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ABSTRACT
We have built a system that engages naive users in an audio-
visual interaction with a computer in an unconstrained pub-
lic space. We combine audio source localization techniques
with face detection algorithms to detect and track the user
throughout a large lobby. The sensors we use are an ad-hoc
microphone array and a PTZ camera. To engage the user,
the PTZ camera turns and points at sounds made by peo-
ple passing by. From this simple pointing of a camera, the
user is made aware that the system has acknowledged their
presence. To further engage the user, we develop a face clas-
sification method that identifies and then greets previously
seen users. The user can interact with the system through
a simple hot-spot based gesture interface. To make the user
interactions with the system feel natural, we utilize recon-
figurable hardware, achieving a visual response time of less
than 100ms. We rely heavily on machine learning methods
to make our system self-calibrating and adaptive.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—artificial, augmented, and vir-
tual realities; evaluation/methodology

General Terms
Algorithms, Experimentation

Keywords
Machine Learning, Boosting, Real-Time Hardware

1. INTRODUCTION
Most human computer interaction is currently based on

a keyboard, a pointing device (mouse, touch-pad or touch
screen), and a computer screen. Multi-modal interfaces promise
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a future in which people will interact with computers much
like people interact with each other - through speech and
gestures. Working towards this goal, we follow the “smart
room” approach where a set of cameras and microphones are
used to capture users’ speech and gestures. However, unlike
most efforts to date, we installed our system in a pre-existing
public space. In addition, we have built an autonomous sys-
tem that engages people passing through the public space
who are not immediately aware of the system’s presence.

The main problem we have to contend with when placing
a system in a public space is the many different interaction
scenarios that can occur within the environment. First, the
number and location of people are unconstrained. Second,
the lighting and sound conditions are much worse than those
that can be achieved in a controlled laboratory, and even
worse, these conditions can vary with time. Therefore, a
large amount of calibration and re-calibration is required
to get to a level of acceptable accuracy and reliability. In
our system we use machine learning methods to make our
system adaptive to its environment and user-base.

In order to use the machine learning methods, we need
to collect large amounts of training data. This brings us
to one of the inherent problems in developing systems that
are based on machine learning: on the one hand, one needs
training data in order to train the system, but on the other
hand, one needs an operational system in order to collect
data. In our project, this problem manifested itself as fol-
lows: we use a PTZ camera to collect video recordings which
we later use to train our computer vision algorithms. How-
ever if we recorded data continuously, then we would quickly
fill our disk space with useless video material, since most of
the time the public area is empty. In order to record useful
footage, we need to detect people, localize them, and point
the camera in their direction. Moreover, before we start
making recordings of people we need to first get their per-
mission! Recording people without their knowledge is both
and invasion of privacy and a waste of valuable disk space.
We thereby need a system that can localize people, engage
them, and get their permission to record before we can do
anything else.

Our solution to this cyclical problem is to adopt an evo-
lutionary approach to system development. We first used
a minimilistic calibration process to get the system roughly
working. At first, the accuracy of the system was poor and
it took significant effort to automatically record any use-
ful data. Once we managed to record a sufficient amount
of data, we retrained the system, which improved its accu-
racy and allowed us to collect useful data more easily. With
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(0) Initially, the camera points to 
the couch and the system is 
waiting to detect a person calling 
it. (1) When a person’s voice is 

detected, it is 
localized and the 
camera turns 
towards the speaker. 
A face detector is 
used to detect the 
person’s face (large 
box). A small red  
box marks a 
location for the 
person to put his 
hand in order to 
initiate the interaction 
(2). The hand is 
detected using a skin-
color detector. Detected 
skin regions are 
indicated by bright 
green. As the hand 
detection is of 
limited reliability, 
the user is asked to 
move his hand out 
(3) and then back 
into the box (4) to 
verify that this is 
not a false 
detection. After this initiation interaction, the system 
starts to record the interaction. It also activates a face 
classifier and, if the person’s face is identified, his name is 
presented on the screen (5). Ending the recording is done 
by pressing another button, this time without doing a 
verification sequence (6).

(1)

(0)

(2)

(5) (6)

(3) (4)

Figure 1: An example interaction with TAC.

larger corpus of more useful video recordings, we were also
able to add new features such as face recognition, making
the interaction more interesting and engaging.

After about 22 weeks of data collection and retraining
in this way, we now have a system which we call “the auto-
matic cameraman” (TAC). TAC can detect and track people
reliably throughout a large public space (of about 10 × 13
meters). Figure 1 is a summary of a typical interaction be-
tween a person and TAC. The images in the figure have been
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Figure 2: (a) Frontal view of TAC with PTZ-camera
and four microphones visible on the corners of the
display (b) The layout of the TAC lobby.

captured from the TAC display. A frontal view of TAC and
the room layout can be seen in Figure 2 and on our web
site [1].

This is a very simple interaction, but it has proven inter-
esting and engaging enough that 3-8 recordings are made
each day, ranging in length from 10 seconds to several min-
utes.

Many technical challenges had to be overcome in order
to create a working system. These challenges are of two
types: (1) calibration and adaptation and (2) instantaneous
reaction.

Calibration is required to relate the measurements made
by the microphones and the cameras to each other. Adapta-
tion is required since the interaction space is large and has
variable lighting and acoustics conditions. We develop an
easy to use framework that allows us to continually improve
the audio localizer, face detector, skin detector and face rec-
ognizer by adapting them to the characteristics of the cam-
era, the lighting, and to the faces of the people that frequent
the hallway. Our approach to adaptation is to adapt on the
time scale of days. The system is operational for 12 hours
each day from 8 am until 8 pm. During the time that it is
not operational, TAC reviews the recordings collected in the
previous day and uses machine learning algorithms to opti-
mize the various signal processing and pattern recognition
components.

We run the machine learning algorithms at night for two
reasons. First, we do not want the system to adapt too
quickly. Quick adaptation based on a single interaction is
likely to cause an overall degradation in performance and
make the system unstable. Second, the machine learning
algorithms are computationally heavy and can take a few
hours to complete. Running them when the system is inter-
acting with a user is likely to increase the reaction time of
the system. Keeping this reaction time low is an important
component of any real-time HCI.

In order for the gesture based HCI to feel natural and
intuitive, the computer system needs to react quickly and
accurately. Studies show that hand-eye coordination is ef-
fective if the delay between an action and its observation
is shorter than 100ms [17, 18]. This places a very tight
constraint on the complexity of the image processing algo-
rithms that can be used. Moreover, our measurements show
that the reaction time of a general purpose workstation is
at best around 300ms, which is a long enough delay for the
interaction to feel unnatural. To achieve a reaction time of
less than 100ms we use a hardware solution, namely a field
programmable gate array (FPGA).
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Figure 3: Audio localization in two dimensions. If
∆12 and ∆23 are known, then the intersection of the
corresponding hyperbola of one sheet corresponds
to the location of the sound source.

There is a very large literature on smart rooms, much too
large and diverse to be described here, but popularized by
many including Alex Pentland [20]. One line of work which
has had a large influence on our work is that of William Free-
man and collaborators [10, 11, 9]. The main idea that we
took from Freeman’s work is that relatively simple computer
vision algorithms can be very effective for HCI applications
if the feedback from the system is fast. A fast reacting inter-
face can be effective even if it is not very accurate because
it engages the hand-eye coordination capabilities of the hu-
man brain to compensate for the limitations of the computer
vision algorithms. Our work also is also closely related to
audio-visual fusion techniques, in particular the works con-
cerning locating and tracking people [25, 21, 19].

The rest of the paper is organized as follows. Section 2
explains our approach to the speaker localization problem.
Section 3 describes the methods we use for skin detection,
face detection, face tracking and face recognition. Section 4
explains how we use FPGAs to reduce the reaction time of
the system to below 100ms. Section 5 describes how the
components are combined into a working system and sec-
tion 6 discusses some experiments we have done to quantify
the ability of the system to adapt.

2. AUDIO LOCALIZER
We use an audio-source localization method to direct the

PTZ camera towards the speaker. The system is fast and
reliable, pointing the camera in the direction of the sound
source in 1-2 seconds with error smaller than one degree. In
this section we describe our machine-learning based solution
to this problem.

Audio localization using microphone arrays is a well devel-
oped technique [4]. The technique is based on the fact that
sound produced at a given location will arrive at different
times at spatially separated microphones. This difference is
known as the time delay of arrival (TDOA) for a given pair
of microphones and is depicted in Figure 3. Knowing the
TDOA for a pair of microphones and the spatial locations
of the microphones restricts the location of the sound source
to a hyperboloid of one sheet in space. Knowing the relative
positions and TDOAs for four microphones will uniquely
identify the spatial location of the source.

The accuracy of the localization is restricted by the accu-
racy of the TDOA estimation and by the sensitivity of the
TDOA to the location of the source. This last sensitivity is
high if the distance between the microphones is of the same
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Figure 4: The sound manifold. f is a mapping from
sound source location x to a set of TDOA measure-
ments ~∆. g is a mapping from x to a pan and tilt
directive for the PTZ camera.

order of magnitude as the distance between the microphones
and the sound source. In other words, if the microphones
are close to each other the sensitivity to the location of the
source is low. In order to have good sensitivity in a large
room, we need to place the microphones far from each other.
We also need a large number of microphones so that a sound
source at any location in the room can be captured clearly
on at least four microphones. Sensitivity and accuracy are
also highly dependent on the acoustics of the room and on
the particular location of the sound source and the micro-
phones. Finding good locations for the microphones in a
particular room is a lengthy process of trial and error.

Most audio source localization systems assume that the
relative locations of the microphones are known in advance.
This is achieved by mounting the microphones on a fixed
frame at carefully selected locations. These frames are usu-
ally one dimensional, which is why these systems are usually
called microphone arrays, but can sometimes be two or even
three dimensional. The size of these microphone arrays are
restricted by the need to transport them and are rarely more
than 2×2 feet. This limits the localization accuracy to only
those locations about 2-4 feet from the array. Moreover,
even if we could use such a prefabricated microphone array,
we would still have the problem of translating the location
estimate into a pan-tilt directive for the PTZ camera, since
it is not on the same physical frame as the array.

In order to overcome the limitations of pre-fabricated mi-
crophone arrays we use an “ad-hoc” array which consists
of seven independently placed microphones. As a result
we cannot pre-compute the mapping from TDOA measure-
ments to pan-tilt commands, instead, we use a machine
learning approach to learn this mapping. Our machine learn-
ing approach approach uses recently published methods for
learning the structure of smooth low dimensional manifolds
embedded in a high dimensional space.

Figure 4 describes how the audio source localization prob-
lem gives rise to a low dimensional manifold. Denote by
~x ∈ R3 the location of the sound source in space. As we are
using 7 microphones there are

`
7
2

´
= 21 microphone pairs,

resulting in 21 TDOA measurements for a particular loca-
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tion.1 We denote these 21 measurements by ~∆ ∈ R21. We
denote the pan-tilt angles of the camera by (θ, φ) ∈ R2.

The location ~x determines ~∆ and (θ, φ). In other words, the
locations of the microphones and of the camera define two
mappings f : ~x → ~∆ and g : ~x → (θ, φ). The mappings
f and g are not linear, but they are differentiable, meaning
linear mappings give good approximations for small spatial
regions.

Our localization method is based upon learning a regressor
L : ~∆→ (θ, φ). It has previously been shown that restricting
L to be globally linear or quadratic can lead to reasonable
accuracies for the camera pointing problem [8]. We extend
this work, by using a space partitioning tree wherein linear
mappings in the partition cells are used. In recent work,
random projection trees (RPTrees) have been shown to be
adaptive to data that lies on a low-dimensional manifold [7,
12]. This is particularly applicable here since even though

the ambient dimensionality of ~∆ is 21, the intrinsic dimen-
sionality is only 3. An RPTree is a space partitioning binary
tree built very similar to that of the familiar k-d tree. In-
stead of making axis parallel splits like that of the k-d tree,
RPTrees first project the data that fall in a node onto a
random data direction and then split at the median of these
projection values. See [7] for a review of the theory sur-
rounding RPTrees and for a discussion of their utility in the
regression setting see [16].

With inspiration from the RPTree work, we examine a
variant that we call principal-direction trees (PDTree). In-
stead of using a random direction to projecting the data
onto, we use the principal direction of the data as defined
by a principal component analysis. An example of a PDTree
on a toy dataset is shown in Figure 5. To learn L we grow
PDTrees of fixed depth and fit least-squares linear regressors
in the leaf nodes.

We can easily acquire a training set to learn L with help
from the face detector. Training examples can be collected
whenever a user speaks while their face is centered in the
field of view, creating a stable measurement of the form
(~∆, θ, φ). Many such examples can be collected over time by
having the PTZ-camera continually centering the user’s face
and the user continuing to speak. After collecting several
new training examples, we then retrain a PDTree for L at
the end of each week.

3. VIDEO ANALYSIS
TAC has four image analysis components: a skin detec-

tor, a face detector, a face tracker and a face recognizer. All
four components are based on a combination of visual fea-
tures and a machine learning algorithm. We describe each
component in turn.

3.1 Skin-color detector
In TAC, skin color is used as a feature for face detection

and as a control mechanism for on-screen buttons. We de-
sign a simple, yet effective skin-color detector that identifies
each pixel as skin or non-skin. Per our design goals, we want

1In principle, all 21 delays can be computed from the delays
of microphones 1-6 relative to microphone 0. However, mi-
crophone 0 might receive a very weak or corrupted signal,
which would result in 6 incorrect measurements. Using all
21 delays significantly improves the accuracy and reliability
of the localizer.

Figure 5: A toy dataset whose distribution is shown
in pink. A PDTree of depth two is built with least-
squares linear regressors fit in the leaves.

our skin-color detector to be efficient and adaptive to TAC’s
user-base and lighting conditions.

In order to minimize the response time, we avoid using
any high-level contexts as detection features. Instead, the
detector operates solely at the pixel level, in particular in
the HSV color space.

One of the challenges of a pixel-based skin-color detector
is that pixel values of the same object vary tremendously
depending on the environment e.g. lighting conditions, cam-
era model, etc. Thus, learning simple ranges on each color
channel does not work well in practice. Instead, we train
our detector using a discriminative approach, and by doing
so, we make no explicit assumptions about the distribution
of skin color in color space. In addition, since the detector
is trained from actual video collected by TAC, the result-
ing detector is specialized to how skin appears in our given
environment.

The detector is learned using an active training methodol-
ogy. The detector is trained in rounds, where in each round
labeled examples that are classified incorrectly by the cur-
rent detector are added to the training set. A new classifier
is then generated by feeding the updated training set to the
learner. This process is repeated. We use AdaBoost on deci-
sion stumps as our learning algorithm [13, 14]. The features
that we use are the hue, saturation and volume (HSV) rep-
resentation of the pixel color. Figure 6 shows the improve-
ment of the skin detector over multiple rounds of re-training.
Four retraining iterations were needed for our skin detector
to stabilize.

Since the skin detector must operate on each pixel in the
image, it is important that it be as efficient as possible. To
speed up the detector we use the early rejection method
method proposed by Viola and Jones [24].

3.2 Face localization
When a sound is detected by the audio localizer, TAC

points the camera to the sound source and then activates the
face localization unit. Using the live video stream as input,
the face localizer outputs the location and size of the user’s
face in the current frame. Once the location and size of the
face is known, TAC can then issue commands to the PTZ
camera in order to both keep the user’s face in the center
of the field of view and keep his/her face large enough for
reliable face recognition.

The face localizer unit is comprised of a face detector and
a face tracker. In principle, having only the face detector is

82



Figure 6: (a) Output from the first skin-color de-
tector (b) Output from the skin-color detector after
several iterations of re-training. Green pixels indi-
cate skin regions with high confidence and red pixels
indicate predicted skin regions, yet with lower con-
fidence (c) The detection mask (d) The gradients
used in HOG where colors indicate directions and
intensity indicates magnitude.

enough for the task. However, the detector does not leverage
temporal knowledge about previous detections. Employing
a face tracking architecture on top of the detector exploits
this temporal knowledge making a much more efficient face
localization unit. In this section, we will describe first the
face detector and then the face tracker.

3.2.1 Face detector
We started by using the implementation of the face de-

tector of Viola and Jones in OpenCV [3]. After collecting a
sufficient amount of images of faces we replaced the OpenCV
detector with our own detector that is based on a somewhat
different set of features. Our classification features are based
on the skin scores from the skin detector and simple edge
detectors. The edge features are based on the histogram
of gradients (HOG) approach to edge detection [6]. Fig-
ure 6 shows the mask used to extract a feature vector from a
square image patch. In each region of the mask, a histogram
of skin scores and of HOGs are calculated and concatenated
into a single feature vector.

We use active learning to collect a large and diverse train-
ing set with only minimal manual labeling. The active learn-
ing process is somewhat more elaborate than the one used for
retraining the skin detector. We use the fact that a boosted
detector outputs a real-valued score. This score can be in-
terpreted as a measure of the confidence that the detector
assigns to its prediction. We use this score in the retraining
process: if the confidence of the detector is high - we add
the example as a training example without further consid-
eration, but when the confidence is low we require a human
decision as to whether or not the detection box contains a
face.

In the first round of training, the OpenCV face detec-
tor was used on the recordings from TAC to extract square
patches of images that contain a face, giving us an initial
set of positive examples. Randomly selected patches from
TAC’s video are added as negative examples. After training

Component Exec. time per
frame(ms)

No. of exec. per
second

FaceTracker 10 25
SkinDetector 40 25
FaceDetector 250 2
FaceRecognition 800 1

Table 1: Response time of TAC

an initial detector, we then used it on new videos from TAC,
adding new training examples to the training set according
to the following three rules: (1) if the patch has high boost-
ing score it is assumed to be a face and added as a positive
example, (2) if the patch has large negative score it assumed
a non-face and is added as a negative example, and (3) if it
has score near zero then an operator must hand label it as
face or non-face. After completing this process on a few new
videos, the face detector was re-trained using the new train-
ing set. Since many examples are automatically labeled by
the previous round’s detector, the labeling workload is sig-
nificantly reduced compared to labeling all examples. The
current face detector on TAC is obtained by repeating this
training process until improvement is insignificant, which
was five iterations.

When the detector is deployed, one major computational
bottleneck is in calculating the feature vector for each image
patch. In particular. we need to compute skin scores for each
pixel, HOG values, and collect their histograms within each
region of the detection mask. Normally, we need to do this
for every location-size pair in the image, quickly becoming
very computationally expensive. If the face was detected in a
previous frame we can use tracking which is described in the
next section. The computational time for a full scan can be
reduced greatly using the integral image technique presented
in [24]. This technique leverages a nice mathematical trick
to avoid the repeated computation of feature values across
patches and quickly returning the histogram values needed
for transforming an image patch into a feature vector for
input into the boosted face detector.

Despite these optimizations, a full scan of the image can be
performed on a the workstation at a speed of around 2-3fps.
As the grid of locations and sizes at which the detections are
calculated is fixed, the detections are of limited accuracy and
jittery. A better use of resources is to use an adaptive grid
where the range of locations and sizes that are measured is
based on detections at previous frames. This tracking based
approach is described in the next section.

3.2.2 Face tracker
Translating the output of the detector into predictions of

the location of a face requires solving two related problems.
The first problem is peak-finding, in practice, a reliable de-
tector would not detect a face only in a single location and
size but in a range of locations and sizes. It is therefore nec-
essary to identify the location of the “best” detection. Using
the location with the maximal score is reasonable, but re-
sults in a very noisy and jittery detection. It is better to
smooth the scores before finding the maximum, but then
the question becomes how much to smooth. The second
problem is that of tracking, i.e. taking into account that
the face is likely to either stay at one location or else move
at slowly varying speed (recall that the location of our PTZ
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Figure 7: A user moving her arm rapidly upwards
towards her body. The pixels classified as skin are
marked green. The two frames were displayed simul-
taneously and captured with a digital camera. The
left frame was generated by the FPGA while the
right was generated by the work station. The ad-
vantages of the FPGA are a much higher resolution
for skin detection and an improved response time.
The FPGA generates the image less than 100ms af-
ter the user moved her arm and the skin color is
right where it should be. The workstation gener-
ates the image about 300ms after the user moved
her arm with the skin color lagging behind.

camera is fixed and that the pan and tilt are known and can
be subtracted away). The second problem is usually solved
by Kalman filters or by particle filters [2].

We developed a variant of particle filters that has strong
theoretical guarantees [5]. We use this new tracking algo-
rithm to track faces in TAC. The new algorithm has a great
computational advantage over face detection without track-
ing. Without the tracking algorithm, we need to calculate
the score of 75,000 boxes in the video frame. As a result,
we can perform face detection only 2-3 times per second and
the resolution of our detections is not very high, resulting in
jittery behavior. On the other hand, when we use our vari-
ant of the tracking algorithm, we calculate scores for only
500 boxes per frame. As a result we can track at 30 frames
per second, which is the rate of the video camera, and as the
locations of the detection boxes is adaptive, we get a much
smoother and less jittery detection. On the other hand, the
tracker can get stuck in local maxima, i.e. locations that are
not faces but seem similar to faces and have the correct dy-
namics. We therefore perform a complete scan of the video
frame every second to detect the actual location of the face
and get the tracker out of local maxima.

The speed of each video component is shown in Table 1.

3.3 Face recognition
Once TAC has localized a face, the next step is to iden-

tify the person. The face recognition algorithm on TAC
is based on the popular notion of eigenfaces [22, 23]. This
method has proven to work well when the face is captured in
a frontal view and carefully registered. On TAC, we perform
face recognition when these conditions hold true, which hold
quite often since we are engaging users causing them to look
directly at the camera.

To detect whether the face is frontal and registered, we
first convolve the region around the face detection with a
face template. The template face is obtained by averaging
over the frontal and registered faces that the system has
seen thus far. TAC will try to recognize a detected face only
when this correlation is high.

(a) (b)

Figure 8: (a) The architecture of an FPGA based
interactive system (b) A user playing with the “bub-
bles” (thin white squares) FPGA based interactive
game.

After a registered face is obtained, TAC computes its pro-
jection onto each eigenface and feeds them into a series of
boosted binary classifiers. Each binary classifier gives a score
corresponding to how likely the detected face comes from a
particular person in the TAC database. A person in the
database is recognized when the score from his/her boosted
classifier are consistently high for several seconds. Since our
user-base is not too large, this scheme works well to recog-
nize regular users and further engage them in the interaction
process.

TAC updates its database nightly. This includes adding
newly recognized people to its database, updating the av-
erage face, updating the eigenfaces, and retraining the per-
person classifiers.

4. RECONFIGURABLE HARDWARE
Studies in human-computer interaction have shown that

in order for the response of the computer to appear instan-
taneous the response time has to be less than 100ms [17, 18].
It is surprisingly difficult to achieve this response time us-
ing standard computer architecture. Using a 210 FPS cam-
era we measured the response time for displaying captured
video using apple’s quicktime software on a 2.66GHz Ap-
ple G5 workstation. The average response time between the
change in the scene and the change in the image displayed
on the screen is 220ms!

In order to implement the hand-in-the-box protocol de-
picted in figure 1 we need to add to the display a skin detec-
tor that would overlay the skin colored pixels on the image.
Our skin detection and display software has a delay of 430ms
between the change of the image and the change in the green
overlay that identifies the skin colored regions (Figure 7.)
An additional compromise we had to make is that the over-
lay pixels are corresponds to a square of 5x5 image pixels.
The result of the 500ms delay and the low resolution of the
skin detection overlay is that pressing the virtual button is
awkward and error prone. To defend against errors we in-
creased the complexity of the protocol, requiring the user to
put their hand in and out of the box two times, resulting in
a cumbersome interaction lasting 2-5 seconds.

We realized that in order to achieve a response time that
is shorter than 100ms we need a different hardware architec-
ture. The architecture that we came up with is described in
Figure 8. The main idea is that the video stream does not
go through the CPU. Instead, it passes through dedicated
FPGA hardware that performs the skin detection, overlay
generation and pixel-counting. After each frame the FPGA
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transmits to the CPU a short message containing the num-
ber of pixels in each box and gets back a message with the
location in which the boxes should be displayed in the next
frame.

The video stream passes through the FPGA and back to
the video display without any buffering. This point is worth
emphasizing, we discovered that buffering a video frame in
memory that is external to the FPGA chip results in pro-
hibitive delays. Instead, we buffer only a 2 video scan lines
on memory that resides inside the FPGA chip. The result is
that the delay between the video input and video output is
equivalent two the time of two scan lines, which is a fraction
of a ms. The delay that we observe, which is around 70ms
is all a result of delays in other units: the PTZ camera, the
A/D converter and (probably most significantly) the LCD
display.

We have yet to integrate the FPGA-based skin detector
into TAC. In order to demonstrate the superior responsive-
ness of the FPGA skin detector we constructed a simple
game called “bubbles”. The game is based on the same idea
as the virtual button. However, in this case there are one to
six buttons on the screen at any time and the bubbles move
across the screen and bounce against the screen boundary in
a way familiar from simple computer games such as “pong”.
Pressing a button by placing your hand inside it causes the
button, or “bubble” to pop and be replaced by a new but-
ton at a different place. The result is a rather entertaining
game (see figure 8 and videos on [1]). The main point we
wish to make with this game is that reducing response time
from 500ms to 70ms results in a very significant qualitative
improvement in the usability of the interface.

5. COMBINING THE COMPONENTS
In this section we discuss how the on-screen buttons op-

erate and how we integrate the audio and face localization
units to control the PTZ camera.

5.1 On-screen buttons
On-screen buttons are buttons that appear spliced into

the video displayed on one of the displays similar to “hot
spot” work of [15]. TAC uses these buttons as a means to
interact with the user. A user can simply place their hand
hovering over the virtual buttons in order to activate them.
In the current implementation, the system uses one of these
buttons to get authorization from the user before recording
a video.

The on-screen buttons rely on the skin-color detector. The
activation of each buttons is determined by the amount of
skin pixels contained within the button’s boundaries. When
a user places his/her hand on the button, a score is com-
puted. This score is given by the number of skin pixels in the
area of the button. The activation of a button is determined
by comparing it against a threshold. Using the FPGAs we
are able to create much more responsive on-screen buttons
with higher resolution. This opens the door to adding many
more buttons to the interface and making the interaction
much richer.

5.2 Controller
The controller integrates information from each of TAC’s

components and is solely responsible for controlling the PTZ
camera. From the audio localization unit, it receives audio
events in the form of a pan and tilt directive for the PTZ
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Figure 9: (a) Error rate of the face recognition unit
on TAC over multiple sessions (b) RMSE for pan
and tilt of a PDTree trained each week with new
data acquired by TAC.

camera. An audio event is sent to the controller whenever
an interval of sound exceeds an energy threshold, which dur-
ing extended speech can be up to 40 audio events per sec-
ond. Similarly the face localization unit sends face events in
the form of locations and sizes to the controller whenever a
strong face detection is found. When a face is present and
strongly detected, the controller can receive face events at a
speed near 25 events per second.

At first, the camera is in its resting state, pointing down-
wards, and the controller is waiting for a series of audio
events to arrive to which it can direct the camera towards.
Afterwards, if a face is detected, the camera disregards all
subsequent audio events and tries to keep the face centered
and properly zoomed within the camera’s field of view. When
a face event hasn’t been received in a while, the audio events
can again cause the camera to move.

Since neither the face nor the audio localization unit give
perfect accuracy, some basic median filtering and clustering
techniques are used to filter these input streams and create
final directives for the camera.

6. QUANTIFYING ADAPTIVITY
In the following sections we the results of some analysis we

have done of the changes of performance of TAC as a func-
tion of time. This analysis demonstrates the efficacy of the
machine learning algorithms in improving the performance
of the system over time.

6.1 Audio based control of camera
Recall that we record new observations for the audio lo-

calizer’s regressor as users interact with the system. We
took all the observations TAC has seen up to a fixed date
(∼3000 observations), and split this randomly into a 70/30
training and test set. We then examined how TAC can
improve its localization accuracy by retraining a regressor
for pan and tilt each week on the data from the training
set seen to that point. We averaged root-mean squared er-
ror (RMSE) calculations over 20 such random training/test
splits. Figure 9 shows the improvement of this regressor
in terms of RMSE. Also shown is the RMSE when the top
10% of squared-residuals are removed from the RMSE calcu-
lation. The improvement is near-linear from week to week.
Moreover, many of the errors are near or below one degree
in both pan and tilt.
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6.2 Face recognition
To show how well the face recognizer improves as users

interact with the system more and more, we performed the
following analysis: for three frequent users, we took 25 differ-
ent video recordings of each user interacting with the system.
Among the 25 recordings, we randomly selected 5 recordings
for testing and used the rest for training. The training videos
were ordered, and initially the training set consisted of only
the registered faces from the first video. Subsequently, the
training set was grown incrementally by adding new regis-
tered faces from the next video. In doing so, we simulated
repeated interactions from the user with TAC over time.
The results of 3 different users is shown in Figure 9. The
error rate of the face recognizer goes down as the number
of training sessions increases. This indicates the improve-
ment of the face recognizer as more data is collected over
time. Moreover, the final error of each classifier is less than
10% which allows for accurate recognition of these users over
multiple frames of video.

7. CONCLUSION
We have described an audio-visual touchless interface called

the automatic cameraman. Currently it is used to engage
users in a public space by allowing them to record videos of
themselves. These videos are then used to further train and
improve the system on the scale of days and weeks, making
TAC more responsive, accurate and personalized.
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