
Benchmarking Fusion Engines
of Multimodal Interactive Systems

Bruno Dumas

University of Fribourg
Bd de Pérolles 90

1700 Fribourg, Switzerland
0041/26.300.92.96

bruno.dumas@unifr.ch

Rolf Ingold
University of Fribourg

Bd de Pérolles 90
1700 Fribourg, Switzerland

0041/26.300.84.66

rolf.ingold@unifr.ch

Denis Lalanne
University of Fribourg

Bd de Pérolles 90
1700 Fribourg, Switzerland

0041/26.300.84.72

denis.lalanne@unifr.ch

ABSTRACT
This article proposes an evaluation framework to benchmark the
performance of multimodal fusion engines. The paper first introduces
different concepts and techniques associated with multimodal fusion
engines and further surveys recent implementations. It then discusses
the importance of evaluation as a mean to assess fusion engines, not
only from the user perspective, but also at a performance level. The
article further proposes a benchmark and a formalism to build
testbeds for assessing multimodal fusion engines. In its last section,
our current fusion engine and the associated system HephaisTK are
evaluated thanks to the evaluation framework proposed in this article.
The article concludes with a discussion on the proposed quantitative
evaluation, suggestions to build useful testbeds, and proposes some
future improvements.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Interfaces –
Input devices and strategies, Interaction styles, Prototyping.

General Terms
Design, Human Factors.

Keywords
Multimodal toolkit, multimodal interfaces, multimodal fusion, fusion
engines evaluation.

1. INTRODUCTION
Since the first works of Richard Bolt [2], research in multimodal
interaction has examined how to combine data coming from different
modalities. This process, called fusion of input modalities, is key to
the success of multimodal interaction. As users interact with a
multimodal system, they have expectations about the way the system
will react to their orders, and their experience will degrade if the
system replies too slowly or too unreliably.

Evaluation of multimodal systems has mainly focused on user
interaction and user experience evaluation. These evaluations offer
extremely important insights about a given user interface, but, in
front of a complex interaction system like a multimodal interface,
analysis of what to correct and how to correct it can become
problematic. In this paper, we propose a complementary approach to
user evaluation techniques, specifically fusion engine efficiency
assessing techniques. These have the benefit to pinpoint specific
shortcomings of a given fusion engine, helping correct them and thus
improving the user experience. Furthermore, as frameworks for
creation of multimodal interfaces (such as OpenInterface [17] or
Callas [1]) become increasingly available, with the frequent goal of
serving as a platform for fusion algorithms testing, common fusion
engines evaluation procedures and metrics should develop
accordingly. Thus, we tested our benchmark proposal in a framework
for creation of multimodal interfaces, named HephaisTK. The results
of this benchmark test are then discussed.

The paper briefly introduces the different concepts and techniques
associated with multimodal fusion engines, and presents various
recent implementations. It further discusses the importance of
evaluation as a mean to assess fusion engines, not only from the user
perspective, but also at a performance level. Section 4 proposes to
benchmark multimodal fusion engines and introduces a toy testbed.
Finally, section 5 briefly presents HephaisTK and the evaluation of
its fusion engine following the testbed presented in the previous
section.

2. MULTIMODAL FUSION ENGINES
2.1 Multimodal Systems Architecture
We describe in this section multimodal interaction from the machine
side, and the major software components that a multimodal system
should contain. The generic components for handling of multimodal
integration are: a fusion engine, a fission module, a dialog manager
and a context manager, which all together form what is called the
“integration committee”. Figure 1 illustrates the processing flow
between these components, the input and output modalities, as well
as the potential client applications (details on this architecture can be
found in [9]). As illustrated in the figure, input modalities are first
perceived though various recognizers, which output their results to
the fusion engine, in charge of giving a common interpretation of the
inputs. The various levels at which recognizers’ results can be fused
are described in the next section, together with the various fusion
mechanisms. When the fusion engine comes to an interpretation, it
communicates it to the dialog manager, in charge of identifying the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI-MLMI’09, November 2–4, 2009, Cambridge, MA, USA.
Copyright 2009 ACM 978-1-60558-772-1/09/11...$10.00.

169

dialog state, the transition to perform, the action to communicate to a
given application, and/or the message to return through the fission
component. The fission engine is finally in charge of returning a
message to the user through the most adequate modality or
combination of modalities, depending on the user profile and context
of use. For this reason, the context manager, in charge of tracking the
location, context and user profile, closely communicates any changes
in the environment to the three other components, so that they can
adapt their interpretations.

Figure 1. The architecture of a multimodal system, with its major

software components.

2.2 Fusion of Input Modalities
Fusion of input modalities is one of the features that distinguish
multimodal interfaces from unimodal interfaces. The goal of fusion is
to extract meaning from a set of input modalities and pass it to a
human-machine dialog manager. Fusion of different modalities is a
delicate task, which can be executed at three levels: at data level, at
feature level and at decision level. Three different types of
architectures can in turn manage decision-level fusion: frames-based
architectures, unification-based architectures or hybrid
symbolic/statistical fusion architectures.

Sharma et al. [22] consider three levels for fusion of incoming data:
data-level, feature-level and decision-level fusion. Each fusion
scheme functions at a different level of analysis of the same modality
channel. As a classic illustration, consider the speech channel: data
from this channel can be processed at the audio signal (data) level, at
the phoneme (feature) level, or at the semantic (decision) level. We
will only detail the third level, which is generally favored when
dealing with fusion of multimodal data in interactive systems.

Typical architectures for decision-level fusion are frame-based
fusion, unification-based fusion and hybrid symbolic/statistical fusion
(see [9] for more details).

� Frame-based fusion uses data structures called frames or
features for meaning representation of data coming from various
sources or modalities. These structures represent objects as
attribute-value pairs.

� Unification-based fusion is based on recursively merging
attribute-value structures to obtain a logical whole meaning
representation.

� Symbolic/statistical fusion is an evolution of standard symbolic
unification-based approaches, which adds statistical processing
techniques to the fusion techniques described above. These kinds
of “hybrid” fusion techniques have been demonstrated to achieve
robust and reliable results.

The dialog management system and synchronization mechanism
should consider multiple potential causes of lag (recognizers, system
architecture) and for this reason, multi-agent architectures (or similar
architectures such as components-based systems) are advantageous
for distributing processing and for coordinating many system
components (e.g., speech recognition, pen recognition, natural
language processing, graphic display, TTS output, application
database).

Bui [5] considers four different approaches to dialog management:
finite-state and frame-based approaches, information state-based and
probabilistic approaches, plan-based approaches, and collaborative
agents-based approaches.

2.3 Current implementations
Table 1 summarizes the major architecture traits of recent
implementations of multimodal systems, as well as their fusion
mechanisms. Krahnstoever et al. [16] proposed a multimodal
framework with a fusion engine using a unification-based method.
Cohen et al. [6] worked on Quickset, a speech/pen multimodal
interface, based on Open Agent Architecture, which served as a test
bed for unification-based and hybrid fusion methods. Bourguet [4]
endeavored in the creation of a multimodal toolkit in which
multimodal scenarios could be modelled using finite state machines.
In their multimodal system, Flippo et al. [12] used parallel
application-independent fusion technique, based on an agent
architecture, and fusion using frames. Bouchet et al. [3] proposed a
component-based approach to fusion called ICARE thoroughly based
on the CARE [7] design space. These components cover elementary
tasks, modality-dependent tasks or generic tasks like fusion. Finally,
communication between components is based on events. It is finally
worth noting two comprehensive open-source frameworks called
OpenInterface [17] and CALLAS [1]. These two frameworks share a
similar conceptual architecture, but with different goals:
OpenInterface targets pure or combined modalities, where CALLAS
has more interest in situation awareness and video processing
components.

3. THE EVALUATION BLACK HOLE
In a multimodal system, errors can originate from a number of
different sources. Most prominent sources of errors are the modality
recognizers, the fusion engine and, in some way, the user itself. In
order to correct errors, one has to detect them, for example by means
of user evaluations. In multimodal systems, problems arise when
trying to detect the real cause of errors such as “system does not
answer to a user’s multimodal query”. For example, in a
speech/gesture system, multiple different reasons can lead to this
single error: it can originate from a malformed query, a speech
recognition problem, delay in the system leading to the multimodal
command being not fused, the fusion engine itself not recognizing the
multimodal command, problem in the feedback… or even a mix of
different causes (see for example Holzapfel et al. [14] for different
causes of multimodal integration errors). Likewise, the interaction
possibilities being richer (and more complex) in a multimodal
system, a standard user evaluation is not guaranteed to detect most

170

interaction problems: studies [19] have showed that the use of
multimodality can heavily differ from one user to another.

IC
A

RE
 [3

]

O
pe

nI
nt

er
fa

ce
 [1

7]

IM
Bu

ild
er

/M
En

gi
ne

 [4
]

Fl
ip

po
 et

 al
. [

12
]

K
ra

hn
sto

ev
er

 [1
6]

Q
ui

ck
se

t [
6]

Ca
lla

s [
1]

H
ep

ha
isT

K
 [1

0]

Finite state machine x

Components x x x

Software agents x x x

Fusion by frames x x

Symbolic-statistical
fusion

 x

CARE properties x x x

Table 1. Architecture traits of current multimodal systems.
A good starting point to multimodal systems evaluation is some sort
of “divide-and-conquer” method: the idea is to achieve the evaluation
of a multimodal interface in a step-by-step manner, and base later
evaluations on the results of the former ones. For example, first
evaluate recognizers individually, then evaluate the fusion of
example recognizers data, then evaluate the fission of output, still
with example fusion engine data; and when the different modules
composing the multimodal system have been tested against a sample
of the type of data they have to manage, test the whole system in
“real-life” conditions, with actual users injecting actual data in the
system. In the view of such a step-by-step evaluation, the need for
standard evaluation procedures dedicated at testing individual
multimodal systems components appears. NIST Multimodal
Information Group leader John Garofolo recently reckoned that,
while evaluation of individual modalities is progressing at a good
pace, the evaluation of hybrid technologies presents new challenges,
in particular at the fusion engine level [13].
On a more technical note, now that toolkits for creation of
multimodal interfaces are in full development in the scope of various
projects, the interest of being able to compare those tools arises.
Furthermore, some of these multimodal interfaces creation toolkits,
such as OpenInterface or HephaisTK, have been created with the
ability to plug and test different fusion algorithms. Thus, as these
toolkits are made available to the multimodal interaction community,
common metrics and tests are desirable in order to be able to
compare different algorithms.
On the subject of algorithms for fusion of multimodal data, it is to be
noted that research on advanced algorithms has remained sparse since
the works of Oviatt et al., even if the need for such algorithms was
expressed numerous times in the literature [13] [20]. We feel that, by
providing a common measurement of the efficiency and effectiveness
of fusion algorithms, and by testing these algorithms against a set of
problematic – although common – cases of multimodal inputs fusion,
strengths and weaknesses of these different algorithms, as well as
precise use cases on which current fusion engines lack effectiveness,
should appear.
Finally, a testbed on multimodal fusion processes should pay
attention to a specificity of multimodal interfaces: user and context

consideration. In detail, fusion of input data is frequently achieved
according to context, be it the current state of the application (in
particular for strongly modal applications), contextual data enriching
the input modalities interpretation (e.g. drawing a circle would not
have the same meaning when surrounding a building on a map,
pulling a shape on a drawing application or dialing a number on an
old-style phone dial), and context of use (e.g. using a mobile
application at home, at work, in the street or in a car). On the subject
of user consideration, it has been shown that, if integration patterns
differ largely from one user to another, a given user tends to keep the
same integration patterns and remain persistent throughout a same
session. Thus, a testbed should take into account this specificity of
multimodal interfaces, give information about the context of the
application, the context of use, and supply a set of different
sequences of consistent uses for a given use case, so that fusion
engines would be exhorted to adapt to users’ integration patterns, for
example by using machine learning techniques.

4. BENCHMARKING FUSION ENGINES
This section proposes a benchmark to measure the performance of
multimodal fusion engines in a replicable and controlled way. For
this purpose, we discuss in the following sections about the
possibility to set up a testbed, a software infrastructure, and a metric
of performance, in order to compare precisely the quality and
efficiency of multimodal fusion engines.

4.1 A testbed for fusion engines
To allow replicable testing in the case of multimodal fusion engines,
the challenge is to create a set of problematic use-cases supporting
their quantitative evaluations. In order to bypass the problems related
to recognition errors introduced by each modality recognizers
(speech, gesture, emotions, etc.), which intervene before the
multimodal fusion itself, we propose to simulate the recognizers
outputs and feed these outputs directly to the fusion engines. The goal
of this testbed is to focus on fusion algorithms and rules; furthermore,
by simulating the recognizers output, we are also able to simulate
incorrect outputs, and assess how fusion engines react to recognizers
failures.

As illustrated on figure 2, for a given testbed, i.e. a temporal and
multimodal events’ stream resulting from simulated multimodal
recognizers, a fusion engine will generate a series of interpretation in
time.

Multimodal
Fusion
Engine

<interpret1 t=5 …/>
<interpret2 t=9 …/>
…

Interpretation

<event1 st=1 et=4 …/>
<event2 st=3 et=5 …/>
<event3 st=8 et=9 …/>
…

Testbed
(recognizers’ output)

Figure 2. A multimodal fusion engine processes a series of
multimodal events to generate a series of interpretations.

The resulting interpretation by the multimodal fusion engine can be
then compared with a ground-truth associated with the testbed, in
order to measure its performance, as illustrated on figure 3. As
discussed in the following section, various factors will help
computing a performance metric (response time, confidence and
efficiency).

171

<interpret1 t=5 …/>
<interpret2 t=9 …/>
…

Interpretation

<interpret1 t=5 …/>
<interpret2 t=9 …/>
…

Ground-truth

PERFORMANCE

Figure 3. A ground-truth allows to rate performances of the

fusion engine, according to the interpretations it gave.
As mentioned above, the testbed we propose will simulate the output
of various recognizers. For the sake of standardization, the
representation of this stream of events will use the Extensible
Multimodal Annotation markup language (EMMA) [11]. EMMA is
an XML markup language used for containing and annotating the
interpretation of user input by multimodal recognizers. Examples of
interpretation of user input are a transcription into words of a raw
signal, for instance derived from speech, pen or keystroke input, a set
of attribute/value pairs describing their meaning, or a set of
attribute/value pairs describing a gesture. The interpretation of the
user's input is expected to be generated by signal interpretation
processes, such as speech, gesture and ink recognition. By using
EMMA for the representation of the testbed and ground-truth data,
we slightly divert the language from its original role envisioned by
the W3C Multimodal Interaction Working Group. However, we feel
that the EMMA language perfectly fits this new role of simulation
and ground-truth data representation.

In order to be relevant, the testbed should allow testing most of the
major difficulties related to multimodal fusion. This is opening an
important research question: what are the issues related with
multimodal fusion engines in interactive systems? What difficult use
cases or combination of events generate interpretation errors?

In search for answers, two formal representations trying to model
multimodal human machine interaction could provide us a relevant
framework for the testbed:

• The CASE model [17], focusing on modality combination
possibilities at the fusion engine level;

• The CARE model [7], giving attention to modality combination
possibilities at the user level.

The CASE model introduces four properties: Concurrent – Alternate
– Synergistic – Exclusive. Each of those four properties describes a
different way to combine modalities at the integration engine level,
depending on two factors: combined or independent fusion of
modalities, and sequential or synergistic use of modalities on the
other hand.

The CARE model is more focused on the user-machine interaction
level. This model also introduces four properties, which are
Complementarity – Assignment – Redundancy – Equivalence.
Complementarity is used by the user when multiple complementary
modalities are necessary to grasp the desired meaning (e.g. “put that
there” [1] would need both pointing gestures and voice in order to be
resolved). Assignment indicates that only one modality can lead to
the desired meaning (e.g. the steering wheel of a car is the only way
to direct the car). Redundancy implies multiple modalities which,
even if used simultaneously, can be used individually to lead to the
desired meaning (e.g. user utters a “play” speech command and
pushes a button labeled “play”, but only one “play” command would
be taken into account). Finally, Equivalence entails multiple
modalities that can all lead to the desired meaning, but only one

would be used at a time (e.g. speech or keyboard can be used to write
a text).

Since the goal of the testbed can be reworded as the task of
measuring how well fusion engines are able to interpret the intention
of the user and its usage of multimodality, the CARE model seems
the most suited to structure the testbed; The CARE properties model
the various usage of multimodality that a user can intentionally
achieve to control an interactive system.

The time dimension is highly important when dealing with
multimodal fusion. For a given multimodal command, the way
modalities are synchronized will strongly impact the interpretation.
For example, consider a multimodal music player, which would
allow users to control the different commands with a number of
modalities, in a redundant or complementary way, depending from
the command. Our main example for this paper will be a vocal
command (“play next track”) combined with one pointing gesture, to
play a musical track. The interpretation of this command can greatly
vary depending on the time synchronicity and on the sequence in
which commands have been produced. This variability is the most
interesting aspect of this example, as it cannot be found in more
classical examples such as Bolt’s “put that there”, which, although
complementary, is resolved in a univocal manner.

For instance, in the following application, in which voice and
gestures are used simultaneously to control this music player,
depending on the order in which modalities are presented, the
interpretation varies:

� <pointing> “Play next track”: will result in playing the track
following the one selected with a gesture, mixing assignment with
complementarity;

� “Play” <pointing> “next track”: will result in first playing the
manually selected track and then passing to the following at the
time “next” is pronounced, thus mixing complementarity with
assignment;

� In parallel <pointing> && “Play next track”: in this case the
user the system should interpret that the two modalities are used in
a redundant way;

While the cases above seem non ambiguous, other cases can be
imagined, in which it becomes unclear what the user wanted to say
and what should a perfect multimodal fusion engine interpret.

� “Play next track” <pointing>: In this case, the system can either
interpret the commands as being redundant or as being
complementary and, depending on its choice, will play a different
track.

Potential interpretation problems in multimodal fusion engine may
also occur for technical reasons impacting on the precision of time
synchronicity. For this reason, the fusion engine (and the related
testbed) should consider multiple potential causes of lag:

� Delay due to technology (ex.: speech recognition);
� Delay due to multimodal system architecture;
� User differences in their habitual multimodal integration pattern

[19][21].
To illustrate our point, we propose to encode with EMMA the
simplistic example presented above as an illustrative testbed. The
following EMMA is composed of two sequences, the first
corresponding to the testbed description, and the second sequence

172

corresponding to the ground-truth related to the testbed. The EMMA
code for the testbed description would read like this:
<emma:emma version="1.0">
 <emma:one-of id="main">�
 <emma:sequence id="testbed">�
 <!-- <pointing>+“Play next track" case testbed -->
 <emma:interpretation id="gesture1" emma:medium="tactile"
 emma:mode="video">�
 <content>track_pointed</content>
 </emma:interpretation>�
 <emma:interpretation id="speech1" emma:medium="acoustic"
 emma:mode="voice"� emma:time-ref-uri="#gesture1"
 emma:offset-to-start="300">�
 <content>play</content>
 </emma:interpretation>�
 <emma:interpretation id="speech2" emma:medium="acoustic"
 emma:mode="voice"� emma:time-ref-uri="#gesture1"
 emma:offset-to-start="400">
 <content>next track</content>
 </emma:interpretation>
 <!-- other testbed elements would come here -->
 </emma:sequence>

Below is the corresponding ground-truth interpretation (as presented
in figure 3). “emma:derived-from” elements allow to connect the
ground-truth interpretation to the different testbed input elements that
should lead to it. The message corresponds to the value that the
fusion engine is supposed to produce. In the whole EMMA testbed
file, we believe this is the only value dependant from the fusion
engine, i.e. which would have to be adapted from one engine to
another. Even when taking into account this “<message>” (which is
considered as application-specific instance data), the whole EMMA
testbed file is fully compliant to the W3C EMMA 1.0
recommendation [11].
 <emma:sequence id="groundtruth">�
 <!-- <pointing>+“Play next track" case groundtruth -->�
 <emma:interpretation id="message1">�
 <emma:derived-from resource="#gesture1" composite="true"/>�
 <emma:derived-from resource="#speech1" composite="true"/>�
 <emma:derived-from resource="#speech2" composite="true"/>�
 <message>play_next_of_pointed_track</message>
 </emma:interpretation>
 <!-- other groundtruth elements would come here -->
 </emma:sequence>
 </emma:one-of>�
</emma:emma>

Of course, the testbed above is a toy example and a more complete
and serious testbed should be discussed and agreed on by the overall
community. In particular, if the CARE properties model brings to
light a number of problematic fusion cases as shown above, it
certainly does not deliver an exhaustive catalog of every difficult or
tricky cases a fusion engine might encounter; such a catalog can only
be achieved by collecting the real-world experience of many
multimodal interaction practitioners.

4.2 Metrics and Software Requirements
We propose the following quantitative and qualitative metrics to
measure the quality of a given multimodal engine according to a
series of multimodal recognized events. For each multimodal event
we plan to measure in a quantitative way:
� Response time: time that the fusion engine takes to return an

interpretation after receiving multimodal inputs.
� Confidence: Level of confidence of the machine response, based

for example on confidence scores indicated in the EMMA testbed
interpretation elements.

� Efficiency: success or failure of the fusion engine to interpret
correctly the testbed entries. Efficiency is measured by confronting
the machine interpretation against the ground-truth data.

An efficient fusion engine should answer reliably and quickly to the
requests of the users; furthermore, an efficient fusion engine should

be extensible and easy to use. Although such characteristics are much
harder to measure dynamically, they are nonetheless important. Thus,
other features of fusion engines to be measured in a more qualitative
way would be the following ones:
� Adaptability: whether a fusion engine is able to adapt itself to

context and user.
� Extensibility: how much a fusion engine can be extended to new

or different input sources.
On a related dimension, the testbed itself should be characterized,
thus helping developers outline shortcomings of their fusion engines.
Such characteristics would be:
� Expressive power, or ability to be used by non-programmers:

the developer-, or user-friendliness of the mechanisms used to
configure the fusion engine.

� Level of complexity: level of complexity (low/medium/high) of
the test, following a number of criteria. For example, a test
requiring complementary fusion based on incomplete or noisy data
would be more complex than straightforward equivalence of two
input modalities.

� Problem type: each test could be characterized by a number of
keywords, describing particular goals or features to be tested, such
as temporal constraints, presence of noisy data, etc.

Logging is a common mechanism for most development teams in
order to debug software, to trace its usage, or to record and analyze
users’ behaviors. In multimodal systems, the time constraint is highly
important and all the modalities should be properly time-stamped and
synchronized. Time-sensitive architectures need to establish temporal
thresholds for time-stamping start and end of each input signal piece,
so that two commands sequences can be identified. Indeed, when two
commands are performed in parallel, it is important to know in which
order the commands have been entered because the interpretation
will vary accordingly as seen in the previous section. Therefore,
logging mechanisms are required for multimodal system
benchmarking. In particular, as too important delays between the user
input and the resulting output can ruin the user experience, ways to
log data and timestamps passing through the fusion engine are
recommended.
Any multimodal system able to log input events and fused
multimodal events, as well as their timestamps, should be able to
implement the proposed testbed. Input events can be generated either
directly from the EMMA file, if the multimodal system already uses
EMMA as data transfer format, or by means of a tailored component
taking the EMMA file as input. As for the results analysis, it can be
achieved either on the fly, as presented in the next section about our
tests in HephaisTK, or after running tests, by analyzing log files.

5. ASSESSING FUSION IN HEPHAISTK
The testbed examples described in section 4 have been applied to
HephaisTK, a toolkit for rapid creation of multimodal interfaces. Our
goal was to assess
� The feasibility of the described testbed, in particular the use of

the EMMA markup language to describe test inputs and ground-
truth outputs;

� How a real-world tool using a fusion mechanism derived from
meaning frames would react to the simple “play next track”
example described in section 4.

173

This section first describes the HephaisTK platform as well as the
markup language used to script it, named SMUIML. The section then
goes on by describing how the results of a performance evaluation,
which followed the testbed protocol described before.

5.1 HephaisTK Architecture
The main goal of HephaisTK toolkit is to allow developers to quickly
develop and test multimodal interfaces. Its modular architecture
allows developers to easily configure it according to their needs, and
to plug new human-computer communications means recognizers.
HephaisTK is designed to control various input recognizers, and
more importantly user-machine dialog and fusion of modalities.

Figure 4. Architecture of HephaisTK.

A developer wishing to use HephaisTK to develop a multimodal
application will have to provide two components: his application and
a SMUIML script (Synchronized Multimodal User Interaction
Markup Language). The developer’s application needs to import one
class of HephaisTK. This class allows communication with the
toolkit via Java listeners. The toolkit does not manage the actual
content restitution, but sends messages or callbacks to the application
describing the content to be restituted to the user. The SMUIML
document is used by the toolkit for a number of tasks: first, the
definition of the messages that will transit from the toolkit to the
developer’s application; second, the events coming from the input
recognizers that will have to be taken into account by the toolkit; last,
description of the overall dialog management.
In order to account for the objective of modularity, the toolkit is built
on a software agents framework, namely JADE. The architecture is
shown in Figure 4. For each input recognizer, an agent is responsible
of reception, annotation and propagation of data transmitted by the
recognizer. For instance, the agent responsible of a speech recognizer
would propagate not only the speech meaning extracted, but also
metadata such as a confidence score. Messages are then sent to the
postman agent. This postman agent is in fact a central blackboard
collecting data from the recognizers and storing them in a local
database. Hence, all data coming from the different sources are
standardized in a central place, where other interested agents can dig
them at will. Another advantage of central blackboard architecture is
to have one central authority that manages timestamps. The problem
of synchronizing different timestamp sources is hence avoided, at the
cost of a potential greater shift between the timestamp of the actual

event and the recorded one. It is to be noted that this central agent
does not act like a facilitator: only agents dealing with recognizers-
wise data communicate with him. The agents within the integration
committee communicate directly. Moreover, the postman agent also
offers a mechanism of subscription to other agents: any agent can
subscribe to events it is interested in.
Communication with the client application is achieved through a set
of messages. Those messages are predefined in the SMUIML script
provided by the client application developer. The SMUIML
document contains information about the dialog states
(DialogManager), the events leading from one state to another
(FusionManager) and the information communicated to the client
application, given the current dialog state and context
(FissionManager). The SMUIML markup language expresses in an
easy-to-read and expressive way the modalities used, the recognizers
attached to a given modality, the user-machine dialog, and the
various triggers and actions associated to this dialog. More details
about the SMUIML language and its structure can be found in [8].

5.2 Fusion in HephaisTK
As previously stated, the modular software agents-based architecture
allows the toolkit to potentially offer a number of different fusion
schemes, from rule-based to statistical to hybrid-based fusion
schemes. At present, HephaisTK offers a rule-based approach,
conceptually derived from artificial intelligence meaning frames.
The multimodal integration within the toolkit operates in an event-
driven way: every time a new event is signaled to the integration
committee (e.g. incoming input), it is matched against the possible
frames of knowledge of the current context. Following the SMUIML
script provided by the client application developer, the dialog
manager indicates to the fusion manager in which state the
application finds itself, and the fusion manager knows against which
set of frames it will have to confront the incoming data. A typical
frame of knowledge specifies a number of triggers needed to activate
itself, as well as one or more actions to be taken when it activates.
Moreover, frames activate following rules modeled from CARE
properties [7], allowing temporal constraints to be specified.
SMUIML enables to specify the synchronicity of events in the fusion
engine, i.e. how the incoming multimodal triggers should appear in
time. Parallel and sequential triggers are distinguished, as well as
coupled (and) and exclusive (or) triggers. Based on these four
properties, four elements to describe the different behaviors have
been designed: <par_and> is to be used when multiple triggers are to
be fused together, as they all are necessary for the meaning extraction
process; the order in which they appear does not have any
importance, as long as they all appear in a defined time window.
<seq_and> functions in a similar way than <par_and>, but with one
major distinction: all triggers have to appear in the defined time
window and in a defined order for the related actions to be fired.
<par_or> describes redundant multimodal triggers having similar
meanings. Each one is sufficient for the correct meaning to be
extracted, but they all can be expressed at the same time by the user,
increasing as such the robustness and recognition rate (for example, a
user issuing a “play” vocal command and simultaneously pushing a
play button). Finally, the <seq_or> element is to be used when
multiple triggers can lead to the same result, but only one of them is
to be provided. Those four integration describer elements can also be
combined in order to express all kinds of multimodal interactions. In
fact, three of those four elements correspond to three of the four

174

CARE properties of multimodal interactive systems as presented in
the previous section, the only exception being <seq_and>.

5.3 Performance evaluation
We used the testbed presented in section 4 to test two strategies of
fusion with the fusion engine provided with HephaisTK, i.e. with and
without temporal ordering constraints. HephaisTK was configured
for the testbed using SMUIML. We described in SMUIML the
different examples explained in section 4, as well as their
corresponding ground truth. Below is the SMUIML related to the
first case of the testbed.

<?xml version="1.0" encoding="UTF-8"?>
<smuiml>�
 <integration_description client="musicplayer">�
 <recognizers>�
 <recognizer name="fakespeech" modality="speech">�
 <parameter name="emma_file" value="PlayTrackEmma.xml"/>�
 </recognizer>�
 <recognizer name="fakegesture" modality="gesture">�
 <parameter name="emma_file" value="PlayTrackEmma.xml"/>�
 </recognizer>�
 </recognizers>

 <triggers>�
 <trigger name="play_trigger">�
 <source modality="speech" value="play | play track"/>�
 </trigger>�
 <trigger name="nexttrack_trigger">�
 <source modality="speech" value="next | next track"/>�
 </trigger>�
 <trigger name="track_pointed_event">�
 <source modality="gesture" value="track_pointed"/>�
 </trigger>�
 </triggers>

 <actions>�
 <action name="play_next_of_point_action">�
 <target name="musicplayer"
 message="play_next_of_pointed_track"/>�
 </action>
 </actions>

 <dialog>�
 <context name="start">�
 <transition leadtime="1000">�
 <seq_and>�
 <trigger name="track_pointed_event"/>�
 <trigger name="play_trigger"/>�
 <trigger name="nexttrack_trigger"/>�
 </seq_and>�
 <result action="play_next_of_point_action"/>�
 </transition>
 </context>�
 </dialog>�
 </integration_description>
</smuiml>

The three example cases “play next track” with the pointing gesture
event happening respectively before, in the middle of and after the
speech event were modelled. Modelling in SMUIML was achieved
by decomposing the speech acts in two, although a speech act for
each word would have been possible as well.
Results of feeding these three examples to the HephaisTK toolkit are
shown in Figure 5. Start and delay times are expressed in
milliseconds. The trigger events are listed in the order they were fed
to the toolkit, in three groups of three events, with only the order in
which they were sent changing. For each group of three events, the
ground truth (“awaited answer”) is indicated. The actual answer
received from the HephaisTK fusion engine is then reported, and
coloured in green if it corresponded to the ground truth answer, in red
otherwise. As one can see, the first example case of pointing a track,
and asking to play the next track of it, led to a false answer from the
fusion engine, which assumed that the user was simply asking to play
the next track of the current one. The second case was correctly
understood, as was the third case, although in this last case the fusion
algorithm dropped the gesture event (hence the -1 ms delay time).
Lead times are computed as the time between the input event

dispatch and the fused message reception by the client application.
Consequently, in the first case, as the three input events were sent in a
400 ms time window, the delay between sending the first input event
(“play”) and the reception of the fused event is slightly above 400
ms. The actual fusion process took between 3 and 8 ms in all cases,
between emission of the last needed input event and fused message
reception by the client application.

Figure 5. “Play next track” test examples results in HephaisTK

toolkit.
We ran the exact same three tests, but removed the sequential
constraint from the fusion engine, thus firing a fusion event as soon
as meaning frames were complete. The results of this test are shown
in Figure 6. As could be expected, the results are worse in respect to
the ground truth. Interestingly however, in the first case, “play
pointed track” followed by a “next” command correspond to the
awaited answer, although decomposed in two different steps. The
delay times of the actual fusion stayed between 3 and 8 ms.

Figure 6. “Play next track” test examples results in HephaisTK

toolkit, without sequential constraint.

6. CONCLUSION
This article proposes an evaluation framework to benchmark fusion
engines of multimodal interactive systems. It first introduces the
major concepts associated with multimodal fusion, the current
implementations and systems, and further discusses the evaluation
aspects. The testbed structure proposed in the article uses the standard
EMMA to simulate interesting sequences of multimodal recognizers’
output. The proposed testbed has been assessed through the
evaluation of temporal ordering aspects of the fusion engine of
HephaisTK. As such, the proposed testbed structure seems reliable to
compare various implementations of fusion engines. However, the
content of the testbed proposed is preliminary and deeper works
should be performed to build a general testbed covering most of the
challenging issues related to fusion engines. In particular,
practitioners should reflect on the most critical issues related with
multimodal fusion engines in interactive systems that should be
solved, and on difficult cases or combination of events that generate
interpretation errors. Issues related to fusion engines’ adaptation to
context (environment and also applications), as well as users’ favorite
usage patterns or repetitive errors, should be also considered. This
paper does not intend to solve the problem of quantitative evaluation

175

of multimodal interfaces, nor to replace useful user evaluations, but
rather to open a research that we believe crucial for the future
developments of fusion engines.

7. REFERENCES
[1] Bertoncini, M. Cavazza, M. Emotional Multimodal Interfaces

for Digital Media: The CALLAS Challenge. In Proceedings of
HCI International 2007, Beijing (2007).

[2] Bolt, R.A. Put-that-there: voice and gesture at the graphics
interface. Computer Graphics, 14(3), pp. 262--270 (1980).

[3] Bouchet, J., Nigay, L., Ganille, T.: ICARE Software
Components for Rapidly Developing Multimodal Interfaces. In:
Conference Proceedings of ICMI'2004, State College,
Pennsylvania, USA, Oct. 2004, ACM Press, pp. 251--258.

[4] Bourguet, M. L.: A Toolkit for Creating and Testing
Multimodal Interface Designs. In: companion proceedings of
UIST'02, Paris, Oct. 2002, pp. 29--30 (2002).

[5] Bui T.H.: Multimodal Dialogue Management - State of the Art.
CTIT Technical Report series No. 06-01, University of Twente
(UT), Enschede, The Netherlands (2006).

[6] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman, J.,
Smith, I., Chen, L., Clow, J.: QuickSet: multimodal interaction
for distributed applications. In: Proceedings of the Fifth ACM
international Conference on Multimedia, Seattle, USA, pp. 31--
40, (1997).

[7] Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J. Young,
R.: Four Easy Pieces for Assessing the Usability of Multimodal
Interaction: The CARE properties. In: Proceedings of
INTERACT'95, Lillehammer, Norway, June 1995, pp. 115--
120, Chapman & Hall Publ. (1995).

[8] Dumas, B., Lalanne, D., Ingold, R.: Prototyping Multimodal
Interfaces with SMUIML Modeling Language. In: CHI 2008
Workshop on User Interface Description Languages for Next
Generation User Interfaces, CHI 2008, Firenze, Italy, pp. 63--66
(2008).

[9] Dumas, B., Lalanne, D., Oviatt, S. "Multimodal Interfaces: A
Survey of Principles, Models and Frameworks". In Denis
Lalanne, Jürg Kohlas eds. Human Machine Interaction, LNCS
5440, Springer-Verlag, pp. 3--26 (2009)

[10] Dumas, B., Lalanne, D., Guinard, D., Ingold, R., Koenig, R.:
Strengths and Weaknesses of Software Architectures for the
Rapid Creation of Tangible and Multimodal Interfaces. In:
Proceedings of 2nd international conference on Tangible and
Embedded Interaction (TEI 2008), Bonn (Germany), February
19 - 21 2008 , pp. 47--54 (2008).

[11] EMMA: Extensible MultiModal Annotation markup language:
W3C recommandation. http://www.w3.org/TR/emma/

[12] Flippo, F., Krebs, A. Marsic I.: A Framework for Rapid
Development of Multimodal Interfaces. In: Proceedings of
ICMI'03, Vancouver, BC, Nov. 5-7, pp. 109--116 (2003).

[13] Garofolo, J. Overcoming Barriers to Progress in Multimodal
Fusion Research. In AAAI Fall 2008 Symposium Proceedings
(2008).

[14] Holzapfel, H., Nickel, K., and Stiefelhagen, R. Implementation
and evaluation of a constraint-based multimodal fusion system
for speech and 3D pointing gestures. In Proceedings of ICMI '04
(State College, PA, USA, October 13-15, 2004). ACM, New
York, NY, pp. 175--182 (2004).

[15] Johnston, M., Cohen, P. R., McGee, D., Oviatt, S. L., Pittman, J.
A., Smith, I.: Unification-based multimodal integration. In:
Proceedings of the Eighth Conference on European Chapter of
the Association For Computational Linguistics (Madrid, Spain,
July 07-12, 1997), pp. 281--288.

[16] Krahnstoever, N., Kettebekov, S., Yeasin, M. Sharma, R.: A
real-time framework for natural multimodal interaction with
large screen displays. In: ICMI’02, Pittsburgh, USA, Oct. 2002
(2002).

[17] Lawson, J-Y., Al-Akkad, A., Vanderdonckt, J. and Macq, B. An
Open Source Workbench for Prototyping Multimodal
Interactions Based on Off-The-Shelf Heterogeneous
Components. Proceedings of the First ACM SIGCHI
Symposium on Engineering Interactive Computing Systems,
ACM Press, USA, July 14–17, 2009.

[18] Nigay, L., Coutaz, J.A.: Design space for multimodal systems:
concurrent processing and data fusion. In Proceedings of the
INTERACT '93 and CHI '93 Conference on Human Factors in
Computing Systems (Amsterdam, The Netherlands, April 24 -
29, 1993). ACM, New York, NY, pp. 172--178 (1993).

[19] Oviatt, S.L.: Ten myths of multimodal interaction. In:
Communications of the ACM, 42(11), New York: ACM Press,
pp. 74--81 (1999).

[20] Oviatt, S. L., Cohen, P. R., Wu, L., Vergo, J., Duncan, L.,
Suhm, B., Bers, J., Holzman, T., Winograd, T., Landay, J.,
Larson, J., Ferro, D.: Designing the user interface for
multimodal speech and gesture applications: State-of-the-art
systems and research directions. In: Human Computer
Interaction, 2000, vol. 15, no. 4, pp. 263--322 [Reprinted in
Human-Computer Interaction in the New Millennium (ed. J.
Carroll), Addison-Wesley Press, Reading, MA, 2001; chapter
19, pp. 421--456] (2000).

[21] Oviatt, S.L., Coulston, R., Tomko, S., Xiao, B., Lunsford, R.,
Wesson, M., Carmichael, L.: Toward a theory of organized
multimodal integration patterns during human-computer
interaction. In: Proceedings of ICMI 2003, ACM Press, pp. 44--
51 (2003).

[22] Sharma, R., Pavlovic, V. I., Huang, T.S.: Toward multimodal
human-computer interface. In: Proceedings IEEE, 86(5)
[Special issue on Multimedia Signal Processing], pp. 853--860
(1998).

176

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

