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ABSTRACT
This paper presents comparative analyses, and recognition
experiments, on read and spontaneous Italian speech col-
lected from children. The presented analyses focus on lin-
guistic variations, variations in phone duration, and the scat-
tering of phones in the acoustic space. The aim of these
analyses is to achieve a better understanding of acoustic and
linguistic difference between read and spontaneous speech
uttered by children in the same age range (9-11).

A recognition system was developed exploiting clean read
speech, collected from children aged 7-13, and written texts.
Results of phone and word recognition experiments, carried
out with this system on read and spontaneous speech, are
presented. Results of recognition experiments show that
very high recognition performance can be achieved on clean
read children’s speech (6.9% phone error rare). However,
performance drops drastically when the system is applied
to spontaneous speech collected from children (27.2% phone
error rate).

1. INTRODUCTION
Automatic recognition of children’s speech is a difficult task
especially when targeting younger children. Characteristics
of speech such as pitch, formant frequencies and segmental
durations have been shown, in fact, to be related to the age
of the speakers. Several studies have shown that intra- and
inter-speaker acoustic variability is higher for younger chil-
dren than for older children and adults [7, 4]. However, in
recent years it has been shown that on clean read speech it
is possible to achieve for children recognition performance
comparable to that achieved for adults [3, 4], at least con-
sidering children aged 7 and up.

Recognition of spontaneous children’s speech, on the other
hand, remains still much more problematic [10, 1]. Sponta-
neous speech is characterized, in fact, by a higher linguis-
tic variability and the presence of spontaneous speech phe-
nomena such as disfluencies (e.g. hesitations, filled pauses,
repeated words, and sentence restarts), extraneous speech
(e.g. self-talk) and “noise” events (e.g. loud breath and lip
smacks) [10, 5, 1]. Spontaneous speech is not only linguis-
tically more variable, but is also characterized by an higher
acoustic variability than read speech [5].

The term“spontaneous speech”represents, however, a broad
category that contains several different types of speech. We
can assume that speech with different “degrees of spontane-
ity”presents different characteristics and should be addressed

separately. In fact, as people become more comfortable con-
versing with machines we can expect human-computer inter-
action to become more similar to human-human interaction
and thus more difficult to process for a speech recognition
system. For example in [11] it was shown that children’s dis-
fluency rates were substantially higher during human-human
communication than during human-computer communica-
tion.

In this work we coped with speech elicited in a human-
human communication task. Children were interviewed by
an adult about his/her preferred books, TV shows, hobbies,
sports, etc. We investigated how a speech recognition sys-
tem, developed for the Italian language by exploiting mainly
read children speech and written texts, behaves when ap-
plied to recognize children’s speech collected in this chal-
lenging context. Word recognition experiments were carried
out exploiting 4-gram language models (LMs) having vocab-
ularies of different size: 10k, 64k and 1210k words. Phone
recognition experiments were carried out by exploiting sev-
eral n-gram phone-based LMs: 7-gram, 5-gram, 3-gram, 2-
gram and phone-loop LMs.

The remainder of this paper is organized as follows. The
speech corpora used are described in Section 2. Section 3
presents analyses carried out on read and spontaneous speech.
Section 4 describes the automatic speech recognition exper-
iments that were carried out and discusses the recognition
results achieved. Final remarks are given in Section 5 which
concludes the paper.

2. CORPORA
For Acoustic Models (AMs) training we used the ChildIt
speech corpus [4], augmented with additional read and spon-
taneous speech data collected at FBK.

The ChildIt corpus is an Italian, task-independent, speech
database that consists of clean read speech from children
aged from 7 to 13 years, with a mean age of 10 years. About
10 hours of speech were collected from 171 children. The
corpus was partitioned into a training set, consisting of data
from 129 speakers for a total of 7h:47m of speech, and a
test set, consisting of data from 42 speakers balanced with
respect to age and gender for a total of 2h:29m of speech.

Additional data used for AM training included 2h:14m of
read speech collected from 44 children and 53m of sponta-
neous speech collected from 6 children.



We employed two test sets: the test set partition of the
ChildIt database and the SpontIt corpus, a task-independent
Italian speech database that consists of clean spontaneous
speech from 21 children aged between 8 and 12, with a mean
age of 10 years. Each of these 21 children were interviewed
by an adult about his/her preferred books, TV shows, hob-
bies, sports, etc.

All training and testing data were acquired with the same
head-worn microphone. However, while read speech was ac-
quired at 16 kHz, with 16 bit accuracy, by using the A/D
board of a PC, for spontaneous speech recordings were per-
formed by using a digital audio tape recorder and then down-
sampling audio signals from 48 kHz to 16 kHz, with 16 bit
accuracy.

Characteristics of speech corpora used in this work are re-
ported in Table 1.

Table 1: Main characteristics of speech corpora used
for training and testing

Training Testing
ChildIt SpontIt

Speaking mode Read/Spont. Read Spont.
Speaker age 7-13 7-13 8-12
# of speakers 179 42 21
# words 72307 15355 9838
Rec. hours 10h:54m 2h:29m 1h:20m

3. ANALYSIS OF THE CORPORA
This section presents several acoustic analyses on children’s
read and spontaneous speech. These analyses were carried
out in order to achieve a better understanding of the dif-
ferences between speech in the ChildIt and the SpontIt cor-
pora. Analyses were carried out on a subset of the ChildIt
and the SpontIt corpora. Since the SpontIt corpus contains
speech from only 2 children of age 8 and 1 child of age 12,
we limited our analysis to the age range 9-11. A subset of
the ChildIt corpus was selected so as to replicate exactly the
distribution of speakers by age and gender in SpontIt. Note
that children included in the ChildIt and SpontIt corpora
are different.

Table 2 shows the distribution of speakers, by age and gen-
der, in the subsets considered.

Table 2: Speaker distribution by age and gender
for the ChildIt and SpontIt subsets considered for
analysis

Age 9 Age 10 Age 11 All Ages
Male 2 4 2 8
Female 2 2 6 10
Male+Female 4 6 8 18

3.1 Phone Duration
Mean phone duration was computed first averaging phone
duration over all phones of each speaker and then across all
speakers in each age group. Duration statistics were com-
puted by exploiting a phone-level segmentation produced
automatically. Each utterance was time-aligned with the

triphone Hidden Markov Model (HMM) concatenation cor-
responding to the uttered words, allowing insertion of an op-
tional “silence” model between words at the beginning and
at the end of the utterance. Segments of signals aligned with
the “silence” HMM were not taken into account in comput-
ing temporal statistics. Tables 3 reports the mean phone du-
ration computed on ChildIt and SpontIt subsets described
above.

Table 3: Mean phone duration (ms) measured on
the ChildIt and SpontIt subsets

ChildIt SpontIt
Age 9 97.4 95.6
Age 10 92.7 89.2
Age 11 91.1 86.0
Age 9-11 92.9 89.7

It can be noted that there is a small decrease in phone du-
ration as the age increases. The decrease is consistent with
the one reported in [4] for the ChildIt corpus for the age
range 7-13. It can also be noted that there is only a small
difference in mean phone durations computed on read and
spontaneous speech.

3.2 Rate of Speech
In addition to phone duration we measured the rate of speech
in terms of words per second. Duration statistics were com-
puted from the same segmentation obtained for the phone
duration analysis. As before, segments of signals aligned
with the“silence”HMM were not taken into account in com-
puting temporal statistics. The computed average number
of words per second are reported in Table 4.

Table 4: Average rate of speech (words/sec) mea-
sured on the ChildIt and SpontIt subsets

ChildIt SpontIt
Age 9 2.24 2.73
Age 10 2.34 2.93
Age 11 2.34 3.00
Age 9-11 2.32 2.90

It can be noted that while there is only a small difference in
mean phone duration between read and spontaneous speech,
the rate of speech for spontaneous speech is consistently
higher than for read speech. This is explained by the fact
that words contained in the SpontIt subset are significantly
shorter than the ones in the ChildIt subset: the average
number of phones per word is 3.8 for SpontIt and 4.6 for
ChildIt.

3.3 Characterization of the Acoustic Space
By using the same method presented in [4], we tried to char-
acterize the acoustic space by measuring the scattering of the
observation densities of phone models. Each phone is first
modeled with a single Gaussian density and then the Bhat-
tacharyya distance [2] is used for measuring how much Gaus-
sian densities are scattered in the acoustic feature space.

Given two phones i and j, modeled by Gaussian distribu-
tions, N (x; µi,Σi) and N (x; µj ,Σj), the Bhattacharyya
distance between them is given by:
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where x is a D-dimensional vector and µi, Σi, µj and Σj

are the mean vectors and the covariance matrices of the
Gaussian distributions of phones i and j, respectively. The
Bhattacharyya distance has been used to measure phone
separability and similarity in many works [8, 12, 6].

To estimate the parameters of Gaussian densities associated
to phones, we trained two sets of acoustic models on the
ChildIt and SpontIt subsets, respectively. Each set of HMMs
was formed by phone models having a three state left-to-
right topology and output distributions associated to states
modeled by a single Gaussian density. Each speech frame
was parametrized into a 39-dimensional observation vector
composed of 13 mel frequency cepstral coefficients (MFCCs)
plus their first and second order time derivatives. Frame en-
ergy was represented as the zero order (c0) MFCC. Cepstral
mean subtraction was performed on static features on an
utterance-by-utterance basis.

To measure how scattered Gaussian densities are in the
acoustic feature space, for each set of models, the average
Bhattacharyya distance was computed by considering only
Gaussian densities associated to the central states of HMMs
representing vowels [4]. Table 5 reports the average Bhat-
tacharyya distance for vowels on the ChildIt and SpontIt
subsets.

Table 5: Average Bhattacharyya distance between
vowels computed on the ChildIt and SpontIt subsets

ChildIt SpontIt
5.11 3.57

The average Bhattacharyya distance computed on the HMM
set trained on read speech is greater than the distance com-
puted on HMMs trained using spontaneous speech. These
values are compatible with the ones computed on the ChildIt
training set and on adult speech reported in [4]. Similar
results are reported in [9], where it is shown a significant
reduction of the cepstral space of spontaneous speech with
respect to that of read speech.

3.4 Analysis of the Linguistic Content
In view of speech recognition experiments we analyzed the
linguistic content of the ChildIt and SpontIt test sets. Ta-
ble 6 reports some statistics computed on speech from all
children included in the two test sets. We can see that the
2 test sets have very different characteristics as expected
due to the different nature of the two corpora. The num-
ber of different words used in spontaneous speech is much
lower than in read speech. The average number of words per
sentence is significantly higher in the SpontIt corpus. The
number of truncated words and spontaneous phenomena is,
not surprisingly, higher in the SpontIt test set. We point
out that in the reported statistics only some types of spon-
taneous speech phenomena are counted such as filled pauses
and non-verbal sounds.

Table 6: Statistics on the ChildIt and SpontIt test
sets

ChildIt SpontIt
# Words 15355 9838
# Unique words 4910 2065
# Words / # Unique words 3.1 4.8
# Sentences 2219 1054
# Words per sentence 6.9 9.3
# Phones per word 4.6 3.8
# Truncated words 18 164
# Spontaneous phenomena 9 381

Table 7 reports the out-of-vocabulary (OOV) rate computed
on the two test sets assuming recognition vocabularies of
different sizes. A text corpus of 600M words, mainly com-
posed of newspaper articles, was exploited for LMs training.
Vocabularies of different size were obtained sorting by fre-
quency the words in the training corpus and selecting the
N most frequent words, with N equal to 2k, 5k, 10k, 20k
and 64k. Interestingly, for vocabulary sizes of up to 20k
words the OOV rates computed on the ChildIt test set are
much higher than the ones computed on the SpontIt cor-
pus. We can conclude that in the spontaneous speech in-
teractions analyzed children prefer to use more common and
shorter words than what is generally found in the literature
for children from which we extracted the texts composing
the ChildIt corpus.

The OOV rates computed with the 64k word vocabulary
are similar for the SpontIt and the ChildIt test sets. With
the full 1200k word vocabulary the OOV rate for the read
speech test set is close to zero (0.2%), while in the SpontIt
corpus the OOV rate is 2.1%. This difference is mainly
caused by the high number of truncated words, which are
not included in the recognition vocabulary, contained in the
SpontIt corpus.

Table 7: OOV rate on the ChildIt and SpontIt test
sets with recognition vocabularies having different
size. Perplexity obtained using the 1200k word 4-
gram LM is also reported in the last row

ChildIt SpontIt
OOV 2k 36.6% (5626) 23.7% (2337)
OOV 5k 27.9% (4296) 17.1% (1684)
OOV 10k 20.6% (3170) 12.0% (1182)
OOV 20k 14.1% (2170) 8.1% (797)
OOV 64k 4.8% (717) 4.2% (419)
OOV 1210k 0.2% (30) 2.1% (206)
PP 1210k 875 622

The high perplexity (PP) reported in Table 7 for the two test
sets can be explained by the fact that the 4-gram statistics
estimated on the training text corpus, which is mainly com-
posed of newspaper articles, do not reflect well the statistics
of the ChildIt and SpontIt test sets.



4. RECOGNITION EXPERIMENTS
Each speech frame was parametrized into a 39-dimensional
observation vector composed of 13 MFCCs plus their first
and second order time derivatives as specified above.

Acoustic models were state-tied, cross-word triphone
HMMs. In particular, a phonetic decision tree was used for
tying the states of triphone HMMs. Output distributions
associated with HMM states were modeled with mixtures
having up to 32 diagonal covariance Gaussian densities, for
a total of about 21000 Gaussian densities in the HMM set.
Models were conventionally trained on the speech data de-
scribed in Table 1.

Several 4-gram LMs were estimated on the 600M word cor-
pus by considering vocabularies of different sizes. Phone
based LMs, with different n-gram orders, were also esti-
mated on the same corpus after mapping words into se-
quences of phone labels: in particular we estimated 7-gram,
5-gram, 3-gram and 2-gram LMs.

4.1 Phone Recognition Results
Table 8 reports phone recognition results obtained employ-
ing phone based LMs with different n-gram orders. We can
note that with a simple phone-loop finite state network a
Phone Error Rate (PER) of 19.9% is achieved on read speech
while a 40.6% PER is achieved on spontaneous speech. This
drop in performance can be explained by the fact that the
system was mainly trained on read speech and that recogni-
tion of spontaneous speech is inherently more difficult than
recognition of read speech.

On the other hand, as the n-gram order increases, the rela-
tive difference in performance between read and spontaneous
speech increases: the PER for spontaneous speech is about
100% higher than the PER obtained for read speech using
a phone loop, and about 300% higher using a 7-gram LM.
This is probably caused by disfluency phenomena, like repe-
titions, revisions and restarts, that generate phone sequences
hardly ever seen in the LM training data.

Table 8: Phone recognition results (% PER) on the
ChildIt and SpontIt test sets using phone based LMs
with different n-gram orders

ChildIt SpontIt
7-grams 6.90% 27.19%
5-grams 10.12% 29.79%
3-grams 15.24% 33.81%
2-grams 16.55% 34.68%
phone-loop 19.94% 40.57%

The 6.9% PER achieved on read speech by using the 7-gram
LM is comparable with the PER we usually obtain on adult
speech under similar experimental conditions.

4.2 Word Recognition Results
Table 9 reports word recognition results using 4-gram LMs
having vocabularies of different size.

Increasing the size of the recognition vocabulary leads to
a large decrease in Word Error Rate (WER) on the read

speech test set. This is mainly due to the decrease in OOV
rate (from 20.6% for 10k words vocabulary to 0.2% for 1210k
word vocabulary). For spontaneous speech there is little
gain in increasing the recognition vocabulary: in fact the
difference in WER is even lower than the decrease in OOV
rate (from 12.0% for 10k word vocabulary to 2.1% for 1210k
word vocabulary).

Table 9: Word recognition results (% WER) ob-
tained on the ChildIt and SpontIt test sets using
4-gram LMs having vocabularies of different size

ChildIt SpontIt
10k 47.09% 58.62%
64k 19.84% 52.55%
1210k 13.77% 51.69%

The difference in performance achieved on the two test sets
increases with the recognition vocabulary size. This is an ef-
fect similar to the one observed when increasing the n-gram
order in phone recognition experiments and similar consid-
erations can be done. The LM was, in fact, estimated on
written texts and thus it is inadequate for modeling disflu-
ency phenomena like repetitions, revisions and restarts.

5. CONCLUSIONS
In this paper we have presented analyses, and recognition ex-
periments, on read and spontaneous speech collected from
Italian children. The spontaneous speech corpus was partic-
ularly challenging, being composed of speech collected dur-
ing human-human interactions (i.e. children interviewed by
an adult).

The phone duration analyses performed have shown phone
duration values consistent with those reported in literature
for the age range considered (9-11). Interestingly, on the
corpora considered, there was only a small difference in aver-
age phone duration between read and spontaneous speech.
Characterization of the acoustic space based on the aver-
age Bhattacharyya distance between Gaussian distributions
modeling vowel sounds, on the other hand, has shown a clear
difference between read and spontaneous speech. This result
suggests that vowel sounds in the spontaneous speech corpus
are less scattered in the acoustic space and therefore more
confusable than in the read speech corpus, making the ASR
task more difficult.

Results of recognition experiments have shown that a chil-
dren’s speech recognition system developed exploiting read
speech and written texts can ensure very high recognition
performance on clean read speech. This is especially true for
phone recognition experiments (6.9% PER) while for word
recognition experiments the performance is probably limited
by the mismatch between the LM and the linguistic content
of the utterances to be recognized. On the other hand, per-
formance drops drastically when the system is applied to
spontaneous speech collected from children interviewed by
an adult. This drop in performance was higher than ex-
pected, however we were not able to find explanations other
than the higher intrinsic difficulty of recognizing this kind
of speech.
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