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ABSTRACT
We present a multimodal system for the recognition of man-
ual signs and non-manual signals within continuous sign lan-
guage sentences. In sign language, information is mainly
conveyed through hand gestures (Manual Signs). Non-manual
signals, such as facial expressions, head movements, body
postures and torso movements, are used to express a large
part of the grammar and some aspects of the syntax of sign
language. In this paper we propose a multichannel HMM
based system to recognize manual signs and non-manual sig-
nals. We choose a single non-manual signal, head movement,
to evaluate our framework when recognizing non-manual sig-
nals. Manual signs and non-manual signals are processed in-
dependently using continuous multidimensional HMMs and
a HMM threshold model. Experiments conducted demon-
strate that our system achieved a detection ratio of 0.95 and
a reliability measure of 0.93.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: Image Processing and
Computer Vision—Scene Analysis

General Terms
Algorithms

Keywords
Sign Language, Non-Manual Signals, HMM

1. INTRODUCTION
Sign Language is a form of non-verbal communication

where information is mainly conveyed through hand ges-
tures. Hand gestures can be classified into several categories
such as conversational gestures, controlling gestures, manip-
ulative gestures and communicative gestures [42].

There have been many studies on hand gestures, and on
sign language in particular, in psycholinguistic research. Stokoe
[30] identified the four building blocks of sign language; the
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hand shape, the position, the orientation and the movement.
With these building blocks in mind hand gestures can be
classified as either hand postures (hand shape and orienta-
tion) or spatiotemporal gestures (position and movement)
[43].

A number of works [13, 15, 31, 1, 5, 8, 14, 18, 24, 29, 32,
44, 39, 9] deal only with isolated gesture recognition where
the user either performs the gestures one at a time, starting
and ending at a neutral position, or with exaggerated pauses,
or while applying an external trigger between each word.

One of the main difficulties with recognizing a gesture
within a continuous sequence of gestures is that the hand(s)
must move from the end point of the previous gesture to the
start point of the next gesture. These inter gesture transi-
tion periods are called movement epenthesis [21] and are not
part of either of the signs. As such, an accurate recognition
system must be able to distinguish between valid sign seg-
ments and movement epenthesis. Extending isolated recog-
nition to continuous signing requires automatic detection of
movement epenthesis segments so that the recognition algo-
rithm can be applied on the segmented signs.

One proposed solution to movement epenthesis detection
is an explicit segmentation model were subsets, of features
from gesture data, are used as cues for valid gesture start
and end point detection [27, 20]. The limitation of this ex-
plicit segmentation model arises from the difficulty in creat-
ing general rules for sign boundary detection that could be
applied to all types of gestures [25].

An approach to dealing with continuous recognition with-
out explicit segmentation is to use Hidden Markov Models
(HMM) for implicit sentence segmentation. Starner et al.
[28] and Bauer and Kraiss [4] model each word or subunit
with a HMM and then train the HMMs with data collected
from full sentences. A downside to this is that training on
full sentence data may result in a loss in valid sign recogni-
tion accuracy due to the large variations in the appearance
of all the possible movement epenthesis that could occur
between two signs.

Wang et al. [41] also use HMMs to recognize continuous
signs sequences with 92.8% accuracy, although signs were
assumed to end when no hand motion occurred. Assan et
al. [1] model the HMMs such that all transitions go through
a single state, while Gao et al. [10] create separate HMMs
that model the transitions between each unique pair of signs
that occur in sequence. Vogler at al. [37] also use an explicit
epenthesis modeling system where one HMM is trained for
every two valid combinations of signs.

While these works have had promising results in gesture
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recognition and movement epenthesis detection, the train-
ing of such systems involves a large amount of extra data
collection, model training and recognition computation due
to the extra number of HMMs required to detect movement
epenthesis. The techniques we implement to deal with these
issues are based on the work of Kelly et al [17]. These
works introduced a HMM based gesture recognition frame-
work which accurately spots and classifies gestures, within
a continuous sequence of sign language, as one of a number
of pre trained gestures as well as calculating the likelihood
that the given gesture sequence is or is not a movement
epenthesis.

Since sign language communication is multimodal it in-
volves not only hand gestures (i.e., manual signing) but
also non-manual signals (NMS) conveyed through facial ex-
pressions, head movements, body postures and torso move-
ments. Recognizing Sign Language communication there-
fore requires simultaneous observation of manual and non-
manual signals and their precise synchronization and sig-
nal integration. Thus understanding sign language involves
research in areas of face and facial expression recognition
tracking and human motion analysis and gesture recogni-
tion.

Over the past number of years there has been a significant
amount of research investigating each of these non-manual
signals attempting to quantify their individual importance.
Works such as [2, 33, 3] focused on the role of head pose and
body movement in sign language. These researchers found
evidence which strongly linked head tilts and forwards move-
ments to questions, or affirmations. The analysis of facial
expressions for the interpretation of sign language has also
received a significant amount of interest [12, 11]. Computer-
based approaches which model facial movement using Active

Appearance Models (AAMs) have been proposed [38, 40, 35].
The development of a system combining manual and non-

manual signals is a non-trivial task [6]. This is demonstrated
by the limited amount of work dealing with the recognition
of multimodal communication channels in sign language. Ma
et al [23] used Hidden Markov Models (HMMs) to model
multimodal information in sign language but lip motion was
the only non-manual signal used. Their work was based on
the assumption that the information portrayed by the lip
movement directly coincided with that of the manual signs.
While this is a valid assumption for mouthing, it cannot be
generalized to other non-manual signals as they often span
multiple manual signs and thus should be treated indepen-
dently. In this paper we propose a framework for process-
ing multimodal channels of continuous Irish Sign Language
(ISL). In ISL, like most other sign languages, the key infor-
mation is conveyed using manual signs while non-manual sig-
nals are used to convey grammatical structure, syntax and
emotional context, as such we process these two elements
independently. This paper builds on the works of Kelly et
al. [17] where hand gestures are recognized from continuous
manual signals. As an extension to this technique, we also
analyze head movement gestures. The significance of this
research lies in the integration of these techniques to create
a multichannel ISL interpretation system.

2. FEATURE EXTRACTION
From the definition of a spatiotemporal gesture [30], we

must track the position and movement of the hands in order
to described a hand gesture sequence. We expand on the

work a of hand posture recognition system proposed Kelly
et al [16] to build a computer vision based feature extraction
system for spatiotemporal gesture recognition. For com-
pleteness, prior to discussing our framework for continuous
spotting of multimodal gestures in sign language, we briefly
describe the feature tracking techniques implemented.

Figure 1: Ex-
tracted Fea-
tures from
Image

Tracking of the hands is per-
formed by tracking colored gloves
using the Mean Shift algorithm [7].
Face and eye positions are used as
features for head movement recog-
nition and also used as hand ges-
ture cues. Face and eye detec-
tion is carried out using a cascade
of boosted classifiers working with
haar-like features proposed by Vi-
ola and Jones [34]. A set of public
domain classifiers [22], for the face,
left eye and right eye, are used in
conjunction with the OpenCV implementation of the haar
cascade object detection algorithm.

We define the raw features extracted from each image
as follows; right hand position (RHx, RHy), left hand po-
sition (LHx, LHy), face position (FCx, FCy), face width
(FW ), left eye position (LEx, LEy) and right eye position
(REx, REy).

3. HIDDEN MARKOV MODELS
Hidden Markov Models (HMMs) are a type of statistical

model and can model spatiotemporal information in a nat-
ural way. HMMs have efficient algorithms for learning and
recognition, such as the Baum-Welch algorithm and Viterbi
search algorithm [26]. A HMM is a collection of states con-
nected by transitions. Each transition (or time step) has a
pair of probabilities: a transition probability (the probabil-
ity of taking a particular transition to a particular state) and
an output probability (the probability of emitting a particu-
lar output symbol from a given state). We use the compact
notation λ = {A, B, π} to indicate the complete parameter
set of the model where A is a matrix storing transitions prob-
abilities and aij denotes the probability of making a transi-
tion between states si and sj . B is a matrix storing output
probabilities for each state and π is a vector storing initial
state probabilities. HMMs can use either a set of discrete
observation symbols or they can be extended for continuous
observations signals. Lee and Kim [19] proposed a single
channel HMM threshold model using discrete observations
to recognize a set of distinct gesture. We expand on their
work by developing a multichannel HMM threshold model
system using continuous multidimensional observation vec-
tors. This is an important advancement as using continuous
multidimensional observation vectors allows further expan-
sion of our framework into different feature vectors without
the loss of information through vector quantization which is
required when using discrete observations.

To represent a gesture sequence such that it can be mod-
eled by a HMM, the gesture sequence must be defined as a
set of observations. An observation Ot, is defined as an ob-
servation vector made at time t, where Ot = {o1, o2, ..., oM}
and M is the dimension of the observation vector. A particu-
lar gesture sequence is then defined as Θ = {O1, O2, ..., OT }.

To calculate the probability of a specific observation Ot,
we implement probability density function of an M-dimensional
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multivariate gaussian (see Equation 1).

ℵ(Ot; µ, Σ) = (2π)
− N

2 |Σ|
− 1

2 exp(− 1
2
(Ot−µ)T Σ−1(Ot−µ)) (1)

Where µ is the mean vector and Σ is the covariance ma-
trix.

4. MANUAL SIGN RECOGNITION
We expand on the work of Lee and Kim [19] to develop a

HMM threshold model system which models a parallel HMM
network to recognize two hand signs and identify movement
epenthesis. A specific HMM, called a threshold model, is
created to model movement epenthesis by calculating the
likelihood threshold of an input gesture and provide a con-
firmation mechanism for provisionally matched gesture pat-
terns. For a network of HMMs Λ = {λ1, λ2, ..., λC}, where
λc is a dedicated gesture HMM used to calculate the likeli-
hood that the input gesture is belonging to gesture class c,
a single threshold model λ is created to calculate the like-
lihood threshold for each of the dedicated gesture HMMs.
It is not in the scope of this paper to describe the thresh-
old model in detail and readers should consult the works of
Lee and Kim [19] and Kelly et al [17] for a more detailed
discussion on the HMM threshold model technique.

4.1 Manual Sign Feature Processing
A spatiotemporal gesture is defined by the hands’ posi-

tion and movement, where the position refers to the hands’
location relative to the body and movement traces out a
trajectory in space. Kelly et al [17] perform a number of
experiments on isolated spatiotemporal gestures and move-
ment epenthesis to find the best performing feature vector.
Results showed that the best performing feature vector was
a five dimensional vector describing the position of the hand
relative to the eyes (RPx, RPy), the direction the hand was
moving (Vx, Vy) and the distance between the two hands
(DH).

For manual signs, we define Ot as the observation vec-
tor made at time t, where Ot = {RPx, RPy, Vx, Vy, DH}.
A particular hand sign sequence is then defined as Θ =
{O1, O2, ..., OT }.

4.2 Manual Sign HMM Training
Our system initializes and trains a dedicated parallel HMM

[36] denoted as λc, where 0 < c < C and C is the total num-
ber of manual signs to be recognized. Each parallel HMM
consists of two separate HMMs, λLc and λRc, that model
the right and left hand sign respectively.

HMM model training is carried out by an automated HMM
initialization and training technique, utilizing an iterative
clustering, Baum Welch and Viterbi realignment process,
proposed by Kelly et al [17].

It is desirable to weight λLc and λRc, the left hand HMM
and right hand HMM respectively, due to variations in in-
formation held in each of the hands for a particular sign.
The weighting applied in our system is based on a variance
measure of the observation sequences. Using data from all
observation sequences Θk

Lc and Θk
Rc, where 1 ≤ k ≤ K, K is

the total number of training examples and ΘLc and ΘRc are
the left and right hand observations respectively. The vari-
ance of the left and right hand observations are calculated
by calculating the variance of each observation dimension
σ2

Lc[i] and σ2
Rc[i], where 0 ≤ i ≤ D and D is the dimen-

sion of the observation vectors. The left HMM weight, ωLc,
and right HMM weight, ωRc, are then calculated as using
Equation 2.

ωLc=
∑

D
i=0

σ
2
Lc

[i]

(σ2
Lc

[i]+σ2
Rc

[i])×D
ωRc=

∑
D
i=0

σ
2
Rc

[i]

(σ2
Lc

[i]+σ2
Rc

[i])×D
(2)

A parallel HMM threshold model, λ = {λL, λR} is then
created using the network of trained parallel HMMs λc (0 <
c < C). The set of parallel HMMs, to recognize the C pre-
trained signs, is then denoted as ΛL = {λL1, λL2, ..., λLC , λL}
and ΛR = {λR1, λR2, ..., λRC , λR}.

4.3 Manual Sign Classification
To classify the observations, the Viterbi algorithm is run

on each model given the unknown observation sequences ΘL

and ΘR, calculating the most likely state paths through each
model c. The likelihoods of each state path, which we de-
note as P (Θ|λLc) and P (Θ|λRc), are also calculated. We
calculate the overall likelihoods of a dedicated gesture and
a movement epenthesis with the equations defined in Equa-
tions 3 and 6.

P (Θ|λc) = P (ΘL|λLc)ωLc + P (ΘR|λRc)ωRc (3)

Ψc =
P (ΘL|λL)ΓLc + P (ΘR|λR)ΓRc

2
(4)

Where ΓLc and ΓRc are constant scalar values used to tune
the sensitivity of the system to movement epenthesis. The
sequence of observations can then be classified as c if P (Θ|λc) ≥
Ψc evaluates to be true.

5. NON-MANUAL SIGNAL RECOGNITION
While hand gestures do play central grammatical roles,

movements of the head, torso and face are used to express
certain aspects of ISL. In this work we will focus on a sin-
gle non-manual signal, the head movement, to evaluate our
techniques when recognizing non-manual features.

5.1 Head Movement HMM Training
Our system initializes and trains a dedicated HMM for

each head movement gesture to be recognized. In this work
we evaluate our techniques using three different head move-
ment gestures; a left head movement, a right head movement
and a left-forward movement.

To train the head movement HMMs, we recorded 18 dif-
ferent videos of a fluent ISL signer performing the head
movements naturally within full sign language sentences.
Six videos where recorded for each head movement gesture.
Each head movement HMM λH

i (where 0 < i < I and I
is the total number of head gestures) was then trained on
the observation sequences extracted from the correspond-
ing videos. The start and end point of each of the head
movement gestures were labeled, the observation sequences
Θi were extracted and each HMM was then trained using
the iterative HMM training model proposed by Kelly at al
[17]. A HMM threshold model, λH is then created using
the network of trained HMMs λH

i (where 0 < i < I). The
set of HMMs, to recognize the I pre-trained head movement
gestures, is then denoted as ΛH = {λH

1 , λH
2 , ..., λH

I , λH}.
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5.2 Head Movement Recognition
Given an unknown sequence of head movement observa-

tions ΘH , the goal is to accurately classify the head move-
ment gesture as a non head gesture or as one of the I trained
gestures. To classify the observations, the Viterbi algorithm
is run on each model given the unknown observation se-
quences ΘH , calculating the most likely state paths through
each model i. The likelihoods of each state path, which we
denote as P (ΘH |λH

i ), are also calculated. The sequence of
observations can then be classified as i if Equation 5 evalu-
ates to be true.

P (ΘH |λH
i ) ≥ ΨH

i (5)

ΨH
i = P (ΘH |λH)ΓH

i (6)

Where ΓH
i is a constant scalar value used to tune the

sensitivity of the system non head movement gestures.

5.3 Head Movement Feature Processing
The goal of the head movement gesture recognition sys-

tem is to spot and classify head movement gestures from
within a continuous sign language sentence. An accurate
head movement spotter must first be able to discriminate
between positive a negative head movement gesture samples,
therefore, we perform a set of experiments to find the best
performing feature set when discriminating between isolated
positive and negative head gestures.

To test the discriminative performance of different feature
vectors, we recorded an additional 7 videos for each head
gesture (21 in total), where a fluent ISL signer performed
the head movement gestures within different sign language
sentences. The start and end points of the head gestures
were then labeled and isolated observation sequences Θτ

i

were extracted. An additional set of 15 other head gesture
sequence, outside of the training set, were also labeled in the
video sequences to test the performance of the system when
identifying negative gestures.

The classification of a gesture is based on a comparison
of a weighted threshold model likelihood with the weight
denoted as ΓH

i . In our ROC analysis of the system, we vary
the weight, ΓH

i , over the range 0 ≤ ΓH
i ≤ 1 and then create

a confusion matrix for each of the weights.
To evaluate the performance of different features, we per-

formed a ROC analysis on the models generated from the
different feature combinations and calculated the area un-
der the curve (AUC) for each feature vector model. Table
1 shows the AUC measurement of four different features
which were evaluated during our experiments. To calculate
the directional vector of the head, (V H

x , V H
y ), we used the

mid point between the eyes and calculated the direction the
midpoint moved from frame to frame. We used a sliding
window to average the directional vector and in our experi-
ments we evaluated the best performing window size for each
feature vector. Although we evaluated each feature vector
with a range of different window sizes, we report the best
performing window sizes for each feature vector in Table 1.

6. CONTINUOUS RECOGNITION
Thus far we have described a framework for classifying

manual signs and head movement gestures. Kelly et al [17]

Table 1: AUC Measurements for Different Feature
Combinations

Features Window ROC
Size AUC

F1 - Unit Direction Vector (V̂ H
x , V̂ H

y ) 6 0.821

F2 - Direction Vector (V H
x , V H

y ) 12 0.936

F3 - Unit Direction Vector (V̂ H
x , V̂ H

y )
+ Angle Eyes (θeyes) 6 0.863

F4 - Direction Vector (V H
x , V H

y )
+ Angle Eyes (θeyes) 6 0.868

perform experiments to show the robustness of this frame-
work for recognizing isolated hand gestures with a ROC area
under the curve measurement of 0.949. In Section 5.3, we
expanded on the work of Kelly et al [17] to recognize head
movement gestures with a ROC area under the curve mea-
surement of 0.936.

In order to spot and classify manual signs and head move-
ment gestures, we must extract three observation channels
from the video streams. The three observation channels cor-
respond to the left hand observations ΘL, the right hand
observations ΘR and the head movement observations ΘH .
The observations ΘL and ΘR are combined into a parallel
observation sequence Θ which will be processed by the set of
parallel HMMs. Since manual and non-manual signals are
independent, the recognition of Θ and ΘH will be processed
independently and will be combined after the independent
spotting and recognition of gestures within each of the two
independent channels.

6.1 Continuous Manual Sign Recognition
We will now describe our system for spotting and classify-

ing manual signs within a continuous sequence, Θ, extracted
from natural sign language sentences.

The first step in our spotting algorithm is gesture end
point detection. To detect a gesture end point in a contin-
uous stream of gesture observations Θ = {O1, O2, ..., OT },
we calculate the model likelihoods of observation sequence
θ = {OT−F , OT−F−1, ..., OT } where θ is a subset of Θ and F
defines the length of the observation (no. of frames) subset
used. In this paper we set F to the average length of the
observation sequences used to train the system.

A candidate hand gesture, κ, with end point, κe = T , is
flagged when ∃c : P (Θ|λc) ≥ Ψc. Figure 2 illustrates the
likelihood time evolution of the hand gesture model ”Lost”
when given an observation sequence where the signer per-
forms the ”Lost” sign. It can be seen from Figure 2 that a
number of candidate end points occur between T = 16 and
T = 21.

Φc(Θ) = P(Θ|λc)
P(Θ|λc)+Ψc

(7)

For each candidate end point we calculate a corresponding
start point κs. Different candidate start points are evaluated
using the measurement shown in Equation 7 where Φc(Θ)
is normalized metric (between 0 and 1) which measures the
strength of gesture c given observations Θ. To find a can-
didate start point, the metric Φc(Θsκe

) is calculated over
different values of s, where Θsκe

= {Os, Os+1, ..., Oκe
} and

(κe − F 2) ≤ s < κe. The candidate gesture start point κs,
is then found using Equation 8.
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Figure 2: Likelihood evolution of ”Lost” gesture
model and associated threshold model

κs = argmax
s

Φc(Θsκe
) (8)

The start and end point detection algorithm may flag can-
didate gestures which overlap and for this reason we expand
on our continuous sign recognition algorithm with a can-
didate selection algorithm. The purpose of the candidate
selection algorithm is to remove overlapping candidate ges-
tures such that the single most likely gesture is the remaining
gesture for a particular time frame.

We will use a sample sign language sentence ”I Lost Book”
to illustrate our candidate selection algorithm in the context
of our gesture and threshold likelihood evaluation, where the
system was trained on the following 8 signs; ”Paper”, ”Alot”,
”Bike”, ”Clean”, ”Paint”, ”Plate”, ”Lost” and ”Gone”. Figure
3 illustrates the difference between the gesture model like-
lihood P (Θ|λc) and its corresponding threshold Ψc, where
positive values indicates P (Θ|λc) ≥ Ψc. We illustrate 4 ges-
ture model likelihoods as all other gesture model likelihoods
never exceed their corresponding threshold.

Figure 3: Gesture And Corresponding Threshold
Model Likelihood Difference

The first step in the candidate selection algorithm is to
cluster overlapping gestures, with the same gesture classifi-
cation, together. Each of these candidate gestures, within
the cluster, have an associated metric κp = Φc(Θκsκe

). We
remove all but one candidate gesture from this cluster leav-
ing the candidate gesture, κB , with the highest κp value. We
repeat this step for each cluster to produce a set of candi-
date gestures Υ = {κB1, κB2, ..., κBK}, where K is the total
number of clusters created from grouping overlapping ges-
tures, with the same gesture classification, together. Figure
4 shows the time segments and Φ metrics of each candidate
gesture after the first candidate selection step.

The second step in the candidate selection algorithm is an
iterative selection step to remove the least probable candi-

Figure 4: Candidate Gestures, Υ, after first candi-
date selection step

date gestures as shown in Algorithm 1.

Algorithm 1 Second Step of Candidate Selection Algo-
rithm

Sort(Υ) by In Order of Increasing κB
P

for i ≤ K do
if ∃j ∈ J = {i + 1, i + 2, ..., K}, such that Υ[j] overlaps
with Υ[i] then

Remove Υ[i] from Υ
end if

end for

Figure 5: Recognized Gestures, Υ, after final candi-
date selection step

Figure 5 shows the time segments and Φ metrics of the
recognized gestures after the second candidate selection step
where the sign ”Lost” is correctly recognized.

6.2 Continuous Non Manual Signal Recogni-
tion

The spotting and classifying of the non-manual channel
ΘH is then conducted using the methods described in Sec-
tion 6.1 above, however to keep the notation consistent with
the techniques described in Section 5, the notation Θ, c,
λc and Ψc should be substituted with ΘH , i, λH

i and ΨH
i

respectively.

7. CONTINUOUS RECOGNITION EXPER-
IMENTS

To evaluate the performance of our recognition frame-
work, a set of eight different manual signs and a set of three
different head movement gestures, as performed by a fluent
signer, were recorded and labeled. The set of gestures were
not selected to be visually distinct but to represent a suit-
able cross section of the manual signs and head movement
gestures that can occur in sign language. Figure 6 illustrates
an example of a signer performing each of the eight manual
signs, and Figure 7 illustrates an example of a signer per-
forming each of the three different head movement gesture.

The left direction head movement and right direction head
movement are commonly used in sign language sentences to
denote a ”wh” question while the left forward direction head
movement is often used to convey a yes/no question.
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(a)
News-
paper

(b)
Alot

(c)
Bike

(d)
Clean

(e)
Paint

(f)
Plate

(g)
Lost

(h)
Gone

Figure 6: Example of the eight different signs the
system was tested on

A total of 160 additional video clips of full unsegmented
sign language sentences being performed by a fluent signer
were recorded to test the performance of our continuous
recognition framework. Each video clip contained at least
one of the eight chosen manual signs and the three head
movement gestures occurred 30 times within the 160 videos.
Videos were recorded at 25 frames per second with an av-
erage length of 5 seconds. Observation sequences ΘL, ΘR

and ΘH were extracted from each video clip and our con-
tinuous recognition framework, described in Section 6, was
used to process the observation sequences to spot and clas-
sify manual signs and head movement gestures from within
the videos.

Figure 7: Example of the three different head move-
ment gestures the system was tested on (a) Right
Movement (b) Left Movement (c) Left Forward
Movement

In the gesture spotting and classification task, there are
three types of errors: an insertion error occurs when the
spotter reports a nonexistent gesture, a deletion error oc-

curs when the spotter fails to detect a gesture, and a sub-

stitution error occurs when the spotter falsely classifies a
gesture. From these error measures we define two perfor-
mance metrics shown in Equations 9 and 10.

DetectionRatio =
#CorrectlyRecognizedGestures

#InputGestures
(9)

Reliability =
#CorrectlyRecognizedGestures

#InputGestures + #InsertionErrors
(10)

Table 2 shows the performance of our system when spot-
ting and classifying signs within continuous sequences of
video. The experiment shows an overall detection rate of
95.7% and an overall reliability of 93.8% when independently
spotting and classifying manual and non-manual gestures in
continuous sign language sentences.

Table 2: Continuous Spotter and Classifier Perfor-
mance

Gesture #Correct #Del† #Ins‡ #Sub†† Detection Reliability
Gone 20 0 0 0 1.0 1.0
Alot 20 0 0 0 1.0 1.0
Lost 20 0 0 0 1.0 1.0
Plate 19 0 1 0 0.95 0.90
Bike 20 0 0 0 1.0 1.0
Paint 20 0 0 0 1.0 1.0
Paper 16 0 1 3 0.8 0.76
Clean 18 0 1 1 0.9 0.85

Head Left 11 0 1 0 0.91 0.84
Head Right 10 0 0 0 1.0 1.0

Head Left Forward 8 0 0 1 0.88 0.88

Total 182 0 4 5 0.957 0.938
† Number of Deletion Errors

‡Number of Insertion Errors

††Number of Substitution Errors

We also evaluate the performance of the start and end
point detection relative to ground truth data labeled by a
human sign language translator. Table 3 shows the average
absolute difference between the spotters start and end points
and the human interpreters start and end points for signs
that were correctly spotted and classified. The average start
point error was 8.1 frames and the average end point error
was 7.6 frames. From this experiment we can conclude that
our spotter is capable of detecting start points, within an
average of 324 milliseconds of a human interpreter, and end
points, within an average of 304 milliseconds of a human
interpreter.

Table 3: Continuous Spotter and Classifier Perfor-
mance

Gesture Start Error (Frames) End Error (Frames)
Gone ±2.5 ±8.4
Alot ±1.5 ±1.6
Lost ±1.5 ±3.5
Plate ±8.1 ±12.2
Bike ±12.1 ±12.0
Paint ±26.1 ±20.7
Paper ±5.9 ±1.6
Clean ±4.8 ±5.2

Head Left ±10.1 ±7.7
Head Right ±4.0 ±4.3

Head Left Forward ±12.9 ±6.5

Total ±8.1 ±7.6
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Figure 8: Multimodal gesture labeling comparison
of a human interpreter vs. our recognition system

8. CONCLUSION
In this paper we have discussed current methods of contin-

uous sign recognition. The downside of these methods is that
unnatural constraints are put on the signer, such as pauses
between words, or the explicit training of models to han-
dle movement epenthesis must be carried out. The method
we have proposed in this paper can recognize gestures from
within natural unconstrained sign language sentences which
requires that a set of dedicated gesture models be trained,
and as a result of this training a single threshold model can
be created to identify negative samples.

We have also discussed the importance of non-manual sig-
nals in sign language. We have highlighted there are cur-
rently a limited number of works which incorporate both
manual and non-manual signals into a single framework for
continuous automatic sign language recognition. The prin-
cipal contribution of our work is that we have developed a
multimodal framework for spotting and classifying manual
and non-manual gestures from continuous sign language sen-
tences. The system which we have proposed is unique as,
unlike current works, each manual and non-manual signal is
processed independently within our multimodal framework.

Experiments conducted demonstrate that our system achieved
a detection ratio of 0.957 and a reliability measure of 0.938.
Experiments also showed that our gesture spotting system
successfully flagged gesture start points and end points within
±324 milliseconds and ±304 milliseconds respectively when
compared to a human interpreter. Through these experi-
ments we have proved the robustness of our system when
recognizing a number of different manual and non-manual
signals.

Another contribution of this paper is that we have ex-
panded on the work of Lee and Kim [19] where they proposed
single channel HMM threshold model using discrete obser-
vations to recognize a set of distinct gestures. Although our
system is based on their HMM threshold model, it differs
in that we have developed a multichannel HMM threshold
model using continuous multidimensional observation vec-

tors. This is an important advancement as using continuous
multidimensional observation vectors allows further expan-
sion of our framework into different feature vectors without
the loss of information through vector quantization which
is required when using discrete observations. As a result
of this, we hypothesize that our framework is extendable
to model many of the modes of communication in sign lan-
guage. Future work will involve testing this hypothesis by in-
corporating different modes of non-manual communication,
such as facial expressions, to our framework.

Acknowledgment
The Authors would like to acknowledge the financial support
of the Irish Research Council for Science, Engineering and
Technology (IRCSET).

9. REFERENCES
[1] M. Assan and K. Grobel. Video-based sign language

recognition using hidden markov models. In
Proceedings of the International Gesture Workshop on

Gesture and Sign Language in Human-Computer

Interaction, pages 97–109, London, UK, 1998.
Springer-Verlag.

[2] B. Bahan. Nonmanual Realisation of Agreement in

American sign language. PhD thesis, University of
California, Berkely, 1996.

[3] C. Baker-Shenk. Factors affecting the form of question
signals in asl. Diversity and Diachrony, 1986.

[4] B. Bauer and K.-F. Kraiss. Towards an automatic sign
language recognition system using subunits. In GW

’01: Revised Papers from the International Gesture

Workshop on Gesture and Sign Languages in

Human-Computer Interaction, pages 64–75, London,
UK, 2002. Springer-Verlag.

[5] B. Bauer and K.-F. Kraiss. Video-based sign
recognition using self-organizing subunits. Pattern

Recognition, 2002, 2:434–437 vol.2, 2002.

[6] S. C., W. Ong, and S. Ranganath. Automatic sign
language analysis: A survey and the future beyond
lexical meaning. IEEE Trans. PAMI, 27(6):873–891,
2005.

[7] D. Comaniciu, V. Ramesh, and P. Meer. Real-time
tracking of non-rigid objects using mean shift.
Computer Vision and Pattern Recognition, 2000.

Proceedings. IEEE Conference on, 2:142–149 vol.2,
2000.

[8] Y. Cui and J. Weng. Appearance-based hand sign
recognition from intensity image sequences. CVIU,
78(2):157–176, 2000.

[9] L. Ding and A. Martinez. Modelling and recognition of
the linguistic components in american sign language.
Journal of Image and Vision Computing, In Press,
2009.

[10] W. Gao, G. Fang, D. Zhao, and Y. Chen. Transition
movement models for large vocabulary continuous sign
language recognition. IEEE FG 2004, pages 553–558,
May 2004.

[11] R. Grossman and J. Kegl. Moving faces:
Categorization of dynamic facial expressions in
american sign language by deaf and hearing
participants. Journal of Nonverbal Behavior,
31(1):23–38, 2007.

357



[12] R. B. Grossman and J. Kegl. To capture a face: A
novel technique for the analysis and quantification of
facial expressions in american sign language, 2006.

[13] E.-J. Holden and O. Robyn. Visual sign language
recognition. Mutli-Image Analysis, 2001.

[14] C.-L. Huang and W.-Y. Huang. Sign language
recognition using model-based tracking and a 3d
hopfield neural network. Mach. Vision Appl.,
10(5-6):292–307, 1998.

[15] K. Imagawa, H. Matsuo, R. Taniguchi, D. Arita,
S. Lu, and S. Igi. Recognition of local features for
camera-based sign language recognition system. In
ICPR ’00, page 4849, Washington, DC, USA, 2000.
IEEE Computer Society.

[16] D. Kelly, J. McDonald, T. Lysaght, and C. Markham.
Analysis of sign language gestures using size functions
and principal component analysis. In IMVIP 2008,
2008.

[17] D. Kelly, J. McDonald, and C. Markham. Recognizing
spatiotemporal gestures and movement epenthesis in
sign language. In IMVIP 2009, 2009.

[18] T. Kobayashi and S. Haruyama. Partly-hidden markov
model and its application to gesture recognition. In
ICASSP ’97, page 3081, Washington, DC, USA, 1997.
IEEE Computer Society.

[19] H. K. Lee and J. H. Kim. An hmm-based threshold
model approach for gesture recognition. IEEE PAMI,
21(10):961–973, 1999.

[20] R. H. Liang and M. Ouhyoung. A real-time continuous
gesture recognition system for sign language. In IEEE

FG 1998, page 558, Washington, DC, USA, 1998.
IEEE Computer Society.

[21] J. R. Liddell, S.K. American sign language: The
phonological base. Sign Langauge Studies, 64.

[22] L. A.-C. M. Castrillt’on-Santana, O. Dt’eniz-Sut’arez
and J. Lorenzo-Navarro. Performance evaluation of
public domain haar detectors for face and facial
feature detection. VISAPP 2008, 2008.

[23] J. Ma, W. Gao, and R. Wang. A parallel multistream
model for integration of sign language recognition and
lip motion. In ICMI ’00: Proc of the 3rd Intl Conf on

Adv in Multimodal Interfaces, pages 582–589, 2000.

[24] H. Matsuo, S. Igi, S. Lu, Y. Nagashima, Y. Takata,
and T. Teshima. The recognition algorithm with
non-contact for japanese sign language using
morphological analysis. In Proceedings of the

International Gesture Workshop on Gesture and Sign

Language in Human-Computer Interaction, pages
273–284, London, UK, 1998. Springer-Verlag.

[25] S. C. W. Ong and S. Ranganath. Automatic sign
language analysis: A survey and the future beyond
lexical meaning. IEEE Trans. Pattern Anal. Mach.

Intell., 27(6):873–891, 2005.

[26] L. Rabiner. A tutorial on hidden markov models and
selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, Feb 1989.

[27] H. Sagawa and M. Takeuchi. A method for recognizing
a sequence of sign language words represented in a
japanese sign language sentence. In IEEE FG 2000,
page 434, Washington, DC, USA, 2000. IEEE
Computer Society.

[28] T. Starner, A. Pentland, and J. Weaver. Real-time
american sign language recognition using desk and
wearable computer based video. IEEE PAMI,
20(12):1371–1375, 1998.

[29] T. Starner, J. Weaver, and A. Pentl. Real-time
american sign language recognition from video using
hidden markov models. IEEE PAMI, 20:1371–1375,
1998.

[30] J. Stokoe, William C. Sign language structure: An
outline of the visual communication systems of the
american deaf. Journal of Deaf Studies and Deaf

Education, v10 n1 p3-37 Win 2005, 2005.

[31] S. Tamura and S. Kawasaki. Recognition of sign
language motion images. Pattern Recogn.,
21(4):343–353, 1988.

[32] N. Tanibata, N. Shimada, and Y. Shirai. Extraction of
hand features for recognition of sign language words.
In In International Conference on Vision Interface,
pages 391–398, 2002.

[33] E. van der Kooij, O. Crasborn, and W. Emmerik.
Explaining prosodic body leans in sign language of the
netherlands: Pragmatics required. Journal of

Pragmatics, 38, 2006. Prosody and Pragmatics.

[34] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. CVPR, IEEE,
1:511, 2001.

[35] C. Vogler and S. Goldenstein. Facial movement
analysis in asl. Universal Access in the Information

Society, 6(4):363–374, 2008.

[36] C. Vogler and D. Metaxas. Parallel hidden markov
models for american sign language recognition. In In

ICCV, pages 116–122, 1999.

[37] C. Vogler and D. Metaxas. A framework for
recognizing the simultaneous aspects of american sign
language. Computer Vision and Image Understanding,
81:358–384, 2001.

[38] U. von Agris, M. Knorr, and K.-F. Kraiss. The
significance of facial features for automatic sign
language recognition. pages 1–6, 2008.

[39] U. von Agris, D. Schneider, J. Zieren, and K.-F.
Kraiss. Rapid signer adaptation for isolated sign
language recognition. In CVPRW ’06: Proceedings of

the 2006 Conference on Computer Vision and Pattern

Recognition Workshop, page 159, Washington, DC,
USA, 2006. IEEE Computer Society.

[40] U. von Agris, J. Zieren, U. Canzler, B. Bauer, and
K.-F. Kraiss. Recent developments in visual sign
language recognition. Universal Access in the

Information Society, 6(4):323–362, 2008.

[41] C. Wang, S. Shan, and W. Gao. An approach based
on phonemes to large vocabulary chinese sign
language recognition. In IEEE FG 2002, page 411,
Washington, DC, USA, 2002. IEEE Computer Society.

[42] Y. Wu and T. Huang. Human hand modeling, analysis
and animation in the context of hci, 1999.

[43] Y. Wu, T. S. Huang, and N. Mathews. Vision-based
gesture recognition: A review. In Lecture Notes in

Computer Science, pages 103–115. Springer, 1999.

[44] M. H. Yang, N. Ahuja, and M. Tabb. Extraction of 2d
motion trajectories and its application to hand gesture
recognition. IEEE PAMI., 24(8):1061–1074, 2002.

358


