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ABSTRACT
Floor control is a scheme used by people to organize speak-
ing turns in multi-party conversations. Identifying the floor
control shifts is important for understanding a conversa-
tion’s structure and would be helpful for more natural hu-
man computer interaction systems. Although people tend
to use verbal and nonverbal cues for managing floor control
shifts, only audio cues, e.g., lexical and prosodic cues, have
been used in most previous investigations on speaking turn
prediction. In this paper, we present a statistical model to
automatically detect floor control shifts using both verbal
and nonverbal cues. Our experimental results show that
using a combination of verbal and nonverbal cues provides
more accurate detection.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: [Audio and
Video Input]; H.5.5 [Sound and Music Computing]: [Mod-
eling and Signal Analysis]; I.2.7 [Natural Language Pro-
cessing]: [Meeting Processing]

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Multimodal fusion, nonverbal communication, floor control,
prosody, language models

1. INTRODUCTION
Floor control is an underlying scheme used by human

beings to manage the order of speaking in conversations.
Knowledge about the floor control structure in multi-party
conversations can play an important role in various tasks,
including: (1) better analysis of conversational content, and
(2) design of more natural human computer interaction sys-
tems. For example, based on knowledge of floor control
structure, utterances spoken by different meeting partic-
ipants can be coherently connected to support a clearer
description of the meeting content; human-like computer
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agents can also obtain and release control of the floor to
interact effectively with human participants.

A large body of previous studies (e.g., [10, 16, 27, 32])
suggests that people tend to use both verbal (e.g., lexical
and prosodic cues) and nonverbal cues (e.g., facial expres-
sion, eye gaze, hand gesture, and body posture) to efficiently
manage floor control in conversations. However, most of
the research on automatic detection of floor control has fo-
cused on utilizing speech features and has neglected non-
verbal cues. In this paper, we will investigate combining
verbal with nonverbal cues (i.e., hand gesture and eye gaze)
to detect floor control shifts in multi-party meetings.

This paper is organized as follows: Section 2 describes
the related previous research. Section 3 describes the mul-
timodal corpus and floor control shift task used in our ex-
periment. Section 4 describes the metrics used for the eval-
uation. Section 5 describes multimodal features, including
lexical, prosodic, and visual features (i.e., gaze and gesture).
Section 6 describes our evaluation plan and experimental re-
sults from several statistical models for floor control shift de-
tection. Section 7 summarizes key findings on floor control
shift detection using multimodal cues.

2. PREVIOUS RESEARCH
Sacks et al. [32] proposed a turn-taking model, in which

turn taking can only happen at transition relevance points
(TRPs), which are the projected end points of lexically or
semantically defined units, called turn constructional units
(TCUs). The principle governing TCUs is that participants
in interaction try to minimize the gap between and overlap
of TCUs to form fluent speech.

To provide natural turn taking in human-to-computer dia-
log systems, some computational models of turn-taking have
combined lexical and prosodic cues. Schlangen [33] used lex-
ical and prosodic information at the ends of utterances to
predict turn changes. His experiments on part of the Switch-
board corpus and his own small German corpus showed that
predictions based on audio cues achieve greater accuracy
than predictions using only silences [12]. Levow [23] con-
ducted a similar experiment on Mandarin, a tonal language.
Her investigation suggested that intonation plays an impor-
tant role for signaling turn-taking, even in a tonal language.

Nonverbal behaviors play an important role in coordinat-
ing turn-taking and the organization of discourse. Dun-
can [10] proposed some nonverbal cues for signaling turn tak-
ing in face-to-face communication, including gesture, gaze,
and facial expression. Gaze is an important cue for manag-
ing floor control [2, 19]. Near the end of an utterance, the
floor holder may gaze at an interlocutor to prepare to trans-
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fer control of the floor [1]. The interlocutor who is gazed
at has the advantage for taking the floor because he/she
infers that the speaker is conceding the floor to him/her.
Kendon [20] observed that utterances that terminate with-
out gaze cues more frequently had delayed listener response.
Vertegaal et al. [37] observed that the absence of gaze sig-
nificantly decreases turn-taking efficiency in a multi-party
mediated system. Novick et al. [29] reported on a special
pattern of eye gaze that is important for floor control, the
mutual gaze break. A mutual gaze break contains three com-
ponents: (1) the current speaker looks towards a listener as
an utterance comes to an end, (2) the speaker and the lis-
tener share a mutual gaze momentarily, and (3) the listener
(following the speaker) breaks the mutual gaze and begins
to speak. Novick et al. found that this pattern occurs in
42% of turns in their dialog corpus.

Gesture and body posture are also important cues for
managing floor control change. When a speaker keeps ges-
turing, there is usually no turn transition. Duncan [10] ob-
served that floor control attempts fell to virtually zero when
the dominant speaker gesticulated at a phonemic clause bound-
ary. Posture shifts tend to occur during an utterance’s be-
ginning and ending, as well as at various discourse bound-
aries [4].

Some investigations of floor control in meetings, especially
using audio and visual signals have emerged recently. For
example, Padilha and Carletta [30] investigated small-group
discussions using a simulation approach and found that us-
ing nonverbal cues improved the smoothness of conversation
in their simulations. However, compared with research on
floor control (turn-taking) in dialogs, the research on floor
control in meetings is new and has many open questions.
For example, Novick [28] summarized current studies of eye
gaze in multi-party interactions and suggested that a gaze
model specific to multi-party meetings should be developed.

Floor control is just one aspect of meeting structure. There
has been an increasing number of studies on detecting other
aspects of meeting structure and participants’ roles. For ex-
ample, addressee detection in meetings is related to floor
control detection since the addressee of the current floor
holder is frequently the next floor holder given a change in
control of the floor. Jovanovic et al. [18] used a Bayes net-
work model to identify addressees using verbal, non-verbal,
and contextual features. Their results showed that by adding
nonverbal cues, the accuracy rate for identifying addressees
is improved. A comprehensive review of pertinent research
on these topics can be found in [15]. To our knowledge, and
as pointed out in [15], research on floor control detection in
meetings using multimodal cues has been limited.

3. THE DATA AND THE TASK

3.1 VACE Multimodal Meeting Corpus and An-
notations

We utilized the VACE multimodal meeting corpus [7] in
our experiment. Each VACE meeting has an associated
set of multimodal signals and annotations, including time-
aligned word transcriptions, sentence unit (SU) annotations,
floor control annotations, and gesture and gaze annotations.
Each VACE meeting was named according to its record-
ing date. In our experiment, we used three meetings with
full annotations: Jan07, Mar18, and Apr25. These three

meetings contain 14 speakers1. Table 1 provides informa-
tion about the participants in each of the three meetings;
the first column provides a label for each speaker and the
second, the total speaking time duration.

Participant Dur.(sec.) # Control DurControl(sec.)
Jan07 C 337.32 37 299.58
Jan07 D 539.13 26 465.54
Jan07 E 820.51 63 763.31
Jan07 F 579.42 37 523.16
Jan07 G 352.92 31 296.31
Mar18 C 679.39 62 648.73
Mar18 D 390.46 54 359.75
Mar18 E 485.21 49 465.03
Mar18 F 486.60 57 481.70
Mar18 G 470.72 53 422.49
Apr25 C 382.56 63 340.7
Apr25 D 1029.96 72 990.61
Apr25 F 532.86 80 450.11
Apr25 G 197.96 34 185.06

Table 1: Statistics of each meeting participant’s
speaking time, number of Control type floors, and
duration of Control type floors

Using a multi-channel audio and video data collection sys-
tem as described in [7], each meeting participant’s audio and
video signals (from several different viewing angles) were col-
lected. The speech content was transcribed by human an-
notators, and the starting and ending time points of words
were added by doing a forced alignment. Then, sentence
units (SUs), which represent the smallest complete idea in
utterances, were annotated following [35]. A total of 3170
SUs were annotated for these three VACE meetings.

Psycholinguistic researchers hand annotated the gesture
and gaze of each of the participants in the meetings using the
MacVissta [31] tool, which displayed multiple videos along
with the time-aligned words and silences. Gesture onset and
offset, as well as the semiotic properties of the gesture as a
whole, were coded in relation to the accompanying speech.
In addition, gaze patterns were coded for each speaker in
terms of the object of the gaze (at whom or what the gaze
was directed) at each moment. See [6, 7] for more informa-
tion on the annotation process.

The floor control annotations primarily focus on speaking
turn management. When participant A is talking to par-
ticipant B, who is listening without attempting to break in,
then A clearly has “control of the floor”. The person con-
trolling the floor bears the burden of moving the discourse
along. The floor control event types annotated in the VACE
corpus are:

Control: corresponds to the main communication stream in
meetings. We annotated who had control and which par-
ticipants were involved.

Sidebar: corresponds to sub-floors that have split off of a more
encompassing floor.

Backchannel: corresponds to utterances like “yeah” that are
spoken when another controls the floor.

Challenge: corresponds to an attempt to grab the floor.

Cooperative: corresponds to an utterance that is inserted into
the middle of the floor controller’s utterance in a way that
is much like a backchannel but has propositional content.

1Only C in the Jan07 meeting is a female speaker.
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Other: corresponds to other types of vocalizations that do not
contribute to any current floor thread, e.g., self talk.

More details about the floor control annotation can be found
in [6]. Using this annotation, the use of nonverbal behaviors,
e.g., gesture and gaze, have been analyzed for their effect on
floor change management [6].

In addition to the speaking time of each participant in
each meeting, Table 1 provides some basic statistics on floor
control in the three meetings: the number of Control type
floors and total duration of the Control type floors for each
meeting participant2. Clearly, most of the speaking time is
assigned to Control type floors in these meetings.

3.2 Floor Control Shift Detection
Floor control shift (FCS) detection can be treated as a

classification task. At the end of each SU spoken by the
current floor holder, the goal is to determine whether they
will keep or give up the control of the floor. Figure 1 depicts
this task. In this figure, there are three SUs in the example
floor, which is depicted above the SUs. At the end of each
SU, a FCS detection model predicts whether the floor will
be kept or yielded. In this example, the control of the floor
is not yielded until the end of the third SU.

Each SU ending boundary within all Control type floors is
classified as one of two classes: Keep or Change. The Keep
class label implies that after the SU’s ending boundary, con-
trol of the floor continues to be held by the current floor
holder, i.e., there is no floor control shift. The Change label
indicates that after the SU’s ending boundary, control of the
floor is shifted to a new holder. Table 2 lists the floor control
shift class distribution on all SU ending boundaries. Note
that the column labeled “None” indicates the number of SUs
that do not occur in Control type floors. In the three VACE
meetings, among 3170 inter-SU boundaries, 1181 inter-SU
boundaries do not occur in Control type floors, most of
which are backchannel SUs (865). Of the remaining inter-
SU boundaries occurring in Control type floors, there were
were 1301 Keep FCS and 688 Change FCS.

SUs Keep Change None
3170 1301 688 1181

Table 2: Statistics of floor control shifts in the VACE
meeting corpus

For FCS detection, we focused on Control type floors for
the following three reasons: (1) Control type floors contain
the most important information that is conveyed and ex-
changed in conversations; (2) for SUs in non-Control type
events (e.g., Backchannel, Challenge, and Cooperation), the
speaker is not the floor holder and so floor control shift is
undefined; and (3) although the technique developed from
Control type floors could be used on sub-floors within Side-
bar type floors, these event types are rare in our corpus.

In addition, for FCS detection, we utilized multimodal
cues appearing in the region immediately prior to each SU’s
ending boundary (either the word or the predefined win-
dow just previous to the SU boundary). This is because we
intend to build an on-line floor control shift detection sys-
tem. By only using multimodal features occurring previous
to SU boundaries, we do not need to wait for features fol-
lowing the SU boundaries in order to predict potential floor

2It should be noted that these time measurements are based
on time intervals that contain some silence.

control shifts. Although long-range pragmatic information
(e.g., the topic structure) is likely to be quite useful for pre-
dicting floor control shifts, here we focused on using cues
extracted locally for two reasons: (1) utilizing long-range
pragmatic information is quite challenging for current lan-
guage processing techniques, and (2) our data resources in
this study were quite limited, making it difficult to charac-
terize long-range pragmatic information.

4. METRICS
To evaluate the performance of our models described in

Section 6, we designed a metric (ERR) in the spirit of the
one defined by NIST for the sentence unit (SU) evaluation
in the DARPA EARS program. To calculate the FCS ERR,
the estimated FCS sequence is compared with the standard
FCS reference string to determine the number of misclas-
sified boundaries per Change FCS. Since FCS boundaries
may be incorrectly deleted or inserted, we also provide the
insertion rate (INS) and deletion rate (DEL) to examine
the patterns of insertions and deletions among the different
models. The three metrics are defined as follows:

INS =
number of incorrect insertions of Change boundaries

total number of FCS boundaries with Change labels

DEL =
number of incorrect deletions of Change boundaries

total number of FCS boundaries with Change labels

ERR = INS + DEL

Note that the NIST-style Error rate can be greater than
100%. The following example shows a system FCS hypoth-
esis aligned with the reference FCS labels:

Reference: SU1 SU2 SU3 / SU4

System: SU1 / SU2 SU3 SU4

INS DEL

where SUi is an SU and ‘/’ indicates an FCS Change event.
There are two misclassified boundaries, one insertion error
and one deletion error, in the example above. Since there is
only one reference FCS Change boundary, the NIST ERR
rate for this system output is 200%. If a system hypothesizes
a non-event boundary at each inter-SU boundary, then the
NIST error rate would be 100% for the boundary detection
task, all due to deletion errors.

The classification error rate (CER) is also calculated to
enable us to test whether results from different modeling
approaches are significantly different using the sign-test [22].
CER is defined below:

CER =
number of incorrect FCS boundaries

total number of SU ending boundaries

5. MULTIMODAL FEATURES
Years of conversational analysis (CA) studies provide evi-

dence that a wide variety of cues, e.g., lexical cues, prosodic
cues, and visual cues, are used to efficiently manage floor
control in human conversations [10, 16, 27, 32]. Because of
this, in our floor control shift detection experiment, we inves-
tigated the use of lexical features from word transcriptions,
prosodic features extracted from audio signals, and visual
features computed from the annotations of gesture and gaze
behaviors.
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Figure 1: A schematic view of floor control shift detection

5.1 Lexical Features
Lexical cues have been found to be quite useful for sig-

naling floor control shift in previous studies [10, 32]. For
example, syntactic completeness is an important indicator
for a speaking turn change. Also some phrases, e.g., any
suggestions, are commonly used by people to yield floor con-
trol. Since our floor control shift detection was applied on
all SU ending boundaries, the syntactic completeness was
largely guaranteed3. In addition, we utilized word and part
of speech (POS) co-occurrence information, which were suc-
cessfully used in previous turn-taking detection algorithms [23,
33], in an attempt to model lexical cues provided by word
sequences.

Given the word transcriptions and POS tag sequence,
which was computed using a POS tagger [36] trained on
the transcriptions of spontaneous speech, we extracted the
following n-gram features:

• Word n-gram features: where the maximum n is
four. Given wi as the word token at position i (the
last word of the current SU), the word-ngram fea-
tures include: 〈wi−3, wi−2, wi−1, wi〉, 〈wi−2, wi−1, wi〉,
〈wi−1, wi〉, 〈wi〉.

• POS n-gram features: where the maximum n is
four. Given Pi as the POS token at position i (the last
word of the current SU), POS n-gram features include:
〈Pi−3, Pi−2, Pi−1, Pi〉, 〈Pi−2, Pi−1, Pi〉, 〈Pi−1, Pi〉, 〈Pi〉.

5.2 Prosodic Features
Previous investigations have suggested that prosody plays

a role for managing floor control in conversations. Silent
pauses, rises or falls in intonation, variation in speech rate, fi-
nal lengthening, and other prosodic patterns have been used
to indicate speaker turn structure [10, 13, 25, 38].

In our experiment, we tailored the Purdue Prosodic Fea-
ture Extraction (PPFE) [17] tool’s output to obtain prosodic
features suitable for floor control shift detection. Although
the PPFE tool’s default output was designed to support sen-
tence unit (SU) detection, its feature computation is quite
general. In previous studies, similar prosodic features have
been successfully utilized for detecting topic segmentation,
dialog acts, and utterance boundaries [34].

The prosodic features used for floor control shift detection
are related to various aspects of prosody, including F0, en-
ergy, and duration. However, as described in Section 3.2,
we developed a left-to-right model to predict FCS using

3Some SUs are not complete sentences. For example, an-
swers to questions can be noun phrases, or some sentences
may be cut off due to replanning or contention for the con-
trol of the floor.

multimodal features happening previous to an SU bound-
ary. Therefore, in contrast to the prosodic features used
for SU detection, the prosodic features used for FCS detec-
tion are: (1) computed at each SU ending boundary, and
(2) computed only using the audio prior to each SU ending
boundary. The prosodic features include:

• Duration Features: Final lengthening is an useful
indicator of a floor control shift. The drawl on the
final syllable tends to indicate turn-yielding [10]. We
extract several duration related features, e.g., the du-
ration of the last word before an SU boundary, the
duration of the last phone, and the duration of the
last vowel or stressed vowel in a multisyllabic word, as
well as their normalizations.

• F0 Features: F0 variation has been reported to signal
floor control shifts in previous studies. For example, to
yield control of the floor, a rising pitch contour, which
indicates a question SU, can provide an important cue.
To model F0 variation, we extract features about the
range, movement, and slope of the F0 contour:

Range features: The range features reflect the pitch
range of a word or a 0.2 second window relative to
the speaker-specific baseline F0 value. Examples of
such range features include the minimum, maximum,
mean, and last F0 values for the SU boundary.
Movement features: The movement features reflect the
variation of F0 values. From the stylized F0 contours
for the voiced regions of the word preceding the SU
boundary, the minimum, maximum, mean, and the
starting and ending stylized F0 values are computed.
Slope features: The slope features reflect the variation
of the F0 contour. Slope patterns are in the format
of a sequence of “f”, “r”, representing a falling slope
and a rising slope. Such slope patterns are computed
on the word or a 0.2 second window preceding the SU
boundary.

• Energy Features: When yielding control of the floor,
the current floor holder’s voice tends to taper off. To
track the variation of speech energy, similar to the
F0 features, a variety of energy-related range features,
movement features, and slope features are computed
from the energy contour.

• Other Speakers’ Overlaps: Because multiple speak-
ers interact in a meeting, the speech provided by other
speakers affects the current speaker’s floor control man-
agement. For example, when another speaker talks si-
multaneously to compete with or interrupt the current
speaker, it is more likely that the current speaker will
give up control of the floor. To model the impact of
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other participants’ speech, we computed the summa-
tion of durations of other participants’ spoken words
that overlap with the current floor holder’s speech within
a 1.0 second window preceding the end of the SU. The
obtained duration of the overlapped speech is normal-
ized by the number of meeting participants to reduce
the influence of the different number of meeting par-
ticipants.

Compared with related research on using prosodic cues for
turn change detection [23, 33], our prosody feature extrac-
tion based on the PPFE toolkit provides richer prosodic fea-
tures that more comprehensively reflect prosodic properties.

5.3 Visual Features
Visual cues have been found to play an important role

for floor control management. Based on previous studies of
floor control management, we extract several visual features
described below from a window preceding the SU bound-
ary with a length of 1.0 second that was estimated on the
development data set, which will be described in Section 6.

Kendon [20] observed that the termination of gestures by
the person controlling the floor is often used for yielding con-
trol of the floor. When a speaker is still making gestures at
the end of an SU, he/she may still intend to continue speak-
ing and therefore will maintain control of the floor after the
end of the SU. If some other speakers make hand gestures,
such as raising their hands, they may be requesting control
of the floor. Such gestures from other speakers may trig-
ger the current floor holder to yield control. The gesture
features are computed as follows:

• HOLDER GES TIME: is the percentage of the floor
holder’s gesturing time before each SU ending bound-
ary. If the current floor holder spends a considerable
percentage of time gesturing at the end of an SU,
he/she may be more likely to continue controlling the
floor after the end of the SU.

• OTHERS GES TIME: is the percentage of other
participants’ gesturing time before each SU ending bound-
ary. The value is normalized based on the number of
meeting participants. This feature is expected to ac-
count for other meeting participants’ floor grabbing
gestures, which may trigger the current floor holder to
yield control of the floor.

Previous studies [2, 19] suggest that gaze plays an impor-
tant role in floor control management. The person who is
the gaze target of the current floor holder is more likely to be
the next floor holder when the floor control shifts. A special
event, mutual gaze break, which was described in Section 2,
has been reported to appear in dialogs and meetings [28].
The gaze features are computed as follows:

• HOLDER GAZE TIME: is the percentage of the
floor holder’s gazing time at other participants, rather
than at other locations, during the window before each
SU boundary. When the current floor holder does
not gaze at any other participant, it is less likely that
he/she intends to yield control of the floor.

• OTHERS GAZE TIME: is the percentage of other
participants’ time gazing at the current floor holder
before each SU boundary. The value is normalized

based on the number of participants to reduce the in-
fluence of the number of participants on this value.
To grab control of the floor more smoothly, the subse-
quent floor holder will often look at the current floor
holder in order to establish eye contact.

• NUM MUTUAL GAZE: is the number of mutual
gazes established between the current floor holder and
other meeting participants. Mutual gaze patterns are
important “devices” used by the current and next floor
holders to coordinate the shift of floor control. There-
fore, existence of mutual gaze patterns close to the end
of an SU should provide evidence about a floor control
shift. Using the gaze annotations, we are able to iden-
tify mutual gaze between the current floor holder and
other participants (i.e., time intervals when the cur-
rent floor holder and a participant look at each other
momentarily).

6. EXPERIMENT

6.1 Data Setup
Given the limited size of the multimodal corpus used in

our experiment, we first split the entire data set contain-
ing 14 speakers into a held-out development set and a data
set for training and testing. The data for the speaker C in
the Jan07 meeting and the speaker F in the Mar18 meeting
comprise the development set, which is used to set some of
the parameters needed by the machine learning algorithms
we use. In order to test on more instances, over the data
from the remaining 12 speakers, we conduct a leave-one-out
evaluation procedure, that is, we iteratively use data from
11 speakers to train the statistical model and test the ob-
tained model on the remaining speaker’s data. Among 1749
inter-SU boundaries used for evaluation (from 12 speakers),
65.52% have Keep FCS labels. Therefore, baseline perfor-
mance can be calculated by predicting that there is always
a Keep FCS, giving an ERR of 100% and a CER of 34.48%.

6.2 Statistical Models
Floor control shift detection is based on three somewhat

independent knowledge sources: lexical, prosodic, and visual
cues. The task can be generalized as follows:

Ê = arg max
E

P (E|W,F, V )

Given that E denotes the inter-SU floor control shift event
sequence (Keep or Change), W denotes the corresponding
lexical cues, F denotes the prosodic feature vector, and V

denotes the corresponding visual features related to gesture
and gaze, the goal is to find the floor control shift event
sequence that has the greatest probability given the observed
multimodal features.

Recently, conditional modeling approaches were success-
fully used in SU detection using audio cues [24], as well as
multimodal cues [5]. We would expect that conditional mod-
eling approaches would also be effective for combining audio
and visual features for floor control shift detection. Hence,
we use the Maximum Entropy (ME) [3] and Conditional
Random Fields (CRFs)[21] approaches to build statistical
models for floor control shift detection.

Compared to SU events, for which decisions are made for
every word boundary, floor control shift decisions are made
for every SU boundary. Hence, there is a greater problem
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with data sparsity. Also, there is a greater variance among
participants’ behaviors for managing control of the floor. For
example, participants in the three VACE meetings have dif-
ferent patterns of looking at subsequent floor holders during
floor control shifts [6]. To address this variability, several
machine learning approaches have been proposed and used
in previous studies. For example, Levow [23] used boosting
ensemble learning to predict turn changes. Boosting (and
algorithms based on it) has been reported to give compet-
itive performance on a wide variety of data sets in several
experimental studies [9, 14]. Hence, we also used boosting
ensemble learning to build a statistical model for floor con-
trol shift detection.

For Maximum Entropy (ME) modeling in our experiments,
we use the Maxent toolkit designed by Zhang [40]. The L-
BFGS parameter estimation method is used, with Gaussian-
prior smoothing [8] to avoid overfitting. The Gaussian prior
is estimated on the held-out development data set. The
rationale behind the use of Gaussian priors is to force the
learned parameters to be distributed according to a Gaus-
sian distribution. This prior expectation penalizes parame-
ters that drift away from their mean prior value (the mean is
usually 0). Because the Maxent toolkit is more effective with
categorical features, the numeric features, e.g., prosodic fea-
tures about F0, were converted to categorical features using
Fayaad and Irani’s MDL discretization method [11], which
was implemented in the WEKA [39] machine learning pack-
age. The following ME models were implemented for our
experiment:

• ME Speech Model: uses the lexical and prosodic
features described in Section 5.1 and Section 5.2, re-
spectively.

• ME Visual Model: uses the gesture and gaze fea-
tures described in Section 5.3.

• ME Multimodal Model: uses all of the lexical,
prosodic, and visual features.

For Conditional Random Fields (CRFs) modeling, we use
the Java based package Mallet [26]. Similar to training an
ME model, Gaussian smoothing is utilized to avoid overfit-
ting. The Gaussian prior is estimated on the held-out de-
velopment data set, and the numeric features are converted
to categorical features using WEKA [39]. Viterbi decoding
is used for these models. The following CRF models were
implemented for our experiment:

• CRF Speech Model: uses the lexical and prosodic
features described in Section 5.1 and Section 5.2, re-
spectively.

• CRF Visual Model: uses the gesture and gaze re-
lated features described in Section 5.3.

• CRF Multimodal Model: uses all of the lexical,
prosodic, and visual features.

For Boosting ensemble learning modeling, we use the Ad-
aBoost.M1 boosting method implemented in WEKA [39].
Parameters of the AdaBoost model, e.g., the ensemble learn-
ing iteration number, are estimated on the held-out devel-
opment data set. The following AdaBoost models were im-
plemented for our experiment:

• AdaBoost Speech Model: uses the lexical and prosodic
features as described in Section 5.1 and Section 5.2, re-
spectively.

• AdaBoost Visual Model: uses the gesture and gaze
related features described in Section 5.3.

• AdaBoost Multimodal Model: uses all of the lex-
ical, prosodic, and visual features.

6.3 Results
Table 3 reports on the performance of the speech, visual,

and multimodal models using the three machine learning ap-
proaches and various feature configurations. The first row
represents the baseline error rates obtained by always pre-
dicting that there is no floor control shift around the SU
boundaries.

Using only speech features, the three models (ME, CRF,
and AdaBoost.M1) all achieve significantly lower error rates
than the baseline performance. When using speech features,
the CRF modeling approach achieves a better performance
than the ME modeling approach, and the AdaBoost.M1
modeling approach achieves further improvement over the
CRF but this difference is not statistically significant.

The accuracy of floor control shift detection using speech
features is fairly low. This is not surprising because the floor
control detection is quite challenging for several reasons.
First, the underlying scheme to control the floor in conver-
sations is quite varied; floor control is based on the interac-
tions among participants. Therefore, a speaker may produce
different floor control patterns depending on the people in-
volved in the conversation. Second, in our current study,
we only utilized speech features extracted locally previous
to SU ending boundaries. Although high-level pragmatic
information (e.g., topic structure) is likely to play an im-
portant role for making decisions about floor control shifts,
this high-level information is challenging to model given the
small amount of data available in this study. Third, since
the classification is conducted on inter-SU boundaries, the
number of available training instances is small, creating a
challenge for building our models.

Using only visual features, the three models (ME, CRF,
and AdaBoost) all achieve significantly lower error rates
than the baseline, but somewhat higher than the correspond-
ing speech models. Clearly, eye gaze and hand gesture fea-
tures provide cues that are effective for floor control shift
detection. Their usefulness is consistent with previous psy-
cholinguistic and conversation analytic research findings.

When combining speech and visual cues together, the
three modeling approaches (ME, CRF, and AdaBoost) all
achieve significantly improved performances (sign-test using
p < 0.05) over the models using only speech cues. This
suggests that the combination of audio and visual infor-
mation significantly improves the accuracy of floor control
shift detection compared to either model alone. Using the
combined features, both CRF and AdaBoost modeling ap-
proaches achieve significantly lower error rate than ME (sign-
test using p < 0.05). However, although AdaBoost modeling
approach achieves a lower error rate than CRF, this error
reduction is not statistically significant.

For ME and AdaBoost modeling approaches, the mod-
els trained on visual features have higher DEL error rates
but lower INS error rates compared to the models trained
only on speech features. However, the CRF visual model
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Model DEL (%) INS (%) ERR (%) CER (%)
Baseline 100.00 0.00 100.00 34.48

ME Speech 58.37 26.70 85.07 29.35
ME Visual 67.50 21.72 89.22 30.78

ME Multimodal 54.73 26.04 80.77 27.86
CRF Speech 63.85 18.41 82.26 28.38
CRF Visual 67.99 20.07 88.06 30.38

CRF Multimodal 56.55 19.90 76.45 26.37
AdaBoost Speech 51.91 27.53 79.44 27.40
AdaBoost Visual 66.34 19.57 85.90 29.63

AdaBoost Multimodal 50.58 23.22 73.80 25.46

Table 3: Floor control shift detection using speech features, visual features, and the combination of both
types of features by Maxent, CRF, and AdaBoost models. (Bold fonts show that the multimodal model
has a statistically significantly lower error rate than the corresponding speech model for floor control shift
detection (p < 0.05).)

has higher DEL and INS error rates compared to the CRF
speech model. This may be due to the fact that CRF uses
information from the sequence; however, visual cues are
not always available in the context. For all three modeling
approaches, the models trained on both speech and visual
features achieve the lowest DEL error rates among models
trained on speech, visual, and both types of features. There-
fore, some floor control shifts missed by speech models are
compensated for based on visual cues.

Table 4 reports on FCS detection performance using ma-
jority voting among FCS models built using ME, CRF, and
AdaBoost approaches. Compared to the best multimodal
model (AdaBoost), the majority voting of the ME, CRF,
and AdaBoost models produces a lower error rate (although
it is not statistically significant according to the sign-test
(p < 0.05)). The voting approach achieves the lowest INS
error rates among models built using ME, CRF, and Ad-
aBoost approaches.

Model DEL (%) INS (%) ERR (%) CER (%)
ME 54.73 26.04 80.77 27.86
CRF 56.55 19.90 76.45 26.37

AdaBoost 50.58 23.22 73.80 25.46
Voting 55.89 16.58 72.47 25.00

Table 4: Voting using the multimodal ME, CRF,
and AdaBoost models

7. DISCUSSION
In this paper, we described our investigations on using

visual cues (i.e., eye gaze and hand gesture) to automati-
cally detect floor control shifts in multi-party conversations.
Based on knowledge about a variety of multimodal cues (e.g.,
lexical, prosodic, and nonverbal cues) and their roles in sig-
naling floor control shifts, we designed a set of multimodal
features and implemented models for floor control shift de-
tection. The extracted features were useful for predicting
floor control shifts. Two conditional modeling approaches
(ME and CRF) were utilized to implement the models. The
CRF modeling approach outperformed ME for floor con-
trol shift detection. In addition, to address the variance
of speaker’s multimodal behaviors in floor control shifts,
the boosting ensemble learning approach was used and was
found to produce the lowest error rate in all conditions.

To our knowledge, this study is the first to utilize visual
cues in an automatic detection task related to floor control

and turn-taking structure. Our experimental results on the
VACE multimodal meeting data suggest that visual cues
play an important role for predicting floor control shifts in
that they significantly improve the accuracy of floor shift
detection when compared to a speech-only model. However,
there is more work that needs to be done. Increasing the
amount of training data and integrating longer-range fea-
tures will be important for improving performance further.
It is also important to examine the effect of using signal pro-
cessing techniques to automatically derive gaze and gesture
features. In addition, we will extend this study done using
transcribed SUs to one using estimated SUs.
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