table 2: In this table the performance of our exper-
iments are presented. In the multimodal feature set
we use all the features of every modality.

Note that all these encoding templates can be generated
using only the start time and are therefore suitable for real
time generation.

4.4 Methodology
To train our prediction model we split the 56 sequences

into 3 sets, a training set, a validation set and a test set. This
is done by doing a 4-fold testing approach. 14 sessions are
left out for test purposes only and the other 42 are used for
training and validation. This process is repeated 4 times in
order to be able to test our model on each session. Validation
is done by using the hold out cross-validation strategy. A
subset of 14 sessions is left out of the training set. This
process is repeated 4 times and then the best setting for our
model is selected based on the performance of our model.

Our data set contains an unbalanced number of end-of-
spea-ker-turn frames compared to background frames. To
balance our training set and to reduce training time with-
out losing valuable information we preprocess our training
set. From the complete sequences of the training set we
randomly selected the same number of samples that contain
an example of an end-of-speaker-turn as samples containing
only background frames. The samples containing an exam-
ple of an end-of-speaker-turn contained a buffer before and
after the example with background frames. The size of the
buffer randomly varied between 3 and 60 frames. The back-
ground samples ranged in size from 30 to 50 frames.

The machine learning technique used in all experiments is
Conditional Random Fields (CRF). This technique has pro-
ven to out perform Hidden Markov Models in a comparable
task [21]. The regularization term for the CRF model was
validated with values 10k, k = −1..3.

The performance of our model is measured by using the
F-measure. This is the weighted harmonic mean of precision
and recall. Precision is the probability that predicted turn
ends correspond to actual end-of-speaker-turns in our data.
Recall is the probability that an end of a speaker turn in
our test set was predicted by the model. We use the same
weight for both precision and recall, so called F1. During
testing we identify all the peaks in our probabilities. A turn
end is predicted correctly if a peak in our probabilities (see
Section 3) occurs during an actual end-of-speaker-turn.

5. RESULTS AND DISCUSSION
We designed our experiment to investigate the influence of

different modalities on the prediction of end-of-speaker-turn.
Therefore we learn different models for each modality indi-
vidually. Furthermore we learned a model which combines
the different modalities. The performance of these models
is presented in Table 2.

Unfortunately the results are not as good as expected.
With only an F1 score of 0.090 as our best result the perfor-
mance is a lot lower than 0.355 Schlangen [27] reports and
the 0.564 Atterer et al. [2] report. Looking for an explana-
tion we will discuss for each modality literature suggesting
how this modality can contribute to end of turn prediction
in more detail and reflect why it did not work in our exper-
iment.

The best modality in our experiments to predict end of
speaker turn is the head gesture modality with an F1 score
of 0.090. Several sources mention head gestures as cues for
turn-taking behavior. The averting gaze of the speaker at
the beginning of a turn is usually accompanied by turning
their head in the same direction [14, 15]. They turn their
head towards the next speaker again upon completion of
their turn. The direction of gaze and head orientation is es-
pecially an important cue in multi-party meeting to regulate
floor management [30, 29].

Besides turning their heads to accompany an eye gaze
aversion, Barkhuysen et al. [3] noted that during the final
fragments of a turn speakers display more cases of head nod-
ding than in non-final fragments. These head nods func-
tion as requests for feedback [13] and are responded to by
listeners by a mimicked head nod (or other form of short
backchannel) or more elaborately by taking over the turn.

Unfortunately the annotations available in the AMI Cor-
pus do not include these function of head gestures in their
annotation scheme. This could explain the poor perfor-
mance of the model. The features do not describe the useful
cues for this task.

The second best performance is the dialogue acts modal-
ity with an F1 score of 0.061. These dialogue acts contain
information about the structure of the conversation. This
structure can be used to predict the end of a speaker turn.
Especially the elicit category of dialogue acts can be used as
a signal for the end of a speaker turn.

For instance take the following example. The speaker is
explaining something through a series of Inform dialogue
acts. He concludes his explanation with “Or don’t you a-
gree?”. This is an Elicit-Assessment dialogue act which
clearly signals the end of the explanation by the speaker
and the moment the speaker is ready to hand over the turn.

Even though the model can detect that an elicit dialogue
acts is happening, the model does not know when this dia-
logue act is finished. Other modalities should provide this
information to be able to predict the end of a speaker turn.

The role of prosody in end of speaker turn prediction
is very marginal. The performance of our features is low
(0.047) with a high recall rate, but low precision. This sug-
gests that prosody features do contain cues, but by itself
these cues are not discriminative enough. In the approaches
of Schlangen [27] and Atterer et al. [2] prosody was only
marginally responsible for their performance as well. They
mainly rely on syntactic features to reach their performance.

There are conflicting views on the importance of prosody
for end of turn prediction. De Ruiter et al. [8] conducted
an experiment to determine whether end of turn prediction
by humans is based on lexicosyntactic cues or intonational
contours. Subjects were presented fragments from conversa-
tions and were asked to push a button at the moment they
thought the speaker would end his or her turn. The frag-
ments were either the original fragment, the fragment with a
flattened pitch or the fragment with indiscernible words, but
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with the intonational contours intact. They found no differ-
ence in the performance of the task between the original
fragment and the fragment with a flattened pitch. However
performance dropped significantly when the subject could
not hear the words of the conversation anymore.

On the other hand Barkhuysen et al. [3] found that in
fragments at the end of a turn seem to either have a higher
or lower boundary tone, while fragments in the middle of a
turn usually have a boundary tone around the mean of the
speaker.

The final modality in our experiment is focus of attention
or eye gaze. It is reported by several studies that speakers
tend to look away when starting to speak and look back
to the listener when they conclude their turn [1, 3, 10, 17].
Since the annotations currently available in the AMI cor-
pus described the object the person is looking at, this in-
formation is only implicitly available in the object transi-
tions. Results would probably be better when the annota-
tions described the moments the speaker looked away and
back, which are according to the literature the cues relevant
for end of turn prediction, than the object the speaker is
looking at.

The multimodal model actually performs worse than the
head gestures modality or the dialogue acts modality by it-
self. This can be attributed to the fact that this probabilistic
approach works better when the feature set is limited. Only
with large amounts of data the model will be able to discrim-
inate the features (and encodings) with relevant information
from the noise features. A cumulative feature selection ap-
proach as employed by Morency et al. [21] is able to make
this discrimation on smaller sets of data, but we were unable
to employ this technique at the moment.

Besides the modalities covered in this approach literature
suggests two other cues for end of speaker turn prediction.
In the comparison Barkhuysen et al. [3] made between frag-
ments at the end of a turn and non turn-final fragments, they
observed that in turn-final fragments more people blinked
with their eyes.

Another potential cue for multimodal end of speaker turn
prediction is body posture. Cassell et al. [5] designed an
embodied conversation agent, based on an empirical study,
that exhibits appropiate posture shifts during dialogues with
human users. One of the rules in their design is a low prob-
ability of a posture shift at the end of an turn. If such a
posture shift is generated at this point, it is an posture shift
with a long duration, high energy and with the lower body
part, while at the beginning of a turn the probability of a
posture shift is higher, with shorter durations and not only
limited to the lower body part.

6. CONCLUSION AND FUTURE WORK
Even though the performance of our probabilistic approach

to end of speaker turn prediction was unsuccessful, this re-
search has provided valuable insight into the various modal-
ities that play their part in turn-taking behaviour. Based
on these insights a new attempt at multimodal end of turn
prediction will be conducted.

The annotations of the AMI corpus proved not to in-
clude the most valuable information for this task. New an-
notations should be collected either through manual cod-
ing, derivatives of the current annotations or most ideally
through automatic generation using head, eye gaze and body
posture trackers. This would have the advantage of giving

insight into the performance of the approach in a real time
system.

All studies on end of turn prediction and detection, in-
cluding this one, only used features from the speaker itself,
but interaction is a joint activity in which your behavior is
co-determined by the actions of the other participants. If
during a turn of a speaker a listener starts expressing turn-
taking behavior, for instance by starting to lean forwards
and using hand gestures, the probability the speaker will
end his turn will increase. Therefore it will be interesting to
use such features in future work as well.
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