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ABSTRACT
Human nonverbal behavior recognition from multiple cues
and modalities has attracted a lot of interest in recent years.
Despite the interest, many research questions, including the
type of feature representation, choice of static vs. dynamic
classification schemes, the number and type of cues or modal-
ities to use, and the optimal way of fusing these, remain
open research questions. This paper compares frame-based
vs. window-based feature representation and employs static
vs. dynamic classification schemes for two distinct prob-
lems in the field of automatic human nonverbal behavior
analysis: multicue discrimination between posed and spon-
taneous smiles from facial expressions, head and shoulder
movements, and audio-visual discrimination between laugh-
ter and speech. Single cue and single modality results are
compared to multicue and multimodal results by employing
Neural Networks, Hidden Markov Models (HMMs), and 2-
and 3-chain coupled HMMs. Subject independent experi-
mental evaluation shows that: 1) both for static and dy-
namic classification, fusing data coming from multiple cues
and modalities proves useful to the overall task of recogni-
tion, 2) the type of feature representation appears to have a
direct impact on the classification performance, and 3) static
classification is comparable to dynamic classification both
for multicue discrimination between posed and spontaneous
smiles, and audio-visual discrimination between laughter and
speech.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Applications; J.m [Computer Applications]: Miscella-
neous
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1. INTRODUCTION
In the day-to-day world humans naturally combine mul-

tiple channels and modalities to communicate with others
[27]. Thus, human nonverbal behavior can be recognized
from a broad range of behavioral cues like facial expressions,
head and hand gestures and non-linguistic vocalizations [7],
[27]. Despite the available range of cues and modalities in
human-human interaction, past research on affect/behavior
sensing and recognition has mainly focused on single modal-
ities like facial expressions or audio, and on data that has
been acted on demand or acquired in laboratory settings
[27]. Automatic systems using multiple cues and modali-
ties, and capable of handling spontaneous data acquired in
naturalistic settings have only recently emerged [7]. This in
turn triggered many other research questions: what features
to extract [24], which classification schemes to employ, which
cues or modalities to use, and how to combine them [7].

From the automatic sensing perspective, human nonver-
bal behavior analysis can be performed by either using the
features from one frame at a time, or by considering the se-
quential nature of the frame sequence as in a time series. In
the literature, these two approaches are referred to as static
or frame-based and dynamic or sequence-based classification,
respectively [6], [25]. Commonly used static classifiers are
Support Vector Machines (SVM), Neural Networks (NN)
and decision trees (C4.5). Hidden Markov Models(HMM)
and their variations (e.g., Coupled Hidden Markov Models
(CHMM)) constitute the well known dynamic classifiers.

As early work on automatic emotion recognition has mostly
focused onto a simplified problem of recognition of small
number of classes of posed (deliberately displayed), facial
expression images, for many years static classification has
been the trend in the automatic affect recognition field [27].
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However, as the research field has shifted its focus from static
images to multicue and multimodal analysis, and from acted
data to spontaneous and naturalistic data, more recent ap-
proaches have been exploring the use of dynamic classifica-
tion techniques to the aim of improving recognition accuracy
(e.g., [3], [6], [28]).

Human nonverbal behavior is inherently continuous and
sequential. It consist of streams of multicue (e.g., smiling ac-
companied by downward head pitch) and multimodal (e.g.,
smiling accompanied by a high acoustic pitch) data. There-
fore, machine learning methods like Dynamic Bayesian Net-
works (DBNs) are considered to be better suited for sponta-
neous affective behavior recognition. They are known to well
model the temporal activity incorporated within sequential
affect data (e.g., [28]).

For emotional speech recognition, either global statistics
features are calculated and fed to a static classifier or short-
term features are commonly used for dynamic modeling via
HMMs [25]. The researchers claim that in the static classifi-
cation case dynamic properties of human affective behavior
should be captured by the features, while in the latter case,
they are dealt with by the classifier.

Some researchers reported reported that dynamic classi-
fiers are better suited for person dependent facial expres-
sion recognition (e.g., [3]). This was attributed to the fact
that dynamic classifiers are more sensitive to both differ-
ences in terms of appearance change and differences in tem-
poral patterns among individuals. Static classifiers instead
were reported as being more reliable when the the frames
represent the apex of an expression [3]. Other researchers
reported that the frame-based classification outperforms the
sequence-based classification in the task of temporal segment
detection from face and body display (e.g., [6]). It was shown
that the accuracy of affect recognition increases significantly
if static classifiers are employed using the apex frames from
face and body display compared to that of feeding a whole
sequence to a dynamic classifier such as an HMM [6].

The main challenge faced when comparing static and dy-
namic classification relates to the utilised features. Speech-
based emotion recognition has mostly used turn-wise statis-
tics of acoustic features followed by a static classification
or frame-level features followed by a dynamic classification
[23]. Vogt et al. [25] argue, that as such works use differ-
ent feature representation for static and dynamic classifica-
tion, it is not possible to clearly attribute the higher recog-
nition accuracy to either classification technique (dynamic
vs. static) [25]. It could well be the case that the utilised
features derived cause the difference in the obtained recog-
nition accuracies. For emotional speech recognition, Vogt et
al. claim that static classification performs better as more
feature types can be exploited (e.g., suprasegmental acous-
tic features like jitter or shimmer to measure voice quality)
[25]. However, if the same feature types are used (e.g., only
MFCCs and energy), HMMs appear to outperform static
modeling techniques.

Despite the aforementioned efforts, to the best of our
knowledge, no systematic evaluation of static and dynamic
classification methods for automatic human affective behav-
ior analysis from multicue and multimodal data has been
reported to date. To this aim, in this paper, we focus on
two facets of human nonverbal behavior sensing and recogni-
tion: automatically discriminating between posed and spon-
taneous smiles from multiple visual cues [22], and automat-

Figure 1: Tracked points Tf1 . . . Tf12 of the face and
tracked points Ts1 . . . Ts5 of the shoulders.

ically detecting laughter vs. speech from audio and visual
modalities [16].We use both spontaneous and posed (as op-
posed to posed only) displays of smiles from the MMI fa-
cial expression database [12], and spontaneous laughter and
speech episodes from the audiovisual recordings of the AMI
meeting corpus [9]. We focus on person-independent recog-
nition which makes the task of human nonverbal behavior
analysis even more challenging. We provide details of the
single cue or single modality recognition merely in order to
obtain a term of reference for the performance of the multi-
cue and multimodal recognition. We then evaluate static vs.
dynamic classification by employing Neural Networks and
(coupled) Hidden Markov Models for the two problems at
hand. The experimental results obtained show the follow-
ing: 1) for both static and dynamic classification, fusing data
coming from multiple cues and modalities proves useful to
the overall task of recognition, 2) the type of feature repre-
sentation appears to have a direct impact on the classifica-
tion performance, and 3) static classification is comparable
to dynamic classification both for multicue discrimination
between posed and spontaneous smiles, and audio-visual dis-
crimination between laughter and speech.

In the remainder of the paper, the problem of distinguish-
ing between acted and spontaneous smiles is referred to as
Case Study 1, and the problem of discriminating between
laughter and speech is referred to as Case Study 2.

2. DATABASES

2.1 Case Study 1
For Case Study 1, we used 201 videos displaying acted

and spontaneous smiles from 43 subjects from the MMI fa-
cial expression database [12]. The MMI facial expression
database has two parts: a part containing deliberately dis-
played facial expressions and a part containing spontaneous
facial displays. The acted part contains videos depicting fa-
cial expressions of single Action Unit (AU) activation (e.g.,
AU12 or AU13), multiple AU activations (e.g., AU6 and
AU12), and six basic emotions. The spontaneous part of the
database contains videos of spontaneous facial displays. We
used 99 videos from the acted part and 102 from the spon-
taneous part. The recordings of the spontaneous part were
made partially in a TV studio, using a uniform background
and constant lighting conditions, and partially in subjects’
usual environments (e.g., home), where they were shown
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segments from comedies, horror movies, and fear-factor se-
ries. These recordings contain mostly facial expressions of
different kinds of laughter, surprise, and disgust expressions,
which were accompanied by (often large) head motions. We
selected the videos that contain facial expressions of different
kinds of smiles (AU12 or AU13).

2.2 Case Study 2
For Case Study 2 we used the AMI Meeting Corpus which

consists of 100 hours of meetings recordings where people
show a huge variety of spontaneous expressions. We only
used the close-up video recordings of the subject’s face (720
x 576 pixels, 25 frames per second) and the related individ-
ual headset audio recordings (16 kHz). The language used
in the meetings is English and the speakers are mostly non-
native speakers. For our experiments we used seven meet-
ings (IB4001 to IB4011) and the relevant recordings of eight
participants (6 young males and 2 young females) of Cau-
casian origin with or without glasses and no facial hair. All
laughter and speech segments were pre-segmented based on
audio. Initially, laughter segments were selected based on
the annotations provided with the AMI Corpus. After ex-
amining the extracted laughter segments we only kept those
that do not co-occur with speech and where the laughter is
clearly audible. Speech segments were also determined by
the annotations provided with the AMI Corpus. We selected
those that do not contain long pauses between two consec-
utive words. In total, we used 114 audio-visual laughter
segments and 92 audio-visual speech segments.

3. FEATURE EXTRACTION

3.1 Case Study 1
In order to distinguish between posed and spontaneous

smiles based on multiple visual cues, we track facial feature
points, head and shoulder movements.

Head features (He). To capture the head motion we
employ the Cylindrical Head Tracker developed by Xiao et
al. [26]. The head tracker estimates the six degrees of free-
dom of head motion: horizontal and vertical position in the
scene, distance to the camera (i.e. scale), pitch, yaw and roll.
This is denoted as the set of parameters Th = {Th1 . . . Th6}
with dimensions n ∗ 6. Here n is the number of frames of an
input sequence.

Facial expression features (Fa). To capture the facial
motion displayed during a smile we track 12 facial points,
points Tf1−Tf4 and points Tf5−Tf12, as illustrated in Fig.
1. These points are the corners (extremities) of the eyes
(8 points) and the mouth (4 points). To track these facial
points we used the Patras - Pantic particle filtering tracking
scheme [13]. For each video segment containing n frames,
we obtain a set of n vectors containing 2D coordinates of
the 12 points tracked in n frames (Tf = {Tf1 . . . Tf12} with
dimensions n ∗ 12 ∗ 2).

Shoulder features (Sh). The motion of the shoulders
is captured by tracking 2 points on each shoulder and one
stable point on the torso, usually just below the neck (see
Fig. 1). The stable point is used to remove any rigid motion
of the torso. We use the standard Auxiliary Particle Fil-
tering (APF) [17] to this aim. This scheme is less complex
and faster compared to the Patras - Pantic particle filter-
ing tracking scheme, it does not require learning the model
of prior probabilities of the relative positions of the shoul-

(a) Frame 2 (b) Frame 122

Figure 2: Example of a laughter episode, from the
AMI corpus, with illustrated facial point tracking
results.

der points, while resulting in sufficiently high accuracy. The
shoulder tracker results in a set of points Ts = {Ts1 . . . Ts5}
with dimensions of n ∗ 5 ∗ 2.

The final feature set obtained for each visual cue contains
tracked points as well as distances, angles and speed and is
described in detail in Table 1. Further details of the tracking
and feature extraction procedure can be found in [22].

After some preliminary experiments, we chose to use Fa[21 :
40], He[7 : 12], and Sh[5 : 8] for this study. These features
are derived from the previously calculated features and are
normalized with respect to the neutral frame.

3.2 Case Study 2
In order to discriminate between laughter and speech, in-

formation is extracted simultaneously from the audio and
visual channels as follows.

Spectral features (Sp). Spectral or cepstral features,
such as MFCCs, have been widely used in speech recogni-
tion [18] and have also been successfully used for laughter
detection [8]. Only the first 6 MFCCs are used, given the
findings in [8], which are computed every 20ms over a win-
dow of 40ms. It has been shown that both 50 frames per
second (fps) and 100 fps have the same performance for the
task at hand [14] so we chose to use 50 fps.

Prosodic features (PE). The two most commonly used
prosodic features in studies on emotion detection are pitch
and energy [27]. Pitch is the perceived fundamental fre-
quency of a sound. While the actual fundamental frequency
can be precisely determined through physical measurement,
it may differ from the perceived pitch. Bachorowski et al. [1]
found that the mean pitch in both male and female laughter
was higher than in modal speech. Pitch was computed in
each frame using the same algorithm as Praat [2]. The en-
ergy feature used is the Root-Mean-Square (RMS) energy.
Those features are extracted in the same frame rate as the
MFCC coefficients, i.e., every 20ms over a window of 40ms.

Visual features (Fa). Changes in facial expression are
captured by tracking 20 facial points as shown in Fig. 2.
These points are the corners (extremities) of the eyebrows (2
points), the eyes (4 points), the nose (3 points), the mouth
(4 points) and the chin (1 point). Tracking was done using
the tracker proposed in [13]. For each video segment con-
taining n frames, we obtain a set of n vectors containing 2D
coordinates of the 20 points tracked in n frames. Using a
Point Distribution Model (PDM), head movement is decou-
pled from facial expression. Using the approach proposed
in [5], we extract 5 features per frame, which encode the
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Table 1: Description of the feature set used in case
study 1 and obtained from tracking each face (Fa),
head (He) and shoulders (Sh) cues.

Fa[1:8] x- and y-position of mouth points Tf1, Tf2, Tf3, Tf4

Fa[9:14] Euclidian distances between pairs of points (Tf1 and
Tf2, Tf1 and Tf3)

Fa[15:20] angles (between the line connecting two facial points
and the y=0 line)

Fa[21:40] difference of F[1:20] at time t with respect to the neu-
tral frame

He[1] x-displacement wrt neutral frame

He[2] y-displacement wrt neutral frame

He[3] z-displacement wrt neutral frame (zoom)

He[4] roll

He[5] yaw

He[6] pitch

He[7:12] difference of He[1:6] at time t with respect to the neu-
tral frame

Sh[1] angle of the line connecting points on the right shoul-
der (Ts1, Ts2) and the line y=0

Sh[2] angle of the line connecting points on the left shoulder
(Ts3, Ts4)

Sh[3] normalized sum of y-displacement of right shoulder
points

Sh[4] normalized sum of y-displacement of left shoulder

Sh[5:8] difference of Sh[1:4] with respect to the neutral frame

facial expression movements. Further details of the feature
extraction procedure can be found in [15, 16].

4. CLASSIFICATION AND FUSION

4.1 Classifiers
We employ a Neural Network classifier for static classifi-

cation as they are able to learn a non-linear function from
examples. As dynamic classifier, we have employed HMM
[19] and its variations as they have been commonly used in
the literature to the aim of affect recognition from visual or
audio modalities (e.g., [27]).

Affective human behavior is continuous and multi-dime-
nsional. Therefore, the output of an HMM cannot be a
discrete probability variable, a mixture of continuous vari-
ables with Gaussian distribution is used instead. Our main
goal is to model a set of given (training) sequences with high
accuracy. Data depicting several cues or modalities can be
modeled by using several HMMs. In this case, the data
streams are assumed to be independent from each other.

A Coupled Hidden Markov Model (CHMM) is a series of
parallel HMM chains coupled through cross-time and cross-
chain conditional probabilities. Therefore, CHMMs enable
better modeling of intrinsic temporal correlations between
multiple cues and modalities, and allow for true interactions
between different feature sets corresponding to the same
nonverbal display. In the HMM model, the probability of the
next state of a sequence depends on the current state of the
HMM. In the CHMM model the probability of the next state
of a sequence depends on the current states of all HMMs.

A DBN can be used to model a CHMM [10], as illustrated
in Fig. 4 and 5. The inner state is represented by a node

S and the output variable is represented by node O. O de-
pends only on the S of the same timeslice and S(t) depends
of S(t−1). Prior distribution for S is 0, except for the start
state where it is 1. The conditional probability distribution
(CPD) for (S(t), O(t)) is defined by the probabilities of the
output variable and the CPD for (S(t−1), S(t)) is defined by
the transition probabilities. Fig. 4 and 5 show a DBN mod-
eling a 3-chain CHMM. See [10] for more in-depth knowledge
about DBNs and CHMMs.

4.2 Fusion
In human affective behavior analysis, modality fusion refers

to combining and integrating all incoming unimodal events
into a single representation of the observed behavior. Typ-
ically, multimodal data fusion is either done at the feature
level in a maximum likelihood estimation manner or at the
decision level when most of the joint statistical properties
(maximum a posteriori) may have been lost [27].

Feature-level fusion assumes a strict time synchrony be-
tween the modalities. Therefore, it becomes more challeng-
ing as the number of features increases and when they are
of very different natures (e.g., in terms of their temporal
properties). Synchronization then becomes of utmost im-
portance. Recent works have attempted synchronization be-
tween multiple cues to support feature-level fusion for the
purposes of affect recognition, and reported greater overall
accuracy when compared to decision-level fusion (e.g., [6],
[20]).

In line with the aforementioned literature we employ fea-
ture level fusion as the cues and modalities employed in our
studies are highly correlated. To this aim, features from
all available cues and modalities are concatenated and fed
into the static classifier. Moreover, to exploit the temporal
correlation structure between the cues and modalities auto-
matically via learning, we adopt model-level fusion based on
Coupled Hidden Markov Models (CHMM).

5. EXPERIMENTS
In our experiments feature representation is chosen to be

either frame-based or window-based. Frame-based repre-
sentation refers to the features extracted for each audio (or
video) frame as described in Section 3. In window-based
representation the sequence is divided into 320ms long win-
dows with 160ms overlap, and simple statistical features
(mean and standard deviation) of the frame-level features
are computed over each window. Note that window-based
representation doubles the amount of features used, as for
each feature the mean and standard deviations across a win-
dow are used for representation. Overall, the frame-based
representation was chosen for its wide adoption within the
research community, and the window-based representation
was used due to its good performance reported in [15].

Classification is chosen to be either single cue or single
modal, and multicue or multimodal, static or dynamic clas-
sification. The static classification scheme uses the features
from one frame / window at a time and classifying it inde-
pendently of the other frames. Taking the majority of the
individual frame / window labels assigned by the classifier
provides the label for the whole sequence. The dynamic
classification scheme considers the sequential nature of the
frames as in a time series. An entire sequence is fed to the
classifier which outputs the label for this sequence.
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5.1 Evaluation
Real world classification results can only be obtained if

training cases and test cases are different. To achieve this
and to make the most out of the data at hand, cross-validation
is a common method for classifier evaluation. In our study,
the cross-validation method is extended to subject indepen-
dency. This is achieved by putting all cases belonging to
the same subject into the same fold. Training is then per-
formed by leaving out sequences contained in one fold, i.e.,
belong only to one subject . The left out subset is then used
for testing. This procedure is repeated m times, where m
is the number of subjects. each time leaving out data se-
quences from one different subject. In our study, for both
cases we performed 10-fold subject-independent cross valida-
tion. This means that dor the first case study more than one
subjects were left out for testing in each iteration. Classifi-
cation accuracy, which is used as the performance measure
in this study, is computed as the mean accuracy of the 10
repetitions.

5.2 Static Classification
Feedforward neural networks with one hidden layer are

used as classifiers. The learning rate is set to 0.05 and the
training is stopped when either the maximum number of
epochs is reached (500 in our case) or the magnitude of the
gradient is less than 0.04. The number of hidden neurons is
defined by a 2-fold cross validation in the following way. The
subjects in the 9 folds used for training are randomly divided
into 2 groups. Then several networks are trained, with dif-
ferent numbers of hidden neurons, using only subjects from
one group. They were tested on the other group. This was
done for both groups and for all m folds. For each fold, the
number of hidden neurons leading to the best performance
is chosen for training a network on the entire training set
and testing it for the subjects in the left-out fold. In each
cross validation fold, all features used for training are z-
normalized to a mean µNorm = 0 and standard deviation
σNorm = 1.

For Case Study 1, we wanted to investigate how frame-
based representation affects static classifier’s performance.
To this aim we analyzed how single cues, namely facial ex-
pressions, head and shoulder movement, contribute sepa-
rately to the aim of distinguishing between posed and spon-
taneous smiles using a static classification scheme. We then
explored how fusing each pair of FaHe, FaSh, and HeSh fea-
tures at the feature level affects the automatic discrimination
of posed vs. spontaneous smiles. Finally, we fused all face,
head and shoulder features at the feature level. Secondly,
we wanted to see whether using a window-based representa-
tion affects static classifier’s performance. We repeated the
aforementioned experiments using the window-based repre-
sentation for each cue. All results are presented in Table 2.

For Case study 2, we analyzed how single cues, namely
Sp, PE and Fa, contribute separately to the aim of discrim-
inating laughter from speech. We then explored how fusing
each pair of features (FaSp, FaPE, and SpPE) at the fea-
ture level affects the classification. Finally, all features were
fused together. The aforementioned experiments were then
repeated using the window-based representation for each cue
and modality. The main difference with Case Study 1 is
that the audio and visual features are extracted at different
frame rates. For frame-based representation synchronisa-
tion is achieved by upsampling the visual features (25 fps)

N

A
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Figure 3: Illustration of the HMM topology used for
the face stream.

by simply copying each visual feature so as to match the
audio feature rate (50 fps). For window-based representa-
tion there is no need for synchronization since mean and
standard deviation are computed for both modalities at the
same rate, since the windows have the same length. All
results are presented in Table 2.

5.3 Dynamic Classification
The temporal factors of a facial movement are described

by four phases: neutral (there are no signs of muscular ac-
tivation), onset (the muscular contraction begins and in-
creases in intensity), apex (a plateau where the intensity
reaches a stable level), and offset (the relaxation of the mus-
cular action) [4]. Due to this nature of the face data we
expect some of the states to only move forward and not
come back. Therefore, the model size and state transition
matrix for the face stream consists of four states (see Fig. 3),
one for each temporal phase of neutral, onset, apex, and off-
set. This model has beed used for both Case Study 1 and 2.
For Case Study 1, for head and shoulders, an ergodic HMM
model (where all states are connected to each other) with
two states is used, as the head and shoulders motion are
modeled as either moving or non-moving. The implementa-
tion of the dynamic classification schemes has been done by
using the Bayes Net Toolbox for Matlab [11].

The HMM model used for Case Study 1 can be described
as follows:

• Number of states: 4 (neutral, onset, apex, offset) for
face and 2 (active and inactive) for head and shoulders.

• Initial state probabilities: randomly generated.

• Initial state transition probability matrices: initialized
randomly from a uniform distribution. The restricted
transitions are then set to 0, and values are normalized.

• Density: continuous Gaussian distribution.

• Number of Gaussians per state: 1, 5.

• Weight for each of the Gaussian component: randomly
generated from a uniform distribution.

• Covariance type: diagonal, value of each diagonal ele-
ment is set to 100, and the rest are set to 0.

For Case Study 1, a similar structure is used for each of
the cues that constitute the 2-chain and 3-chain CHMMs
while adding transitions across cues. This is illustrated in
Fig. 4.

Similar to static classification experiments, we first wanted
to investigate how frame-based representation affects the
classifier’s performance. In the training stage, two HMM
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S 1 (1 ) S 1 (2 )

O 1 (1 ) O 1 (2 )
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O 2 (1 )

S 2 (1 )

S 3 (3 )

O 3 (3 )O 3 (2 )

S 3 (2 )

O 3 (1 )

S 3 (1 )

Figure 4: Illustration of the 3-chain CHMM struc-
ture, (illustrated as a DBN) for discriminating be-
tween posed and spontaneous smiles, unrolled for 3
time-slices. Rectangle denotes a discrete node, cir-
cle denotes a continuous node and arrow denotes an
intra-slice or an inter-slice connection. S1 represents
the face, S2 represents the head, and S3 represents
the shoulder features.

S 1 (1 ) S 4 (1 )

O 1 (1 ) O 4 (1 )

S 1 (2 )

O 1 (2 )

S 2 (2 )

O 2 (2 )O 2 (1 )

S 2 (1 )

S 3 (2 )

O 3 (2 )O 3 (1 )

S 3 (1 )

S 5 (1 )

O 5 (1 )

S 4 (2)

O 4 (2)

S 5 (2)

O 5 (2)

Figure 5: Illustration of the 3-chain CHMM struc-
ture used for audio-visual laughter vs. speech dis-
crimination unrolled for 3 time-slices. Rectangle de-
notes a discrete node, circle denotes a continuous
node and arrow denotes an intra-slice or an inter-
slice connection. S1 represents the face, S2 repre-
sents the spectral, and S3 represents the prosodic
features.

/ CHMM classifiers were trained as the recognition task is
to distinguish between posed and spontaneous smiles. Each
classifier was trained with data belonging to its own class.
During testing, a test sequence was fed to each of the classi-
fiers separately, and one likelihood value was obtained from
each classifier. The class membership of the test sequence
was then decided according the classifier that provides the
maximum likelihood.

We then temporally correlated each pair of FaHe, FaSh,
and HeSh features by using a 2-chain CHMM classifier. Us-
ing the structure illustrated in Fig. 4, we trained a CHMM
for each coupled cue : FaHe, FaSh, HeSh. We obtained
one CHMM-based classifier for each set of FaHe, FaSh, and
HeSh features, ending up with 3 separately trained models
for each class of acted and spontaneous smiles. Finally, to
correlate all face, head and shoulder features in time, we
employed a 3-chain CHMM classifier.

We also wanted to see whether using a window-based rep-
resentation affects a dynamic classifier’s performance. We

repeated the aforementioned experiments using the window-
based representation for each cue. The results are presented
in Table 2.

In order to obtain an insight on how different parame-
ters affect the classification results, we extended our exper-
iments by changing various parameters: number of states
for different cues, ergodic vs. left-to-right transitions, 1 vs. 5
Gaussians. However, the overall recognition results did not
change noticeably. Overall, our experiments suggest that the
chosen topology with 1) the number of states (4 for face, 2
for head and shoulders), 2) connectivity of the states (as
shown in Fig. 3), and 3) continuous probability densities
with a low number of mixtures provide good results.

For Case Study 2, a 3 state ergodic model was used for the
audio cues. For each of the cue and modality that constitute
the 2-chain and 3-chain CHMMs the structure illustrated in
Fig. 5 has been used. As can be seen from the figure, this
structure differs from that used in Case Study 1 in terms of
connectivity. For frame-based representation, the sampling
rate of audio features is 50 fps, while it is 25 fps for video.
In order to take into account this asynchrony in the model,
an extra node is used in the audio stream as shown in Fig. 5.

In line with our previous experiments, we first wanted to
investigate how single cues, namely prosodic features, spec-
tral features and visual features, represented on a frame-
basis, contribute separately to the aim of distinguishing be-
tween laughter and speech using a dynamic classification
scheme. We then wanted to correlate each pair of FaSp,
FaPE, SpPE features in time by using a 2-chain CHMM
classifier. Finally, we wanted to correlate all prosodic, spec-
tral and visual features in time by using a 3-chain CHMM
classifier structure illustrated in Fig. 5. Again, for each
class of laughter and speech we trained a separate CHMM
model. We repeated the aforementioned experiments using
the window-based representation for each cue and modality.
Results are presented in Table 2 and analysis of all results
is provided in section 6.

6. ANALYSIS AND CONCLUSION
Overall, from the experiments conducted in this study,

and by looking at Table 2, it is possible to conclude that
for machine analysis of human nonverbal behavior, both for
static and dynamic classification, fusing data coming from
multiple cues and modalities proves useful to the overall task
of recognition.

When we analyze the experimental results for the task of
automatic discrimination between posed and spontaneous
smiles from multicue visual data we are able to state the
following.

• When single-cue HMM classification is compared to
that of paired 2- or 3-chain CHMM classification, accu-
racy increases significantly using the latter approach.
This implies that coupling and correlating multiple
cues in time enhances the discriminative power of dy-
namic classifiers.

• Face and shoulder cues seem to carry more complemen-
tary information about the meaning of the nonverbal
message, compared to that of face and head, or head
and shoulder cues. Therefore, combining information
coming from face and shoulder cues improves recogni-
tion accuracy.

• Static and dynamic classification using the frame-based
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Table 2: The classification accuracy of static and
dynamic classifiers for distinguishing between posed
and spontaneous smiles (Case study 1) and discrim-
inating between speech and laughter (Case study 2)
using frame-based representation vs. window-based
representation, and using single cue vs. multiple
cue features. Results are averaged across subject-
independent 10-fold cross-validation.

cues NN HMM/CHMM NN HMM/CHMM

Frame Frame Window Window

Case Study 1

Fa 0.75 0.53 0.80 0.68

He 0.71 0.51 0.76 0.51

Sh 0.72 0.52 0.74 0.50

FaHe 0.76 0.71 0.81 0.63

FaSh 0.80 0.78 0.83 0.69

HeSh 0.71 0.51 0.75 0.50

FaHeSh 0.79 0.78 0.82 0.66

Case Study 2

Fa 0.84 0.84 0.87 0.84

Sp 0.92 0.58 0.93 0.85

PE 0.67 0.57 0.77 0.73

FaSp 0.94 0.82 0.97 0.94

FaPE 0.85 0.82 0.90 0.86

SpPE 0.93 0.83 0.93 0.91

FaSpPE 0.94 0.96 0.98 0.96

feature representation provide comparable results (80%
vs. 78% for face and shoulder cues, 79% vs. 78% for
all three cues).

• When combining all visual cues, static classification
using frame-based feature representation provide sim-
ilar results to static classification using window-based
feature representation (79% vs. 82% for all three cues).

• When using window-based feature representation, static
classification outperforms dynamic classification (83%
vs. 69% for face and shoulder cues, 82% vs. 66% for
all three cues).

Our experimental results show that in the task of discrimi-
nating between posed and spontaneous smiles static and dy-
namic classification using the frame-based feature represen-
tation provide comparable results. Additional experiments
should be conducted to find whether the difference is statis-
tically significant or not. Static classification using window-
based feature representation outperforms dynamic classifi-
cation. This is possibly due to the fact that window-based
feature representation doubles the amount of features used
(for each feature, the mean and standard deviations across a
window are used for representation). Requiring much more
trainiing data than was available in this study for adequate
training of dynamic classification schemes. While increasing
the dimensionality does not seem to affect static classifica-
tion, it visibly impedes the dynamic classification. More
specifically, recognition accuracy goes from 78% for frame-

based feature representation down to 66% for window-based
feature representation. In general, it is known that dynamic
classifiers are harder to train due to their complexity and
number of parameters they need to learn [3]. As already
said, they require more training samples compared to static
classifiers.

An interesting result shown in Table 2 is that using all
three visual cues (face, head and shoulders) did not provide
the best recognition accuracy for discriminating between
posed and spontaneous smiles. A possible explanation is
that fusing features coming from all visual cues increases the
dimensionality of the classification problem. Having fewer
training samples than features per sample for learning the
target classification may have led to under sampling or a
singularity problem. To investigate this, in our future work
we will apply dimensionality reduction or feature selection
techniques.

For audio-visual discrimination between laughter and speech,
the following conclusions can be drawn.

• The use of 2- or 3-chain CHMMs results in better per-
formance than that achieved by single-cue HMMs.

• Both NNs and CHMMs perform similarly no matter
which feature representation is used. It seems that the
explicit temporal modeling provided by HMMs does
not seem to be beneficial, since it achieves the same
performance as a static model, i.e., NNs.

• The main difference between frame-based and window-
based approaches, when used with NNs, is the per-
formance of prosodic features. However, this is not
surprising since usually pitch and energy information
is much better encoded in a window than in a single
frame.

• For HMM-based classification, both audio streams per-
form much better using the window-based feature rep-
resentation than the frame-based approach. For face,
both feature representations lead to comparable re-
sults.

• Using all audio and visual cues leads to the best per-
formance for both types of feature representation and
classification.

Overall, both static and dynamic classification schemes
appear to provide very good results for automatic laughter-
vs-speech discrimination. This in turn implies that the fea-
ture sets chosen are well able to represent the problem at
hand making the task of audio-visual speech vs. laughter
discrimination independent of the classifier choice. However,
additional experiments should be conducted to find whether
this conclusion is statistically significant or not.

Are dynamic classifiers better or worse than static clas-
sifiers for human nonverbal behavior analysis from multiple
cues or modalities? As the research field has shifted its fo-
cus from static images to multimodal sequences, and from
acted data to spontaneous and naturalistic data, more re-
cent works in the field have considered that advanced data
fusion methods relying on dynamic classifiers (e.g., tripled
HMM [21], multi-stream fused HMM [28]) are better suited
to the task of automatic human affective behavior analysis
from multiple cues or modalities than static classifiers. How-
ever, our experimental results obtained for Case Study 1 and
Case Study 2 show that the answer to the question we posed
previously is not straightforward and depends on the feature
representation (frame-based vs. window-based feature rep-
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resentation) and the task at hand. However, these findings
have to be verified with more extensive experiments.
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