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ABSTRACT
Social interactions unfold over time, at multiple time scales,
and can be observed through multiple sensory modalities.
In this paper, we propose a machine learning framework
for selecting and combining low-level sensory features from
different modalities to produce high-level characterizations
of human-robot social interactions in real-time. We intro-
duce a novel set of fast, multi-modal, spatio-temporal fea-
tures for audio sensors, touch sensors, floor sensors, laser
range sensors, and the time-series history of the robot’s
own behaviors. A subset of these features are automati-
cally selected and combined using GentleBoost, an ensem-
ble machine learning technique, allowing the robot to make
an estimate of the current interaction category every 100
milliseconds. This information can then be used either by
the robot to make decisions autonomously, or by a remote
human-operator who can modify the robot’s behavior manu-
ally (i.e., semi-autonomous operation [5]). We demonstrate
the technique on an information-kiosk robot deployed in a
busy train station, focusing on the problem of detecting in-
teraction breakdowns (i.e., failure of the robot to engage in
a good interaction). We show that despite the varied and
unscripted nature of human-robot interactions in the real-
world train-station setting, the robot can achieve highly ac-
curate predictions of interaction breakdowns at the same
instant human observers become aware of them.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Robotics
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1. INTRODUCTION
For a robot, engaging in social interaction is much like any

other control problem – it must contintually use its sensors
to update its current beliefs about the state of the world and
rapidly adapt its behavior accordingly. In contrast to indus-
trial robots, the information about the world that is most
salient to a social robot can be quite complex. Social inter-
actions unfold over time at multiple timescales, and result
in changes across multiple sensory modalities. For instance,
the distances between humans and the robot at different
points in time, the pattern of human touches to the robot,
and the pattern of human speech relative to the sequence of
robot behaviors are all useful for understanding the nature
of a social interaction. Thus, while a social robot needs to
make use of sensor data at relatively short time-scales to
make instantaneous choices of action, it also needs to inte-
grate information from longer time scales, including its own
actions and previous beliefs, to provide higher-level under-
standing of the interactions as they unfold. This might be
regarded as a form of meta-cognition, since the robot first
uses sensors to choose instantaneous behaviors using it’s un-
derlying cognitive architecture, then combines sensor infor-
mation with information about its own past behaviors in a
different way to make higher-level hypotheses about it’s own
social behavior.

In this paper we present a technique for combining several
different types of robot sensors, as well as information about
the robot’s own past behaviors, across multiple time-scales
to produce a continually updated (every 100ms) assessment
of the current social interaction. This interaction evalua-
tion can then be used by the robot to adapt its behaviors
from moment to moment, or by a remote human operator
who can intervene if the robot cannot make good use of this
information by itself. Our approach to information integra-
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tion is inspired by recent work in vision and audio processing
for real-time detection and understanding of faces, facial fea-
tures, and facial expressions [20, 13, 12], and auditory scenes
and emotional speech [1, 14]. We introduce a large library
of simple, fast features over the “raw” robot sensors, and use
GentleBoost [4] to select and combine a subset of these fea-
tures into a strong classifier. Our features are defined across
multiple sensory modalities, rather than only vision or only
audio, and extend over multiple time-windows. Because we
do not know a priori what modalities are most useful for
understanding social interaction, or what time-scales, we
construct the features in such a way that the learning al-
gorithm can be agnostic about the underlying sensor types
and time-scales, and can thus automatically discover which
types of sensors and which temporal windows are most use-
ful by virtue of which features are selected for solving the
problem at hand.

We test our approach on a social robot located in a train
station designed to provide humans with information about
the station and surroundings through social communication.
The robot behaves fully autonomously, and engages in un-
scripted interactions with passing humans. In such a noisy,
uncontrolled setting as a train station, it is not uncommon
for a robot to make mistakes during interactions with hu-
mans (due to e.g., failures in the speech-to-text processing
system, or faces that are not detected by the vision system,
etc.). Because the robot itself does not know when it has
made a mistake, human-robot interactions can rapidly de-
teriorate. Thus a highly useful initial goal for interaction
categorization, which we pursue in this paper, is to give the
robot the ability to determine at each instant if it is cur-
rently engaging in a successful interaction with the human.
We use this determination to enhance semi-autonomous op-
eration, in which a covert remote-operator can switch to
remote-control mode if he determines that the robot has
encountered a situation that it cannot handle by itself. In
[5], semi-autonomous operation was studied extensively and
it was shown that one human could control several robots
simultaneously and recover most problematic human-robot
interactions transparently. However one of the greatest dif-
ficulties was that the human operator had to determine
by themselves whether or not the robot needed help. Our
method allows the robot to automatically signal to the oper-
ator when it thinks it needs help, reducing the cognitive load
on the operator and improving the quality of human-robot
interactions.

In addition to semi-autonomous operation, the ability to
automatically determine interaction categories, and in par-
ticular the goodness of interaction we focus on here, has a
wide range of other possible uses. For instance, by treating
the good vs. bad classification as an intrinsic reward signal,
a robot can employ a reinforcement learning algorithm to
autonomously modify its interaction policy to maximize the
expected long-term number of good interactions with hu-
mans.

In the remainder of the paper we briefly discuss previous
work on human-robot interaction classification, describe our
new set of multi-modal features, and then describe our ma-
chine learning approach for selecting and combining a subset
of features. We then present experiments on synthetic data,
a laboratory setting, and the real-world train station set-
ting. We then discuss the results in detail and then finally
describe future improvements and future applications.

2. CLASSIFYING HUMAN-ROBOT INTER-
ACTION

Evaluating the character of social interactions tends to be
intuitive for humans, but what features are actually used
by humans to make these judgements? In [19], researchers
introduced the humanoid robot QRIO into a preschool class-
room and asked human coders to watch videos and score in
real-time the “goodness of interaction” on a scale of 1 to
5. Despite the fact that coders were not given any explicit
instructions about exactly what “good interaction” should
entail, multiple human coders had high agreement on the
same videos. Post hoc analysis of videos later showed that
the touching behavior by the children (in particular, touch-
ing of the robot’s arms) could predict with high accuracy the
human coders’ judgements (correlation of 0.79). This led the
authors to speculate that modern machine learning methods
might be used to enable robots to autonomously classify the
goodness of interactions using only their touch sensors. An-
other important lesson was that human observers did not
have a good a priori notion of what sensory features would
predict interaction success. Thus, it might also make sense
for a machine learning algorithm to simultaneously select
the most useful sensory features as it is learning how to best
combine them.

A variety of methods to automatically analyze and cate-
gorize human-robot interactions have been used in previous
work [17, 8, 16]. Most of these have been offline methods,
i.e., analysis is performed after the interactions have fin-
ished. However a few systems have recently been developed
for online use. In [3], Francois et al. used self-organizing
maps to preprocess touch sensor data for classifying autistic
childrens’ interaction styles with an AIBO robot dog into
“strong” versus ”gentle” categories, allowing it to adapt its
behavior to the interaction style. Hammer et al. [7] de-
veloped a neural-network based method for classifying play
behavior on a specially designed touch-sensitive playground,
and could categorize children’s behaviors into eight different
categories very accurately. This was then used to adapt the
playground to encourage more play [7]. Finally, Ruvolo et
al. [14, 15] used audio to classify, in real-time, the “mood”
of a classroom into “crying” vs. “singing / dancing” vs. “ev-
erything else” for a child-care robot.

In this paper, we explore an approach to real-time clas-
sification of human-robot interactions that is similar to the
approach of [14, 7], but we use multiple sensory modalities
simultaneously instead of audio or touch alone. Our method
has two phases: a training phase and a run-time phase. For
training, high-fidelity recordings of all sensor data during a
series of human-robot interactions are recorded and stored in
a database. A human coder then watches videos of the inter-
action sequences and marks the instant in time that interac-
tion appears to be going bad (otherwise the entire sequence
is labeled good). These labeled sequences are then used to
train a classifier. At run-time, a set of running statistics
are updated every 100ms, and a new good vs. bad prediction
is computed based on the most recent N seconds of sensor
data. The outline of the system is shown in Figure 1.

3. MULTI-MODAL FEATURES FOR INTER-
ACTION CLASSIFICATION

For these experiments we use the humanoid robot RoboVie-
II [9], which has a wide array of sensors, both on its own
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Train-Time algorithm

Given dataset of interaction sequences and human labels:

1) Scale, align, and compute cumulative-sums on exam-
ple interaction data (described below).

2) Use GentleBoost [4] to choose a small set of features
from all features across all sensor types, and combine
selected features into a single classifier.

Run-Time algorithm (repeat every 100 miliseconds):

1) Update cumulative-sum vectors for all sensors.

2) Recompute feature responses on updated sensors.

3) Classify current moment as good or bad interaction
using learned classifier.

Figure 1: Outline of the learning and runtime algo-
rithms. At runtime, feature updates require only a
handful of lookup, add, and multiply operations.

body and within the environment (see Figure 5). In our ex-
periments we used five types of sensors: touch, sound level,
laser range finder, pressure sensitive floor, and robot behav-
iors (treated by our algorithm as a sensor). These sensors
are asynchronous and run at different sampling rates. The
time between samples for any given sensor is not guaranteed
to be constant. This poses a challenge to supervised machine
learning algorithms, which typically need training vectors to
be aligned with respect to the label and of fixed size. There-
fore, our first challenge is to find a representation which (a)
converts asynchronous sensor readings into fixed-size vec-
tors, and (b) does so in a way that can be accomplished
with minimal computation for real-time operation. After
describing the general way of representing sensors suitable
for the learning algorithm, we will describe the individual
sensors and the features defined over them.

3.1 Time-scaling
The first step for putting different sensors into a common

representation is to synchronize them according to a sin-
gle reference point on a common clock. We use a simple
re-sampling technique for this, essentially low-pass filtering
samples which arrive more frequently than the base rate,
and interpolating samples which arrive less frequently than
the base rate. The result of this procedure is a vector Qs for
each sensor s, where the first element represents the most
recent sensor data, and each subsequent element represents
an estimate of the sensor value at fixed intervals of time.
Our re-sampling method is as follows:

1. For each sensor s, set a sampling interval k.

2. For each sensor s, initialize random-access vector Qs

of size max_length with all zeros.

3. Repeat every 100 milliseconds:

• For each sensor s:

(a) If new samples arrived since last update, in-
sert most recent sample into the front of Qs.
Otherwise, copy the first value in Qs and in-
sert it into the front of Qs.

(b) Delete the last element of Qs.

0.7

0.9
1

0.5 0.5 0.50.5
0.8

0.7 0.9 0.5 0.8 0.50.8

time

Original sensor readings

Normalized Qs vector

Qs,0Qs,1Qs,2Qs,3Qs,4Qs,5

Figure 2: Converting asynchronous sensor readings
into fixed length vectors. The first element Qs,0 is
always the most recent value of the sensor. Here we
show time from right to left.

The procedure is illustrated in Figure 2. Note that it is not
necessary for each sensor to use the same sampling interval.
In our experiments we use 100ms intervals for most sensors,
and 500ms intervals for the others.

3.2 Extracting training data from labeled se-
quences

With the representation described above, it is simple at
runtime to select the most recent N seconds of data across
all sensors and present it to a classifier which takes as in-
put a set of fixed-size vectors. For training the classifier, we
must now align all of the training sequences with respect to
a detection window defined by the time each interaction was
labeled as good or bad, and the number of seconds that we
wish to include before and after the label when determin-
ing the interaction category. The before and after intervals
are tunable parameters chosen manually or through cross-
validation. In Section 6 we discuss the effects of different
before and after intervals.

To illustrate the alignment of training data, Figure 3 shows
an example in which the detection window is fixed to include
one second after the label and three seconds before the label.
The figure shows a six second sequence which the human
coder has labeled bad at the fourth second. In this example,
the first two sensors have been time-scaled with a sampling
interval of .5 seconds, and the third with a sampling interval
of 1 second. For the first two sensors, the detection window
includes elements 2 through 9, while for the third sensor,
elements 1 through 4 are included. Trained with samples
extracted using this detection window, the resulting classi-
fier output at runtime can be interpreted as meaning “Based
on the last four seconds of data, the interaction one-second
ago is bad / good”.

3.3 Features
We can now describe the features we use for classification.

Our features are very similar to the box-filters used in [20]
for detecting objects in images, and the spatio-temporal box
filters described in [14] for classifying audio scenes. In our
case, a feature has three parameters: an index s indicating
which sensor it refers to, a start time i, and an end time j.
A feature response is then computed by taking the sum of
values in sensor vector Qs between the feature’s start and
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time beforetime after

0s1s

Q0

Q1

Q2

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5

bad label

4s5s6s

Figure 3: Extracting a 4 second detection window
from a 6 second sequence labeled bad at the 4th sec-
ond. In this example the detection window is de-
fined as three seconds before and one second after
the label. Note that time is depicted right to left.

end time. The start time and end time are always computed
with respect to the start of the detector window. As shown
in Figure 3.3, these features can be computed efficiently if,
for each Qs vector, a cumulative-sum vector Cs is stored
instead. The sum of values in Qs between i and j can be
quickly computed by subtracting Cs,j from Cs,i+1.

2 1 345672 21 30Qs

Cs 3610121314192532343436 0

f1

f1 = 10− 0 = 10

f2

f2 = 34− 13 = 21

Figure 4: Two features, f1 and f2, defined on the
same sensor s. Using the cumulative sum represen-
tation, the feature response can be computed effi-
ciently. Above is an example (time-scaled) sensor
vector Qs. Below is the corresponding cumulative
sum vector Cs.

The cumulative sum representation of sensors is especially
convenient for real-time updates. When new data arrives on
sensor s, the cumulative sum vector can be updated by sim-
ply adding the incoming value and the value in the first
element of Cs, then inserting the result into the beginning
of Cs, and then deleting the last entry of Cs. Any fea-
tures needed for classification can then be computed with
two lookups and one subtraction.1

3.4 Sensor types
The robot had the following sensors:
Sound level: Two sound level sensors give an instanta-

neous reading of the sound intensity on two external micro-
phones every 100ms.

1In order to avoid precision errors, Cs should be imple-
mented using a double-buffer that is occasionally swapped.
Otherwise the values in Cs will become so large relative
to the values in Qs that the difference is smaller than the
floating-point precision.

Tactile sensors: 16 tactile sensors on the robot’s body
(arms, shoulders and chest) give a pressure reading at dif-
ferent locations of the robot’s body every 10 ms.

Laser range finder: An Hokyuo URG-04LX infrared
laser range finder, affixed to the robot, returns 683 distance
estimates spaced evenly over a 240 degree range, with a ra-
dius of up to four meters, sampled about every 100ms. We
binned the distance readings into 10o × 500cm regions, re-
sulting in 192 regions, and treat each region as a separate
distance “sensor”. The value for a distance sensor is com-
puted as the total number of distance readings in that region.

Floor sensor: We installed a specially equipped floor
which returns pressure readings within a fixed region around
the robot. Similar to the laser range finder, this sensor was
divided into 20× 20 regions, resulting in 400 floor “sensors”.
Each floor “sensor” is the sum of the pressure readings in
that region.

Behavior: In addition to the real sensors, we also treat
the robot’s own behavior as a type of sensor. The robot
has over 200 core behaviors, each which can last between
a few tenths of a second to several seconds. These behav-
iors were grouped into 6 behavior types: greeting-starting,
greeting-leaving, guiding, talking, free-play, and idling. At
any moment, the robot is running one of these behaviors.
We therefore create six behavior “sensors”, one for each be-
havior type. At each sampling interval, we set the sensor
for a behavior type to 1 if the robot is currently executing a
behavior of that type, and 0 otherwise.

We used a sampling interval of 100ms for all of these sen-
sors, except for behavior we set the sampling interval to
500ms. This results in 616 sensors. For a 15 second detec-
tion window, there are about 5000 possible features for each
sensor. Therefore for a 15 second detection window there are
about 3 million possible features defined over all five sensor
types.

Figure 5: The RoboVie-II robot used in Experi-
ments 2 and 3.

4. LEARNING
We use GentleBoost [4] to construct a strong classifier

that combines a subset of all possible features. GentleBoost
is a popular method for sequential maximum likelihood es-
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timation and feature selection. At each round of boosting, a
transfer function, or “tuning curve”, is constructed for each
feature which maps feature response to a real number in
[−1, +1]. Each tuning curve is optimized using nonparamet-
ric regression methods to minimize a weighted exponential
loss (see [13] for details on this procedure). At each round of
learning, the feature plus tuning curve that yields the best
improvement in the total loss is added into the ensemble,
and the process repeats for a fixed number of rounds, or un-
til performance no longer improves on a holdout set. In this
way, GentleBoost simultaneously selects a subset of good
features and builds a classifier out of them.

At each round of boosting, it is necessary to recompute the
optimal tuning curve for each feature under consideration
for being added to the ensemble, because the data samples
are re-weighted, so old tuning-curves can’t be re-used. Since
brute-force search through all 3×106 possible features would
be very expensive, we employ a search procedure known as
Tabu Search [6] to speed up the process. First, a random set
of n features are selected and evaluated on the training set,
and are used to initialize the “tabu list” of features already
evaluated in this round. The top k ≤ n of these features are
then used as the starting points for a series of local searches.

From each starting filter, a set of new candidate features
are generated by replicating the filter and slightly modify-
ing its start and end time. If any of these features are not
already in the tabu list, they are evaluated and then added
to the list. If the best feature from this set improves the
loss, it is retained and the local search is repeated until a
local optimum is reached. After the local search has been
completed for each of the initial k best features, the feature
and tuning curve which achieved the greatest reduction in
the loss function is added into the ensemble classifier.

The amount of time needed to train a classifier scales lin-
early with the number of examples. On a 2GHz laptop com-
puter it takes about 20 minutes to train a 100 feature clas-
sifier on the datasets described in the Experiments section,
using code written in Matlab.

5. EXPERIMENTS
We conducted three experiments with this system. The

first two experiments can be regarded as pilot experiments.
The third experiment is to test if the system can evaluate the
goodness of interactions when deployed in the real-world.

Experiment 1:
The first experiment was a “toy problem”, meant to test
the general validity of the approach. We generated 200 se-
quences of synthetic interactions, in which each sensor type
was generated with different parameters (e.g., frequency, lo-
cation, and duration of touch) depending on whether it was
a good or bad example. The synthetic data was designed
to share some similarities to real data, but still be simple
to generate. For example, to generate synthetic loudness
data, we generated noisy square waves of slightly different
frequency and amplitude depending on if they were a good
or bad example.

Experiment 2:
This experiment was conducted at a laboratory using the
RoboVie-II robot. The robot was set up to provide infor-
mation and entertainment to humans who engage it. We
placed floor sensors in the center of a 2× 2 meter floor area,

then placed the robot on the floor sensors. The loudness
sensor and laser range finder were attached to the robot.
Five participants were recruited to interact with the robot
under varying conditions. Four kinds of interactions were
performed:

1. The robot greets the participant, then the participant
greets the robot (good interaction).

2. The robot greets the participant, but the participant
ignores the robot (bad interaction).

3. The participant greets the robot, then the robot greets
the participant (good interaction).

4. The participant greets the robot, but the robot ignores
the participant (bad interaction).

Each participant performed each interaction five times,
resulting in 100 example sequences. A human coder then
labeled the instant that a bad interaction occurred in the bad
interaction conditions. The goal was to be able to classify
the instant at time that the human labeled an interaction
as bad for the bad interactions.

Figure 6: The train station setup in Experiment 3

Experiment 3:
This experiment was conducted at a terminal station for a
railway line that connects residential districts with the city
center. Station users are mainly commuters and students,
however families often visited the station on weekends to see
the robot. There are four to seven trains per hour. Most
users go down the stairs from the platform after they exit
a train. We introduced the RoboVie-II robot into the train
station to act as an interactive information-kiosk. We set
the robot and the sensors in front of the right stairway and
informed visitors that the robot is a test-bed, with the ca-
pability of providing guidance about routes to users. We
placed floor sensors in the center of a 4× 8 meter floor area.
The robot was placed on the floor sensors, and it also could
move around. The loudness sensor and laser range finder
were attached to the robot. The users could freely interact
with the robot. RoboVie-II has a large number of possible
behaviors, chosen using a sensor-driven behavior scheme de-
scribed in detail in [8, 9]. In this experiment, the robot was
set up so that a normal sequence of interactions would be:
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1. Approach a person,

2. Greet and shake hands with the person,

3. Provide information (e.g., tell them about the new
shopping mall nearby),

4. Guide the person if they want to go somewhere,

5. Play a game with the person if they don’t want to go
somewhere.

These behaviors are described in greater detail in [18]. For
this experiment, we gathered 74 example sequences which
included greetings by either the robot or the human. A
human coder marked the moment when a bad interaction
occurred. In those video sequences where no bad interaction
occurred, we labeled a random time as good.

6. RESULTS AND DISCUSSION
For each experiment, we benchmark the system by train-

ing on a subset of the data, then testing on the remaining
data. When testing, we measured the area under the ROC
(AUC), which can also be interpreted as the correct classi-
fication rate on a two-alternative-forced-choice task (2AFC)
[2] and does not depend on choosing a final threshold on the
classifier’s output.

The AUC scores we report are five-fold cross-validation
results. For each experiment, we randomly divided the ex-
amples into five sets, roughly equal in size. Then for each
set, we train on four of the subsets and test on the fifth. The
graphs below show average AUC scores over all folds, with
error bars representing the standard deviation of the mean.
For each experiment, we trained for 100 rounds of boosting
(thus selecting 100 features). We found training more fea-
tures did not appreciably improve or decrease performance.

Overall we achieved excellent results on all datasets. First,
in the toy data experiment, we verified that for each sen-
sor type, if a classifier was trained using only sensors of
that type, we could learn a detector that achieves very high
(larger than 0.98) AUC within three or four features. Using
all sensors combined also gave excellent performance. These
results were mainly useful to demonstrate that the overall
approach did not have obvious implementation errors and
that our general approach was viable.

On the real robot datasets, we obtained very convincing
results. In Figure 7, we show the result of trying different
before and after values for the detection window for experi-
ment 2. These show that in general, allowing the detection
window to include more time prior to the good / bad tag is
beneficial, although improvements level off after about 5 sec-
onds. Including time after the good / bad tag beyond a few
seconds does not appear to improve performance. Overall,
the best performance on experiment was AUC of 0.94 with
a detection window of 12 seconds after and 0 seconds before
the tag.

In experiment 3, we achieved an AUC of 0.96 when using a
detection window of three seconds before and three seconds
after the tag. This means that in the train station, the
robot could be aware that something is wrong within about
3 seconds from the time an interaction begins to break-down.
If we used zero seconds after the tag, then best performance
was still 0.94. Thus 94% of the time, the robot can determine
that an interaction failure has occurred at the same instant
that a human would make this determination.
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Figure 7: Top: Performance generally increases as
the detection window uses more history. Bottom:
Performance is improved slightly by including a few
seconds after the failure label, but more time does
not improve accuracy.

In Figure 8, we examine performance when only one sen-
sor type is used at a time. These curves are shown for Ex-
periment 2, using a detection window of zero seconds after
the tag, and varying the time before the tag from 0 to 30
seconds. It is interesting to see that by themselves, the loud-
ness and behavior sensors can achieve around 90% accuracy,
using a detection window with about 5-15 seconds of history.

We were initially surprised that the touch sensors were
not able to provide good results, however more careful ob-
servation of the videos revealed that subjects rarely touched
the robot in either condition. We speculate that this may
be due to the fact that subjects were college students in-
teracting with a 4-foot tall robot, whereas many previous
studies such as [19, 3], which showed touching behavior to
be a good predictor of interaction categories, were focused
on young children with smaller robots. Overall, the laser
range finder and floor sensors were able to give decent per-
formance, but were not as reliable as loudness or behavior.
Because we tested them with the toy problem, we don’t be-
lieve these features were fundamentally wrong. Rather, we
believe this result merely shows that they are not reliable
enough in real-world settings to give us high accuracy when
used alone. When we used all sensor types combined, we
saw a boost in performance to 0.945, showing that combin-
ing the sensors had a positive effect, achieving performance
greater than any one sensor type alone.
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Figure 8: Area under the ROC (AUC) curves for each individual sensor as time before is increased from
zero to 30 seconds. Error bars show standard error. Detectors were trained with 100 features. Loudness
and Behavior sensors each perform quite well when used independently. Other sensors do less well – indeed
the touch sensors seem to carry almost no information at all. This is due to the fact that subjects rarely
touched the robot in the experiment. Combining features from all sensor types results in the highest overall
performance.

For Experiments 2 and 3, the features that were selected
most often were the loudness and behavior sensors, although
floor and laser sensors were chosen as well. This is an inter-
esting result, as we had expected the laser range finder to
provide better prediction ability. From the videos it appears
that while the laser range sensor could often predict that if
a human is not in front of the robot then there is not a good
interaction going on, on the other hand, it is often the case
that a person is standing right in front of the robot when a
bad interaction happens.

7. CONCLUSIONS AND FUTURE WORK
This paper presents a novel approach to combining infor-

mation from multiple modalities in order to give real-time
(every 100ms) predictions of the current interaction cate-
gory. We introduced a new set of features across several sen-
sory modalities that can be computed extremely fast (just
a few operations per feature), and which can be combined
together with a machine learning approach to achieve higher
accuracy than using any one of the sensor types alone. The
learning algorithm automatically discovered that temporal
features of the loudness and robot behavior time-series sig-
nal were the most useful in predicting whether a greeting

interaction was good or bad, and the best predictions could
be made using information from the 6-12 seconds preceding
the interaction breakdown. This is somewhat in contrast to
the work of [19, 3], which showed touching behavior to be
the best predictor of good vs. bad interactions.

While we have achieved good results on this early work,
we believe we can get even better performance by improving
the features. First, vision and audio applications that used
similar summation-type features (e.g., [20, 14]) included ad-
ditional operations after computing the sums over subwin-
dows, such as taking differences between adjacent subwin-
dows (facilitating detection of local contrasts) and repeat-
ing features in time and computing summary statistics over
repetitions (thus facilitating detection of periodic events). It
seems likely that we could also benefit from using features
that capture periodic regularities, since good interactions
often involve periodic “turn-taking”. In addition, we would
like to use more sophisticated features from vision and au-
dio, although for these sensor types we would likely not use
the raw features but the output of some other system – for
instance, by treating the results of an automatic facial action
unit coding system (as in [11]) as “sensors” and constructing
temporal features over them.
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A future goal for this work is to categorize many different
aspects of human-robot interaction, such as the five phases
described in Experiment 3 (approach, greet, provide infor-
mation, guide, play). There is ample evidence this method
will perform as well for these cases as for the greeting phase
we studied in this paper. First, the greeting phase already
contains a rich variety of human-robot activities, including
turn-taking, and the other interaction categories contain the
same kinds of behaviors. Extending the features to explic-
itly account for periodic variations as described above will
also enhance the ability to recognize turn-taking features of
cooperative interaction. Although the current method is bi-
nary, we can produce an accurate N -way classifier using the
procedures described in [10, 12, 14, 15] for face and speech
emotion classification. In our case, we will train binary de-
tectors for all good vs. bad detectors for each category, as
well as for all good vs. bad detectors for all possible one
vs. all other category splits, and then combine these various
detectors using multinomial logistic ridge-regression.

What constitutes good vs. bad interactions is an inherently
ambiguous concept, which is why we did not attempt to
coach the human labelers about the definition, but allowed
them to make their own interpretation. Much like recogniz-
ing faces, even though we don’t consciously know the rules
our brain is using to recognize interaction categories, peo-
ple do indeed “know it when they see it”, as demonstrated
in [19]. We believe that this makes the problem even more
suited to feature-selection / data-driven approach than face-
detection appeared to be in the early days of computer vi-
sion. Nevertheless, the problem of automatic understanding
of human-robot interaction is amenable to many different
approaches and we believe there is considerable research yet
to be done in this area.
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