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ABSTRACT 
Speech signal processing and other man-machine interaction 

technologies have been developed for improved child-computer 

interaction for education, entertainment, as well as other 

applications [1, 2]. However, for very young children (in the age 

range of 0 to 4 years old, and especially 0 to 2), such interaction is 

not encouraged [3, 4]. Instead, parent-child interaction is highly 

recommended [3, 4] since it promotes improved language 

development. In this study, a new system entitled LENATM 

(Language Environment Analysis) and its associate processing 

technologies will be introduced. LENA provides 

parents/caregivers with quantified statistical information 

concerning the language environment and development status of 

children in order to allow for the determination of what needs to 

improve and how to improve. The adult word count (AWC) 

estimation algorithm is shown to reduce the relative Root Mean 

Square Error from an initial 42% to 7-8% after 5 hours of 

measuring time. If LENA’s feedback suggests any potential 

development problem, parents can take action at a crucial early 

stage. LENA is a new processing system not only for 

parents/caregivers but for pediatricians, speech language 

pathologists, child development psychologists, and other 

researchers as well. This system represents one of the first 

breakthroughs in assessing early childhood language development 

and child environment conditions. 

1. INTRODUCTION 
This paper provides an introduction to the processing elements 

which make up the LENA system and its technologies [5]. The 

fundamental idea behind LENA is to utilize technologies to 

encourage human-human interaction for very young children. Hart 

and Risley’s ground-breaking study of child development [3] 

showed the relationship between the amount of adult talk and 

interaction with children and children’s language development 

and even their IQs and future success at school and in the 

workplace. The American Academy of Pediatrics also 

recommends parent-child interaction and is concerned about TV’s 

impact on children under 2 [4].  

The LENA system utilizes signal processing technologies to 

monitor the natural language environment of children, especially 

the home environment. A small light-weight digital recorder (DLP 

– digital language processor) is worn in the pocket of specially 

designed clothing of a child [6]. Currently, the DLP can hold up 

to 16 recording hours per day. All sounds in the child’s 

environment, including his/her own voice, are generally recorded 

in an unobtrusive way. The LENA software processing system 

analyzes the recording and estimates the adult word-count, the 

adult-child-turn-taking-count, the child vocalization count, the TV 

time, and other traits to provide feedback regarding the language 

environment. With this hardware and software combination, 

parents/caregivers can now obtain information about a child’s 

stage of language development, as well as how they may improve.  

Another important feature of the LENA processing system is the 

automatic child vocalization assessment (AVA). Early detection is 

a crucial issue for any child language development delay or 

problem. In contrast to the current clinical approach which relies 

on parent report and relatively short observation time (often 30 to 

60 minutes) in clinical settings [7, 8], AVA is based on recordings 

of up to an entire day, made in the natural home environment. 

AVA extracts the composition or complexity of a child’s voice 

from the recording and links it to his/her speech language 

development status. Previously, there has been only limited 

research with small data sets in this area [9]. AVA is the first 

automatic screening tool for parents/caregivers, pediatricians and 

other professionals.  

In the following sections, the complexity of the data, the difficulty 

of the task, and the task goals will be discussed. An overall system 

diagram will be presented. Since the overall system involves a 

range of processing sub-systems which in combination address a 

number of language development issues, we focus here on the 

more core fundamental ones in this paper, including segmentation 

and segment-ID, adult-word-count estimation and AVA. 

2. DATA COMPLEXITY & TASK GOAL 
The natural language environment of a child is one without any 

constraints since anything could happen. A recording from the 

natural home environment usually contains a significant amount 

of overlapping signals, various kinds of background noise, 

presence of TV/Radio and other media sounds, other children that 

may be confused with the targeting child (key child), near or far 

field signals (clear or faint signals), outdoor versus indoor 

settings, big rooms with strong echo versus small rooms with less 

echo, cocktail-party cases versus one-to-one story-telling in a 

quiet environment, infant-directed adult speaking style known as 

parentese versus adult-directed style. In short, recording data is 

tremendously variable and the processing of such data is difficult 

and challenging. High performance at the micro-level (e.g., for 

every 5 seconds, every 1 minute, etc.) may be difficult to achieve. 

Different from normal speech and speaker recognition, the 

accuracy on every bit of detail may not be the most important 



concern and could be a long-term goal. Instead, the overall quality 

of the language environment and the general development status 

of a child are the most interesting topics. Thus, the major goal 

here is the estimation count at the macro-level (e.g., 1 hour, or a 

12 hour recording), which makes it possible to achieve a high 

standard and create a viable tool for speech and language experts 

focused on child language development.  As an example, it will be 

shown how the performance of the adult-word-count estimation 

improves with the increase of the length of observation time. In 

addition to the unique task goal, the very large recording database 

collected to date is another important factor that makes it possible 

to develop new speech processing sub-tasks for the overall 

system.  Thus far, more than 65,000 hours of recording data from 

ordinary American families have been collected. The development 

and research of the LENA hardware and software system has 

further benefited from the use of a cluster-computer with more 

than 170 processors and 30 Terabytes of fast storage disk space. 

3. SYSTEM OVERVIEW 
 

 

 

 

 

 

Figure 1: Overall speech processing framework for the LENA 

system. 
 

A simplified LENA system diagram is shown above in Figure 1. 

The processing system starts with the acoustic feature extraction 

from recording data. Various acoustic features are extracted for 

different purposes, including MFC (mel-frequency cepstrum) 

[17], PMVDR (perceptual minimum variance distortionless 

response) [13] and SSC (Spectral Subband Centroids) [18]. 

One of the first steps for the LENA processing system is to locate 

and identify each sound class referred to as the segmentation and 

segment-ID process. All sounds in actual environmental 

recordings are categorized into one of 8 classes: key child, adult 

male, adult female, other child, TV (including Radio and other 

electronic media sound), noise, silence and overlap. All non-

silence classes are further categorized into clear/faint sub-classes 

(related to near/far field). Overall, there are 15 sub-classes.  

Once the segmentation and segment-ID process is performed, 

clear-adult-segments are further processed to produce adult-word-

count estimates. Key-child segments are further processed to 

delineate normal vocalizations from cries, vegetative sounds and 

fixed signals [10]. Key-child segments are also decoded using a 

phone-decoder to extract their composition for AVA. Eventually, 

the conversation analysis is done based on the combination of 

adult-speech processing results, key-child processing results and 

other segmentation results. As a practical consideration, it is also 

required that the full processing time be within 0.5 real-time. 

4. SEGMENTATION & SEGMENT-ID 
As mentioned previously, LENA recording data is extremely 

complex and the acoustic characteristics of the signal vary 

dramatically. To be successful for the segmentation and segment-

ID for such rich content data, the acoustic features need to encode 

all necessary information to distinguish the 8 classes mentioned 

above. We experimented with FFT-based MFC [17] and PMVDR 

[13]. It turned out that non-parametric MFC is slightly better than 

model-based PMVDR for this complex data. Experiments have 

also shown that for this specific type of data, MFC-36 is better 

than MFC-19 or MFC-20 which is usually used for speaker 

identification or recognition in the literature. 

With the acoustic feature determined, the segmentation and 

segment-ID algorithms were investigated for this unique task. 

There is an existing 2-step method with BIC-based homogeneous 

segmentation as the first step and segment labeling as the second 

step [12]. The weakness of this method is the disjoint 

segmentation and labeling which could be otherwise optimized 

jointly. To this end, Hidden Markov Model (HMM) [11, 16] was 

considered. However, the uniqueness of the task makes it less 

appealing. LENA recordings contain segments with huge 

differences in duration, e.g. 1-hour silence or background noise 

versus 2-second speech. HMM has implicit exponential type 

duration modeling which may not be appropriate for this duration 

variation. A Minimum Duration Gaussian Mixture Model 

(MDGMM) was proposed and developed under a maximum 

likelihood framework for this unique task. The state transitions in 

HMM are now all set to 1 so that there is no implicit exponential 

type of duration model, which makes it flexible for big duration 

variation. The removal of implicit duration modeling also 

introduces the problem of too short segments and noisy results. 

The minimum-duration constraints can prevent too short segments 

and smooth out the maximum likelihood result. It is not difficult 

to show that with a minimum duration constraint, any segment 

can be decomposed into several segments with the same ID whose 

durations are all between the minimum duration and twice the 

minimum duration. Consequently, under a set of minimum 

duration constraints, any segment sequence could be expressed by 

segments with no more than twice the minimum durations. This 

will guarantee that the active nodes in a maximum likelihood 

search space will be confined to twice the minimum durations. 

Thus, MDGMM can globally achieve maximum likelihood 

decoding for a 16-hour recording without any pruning.  

Table 1: Comparison between MDGMM and 2-step method 

Acoustic Class T2-BIC  MDGMM 

Key child 70.6% 76.7% 

Adult 77.8% 85.5% 
 

Turn 

Estimate 

Conversation 

Analysis 

Other 

Segments 

Adult 

Segments 
Adult Word 

Count 

Phone 

Decoder 

Expressive 

Language 

Assessment 

(AVA) 

 

Display 

Report 

 

Detailed 

Result 

File 

(ITS File) 

Child Voice &  

Environment Sound 

LENA 

 DLP  
Feature 

Extraction 

Segmentation 

& Segment-ID 

TV Adaptation 

& Human 

Segments 

Refinement 

Key Child 

Segments 

Key Child  

Voc, Cry/Veg 

Detection 

Key Child 

Voc Count 

Phone Decoder 



Experiments have shown that MDGMM performs better than the 

2-step T2-BIC-based method. Table 1 shows the result of a 

specific comparative experiment, where only two major detection 

rates of concern are compared for simplicity. 

As noted above, TV and other media sounds (radio) need to be 

distinguished from live human speech. For today’s high quality 

media, the available audio makes this task less straightforward. 

The frequency band of signals may not be an effective 

distinguishing feature. Some high quality media audio may have a 

broad frequency band while some relatively faint live speech may 

reveal certain narrow band characteristics. In addition, the varied 

types of media sounds and live speech may differ greatly from 

recording to recording, from one moment to another. Currently, 

TV detection is further refined by a fast localized adaptation after 

the initial MDGMM segmentation/segment-ID. During the 

adaptation, each 10-minute recording section will be recalculated 

for likelihoods using the adapted model locally derived from the 

surrounding 30 minutes of data. With updated likelihood for each 

frame, MDGMM will be applied again to find maximum 

likelihood results. Currently, there are 3 iterations of adaptation. 

Another important issue is the existence of faint sounds which 

generally may not contribute to the language development of a 

child, and should not be credited for language environment 

measures. Currently, a likelihood-ratio-test (LRT) method is used 

for this purpose. For any non-silence segment, its likelihood is 

compared with the silence-likelihood of the same segment. If the 

ratio is low enough, then it is considered as faint sound. The LRT-

threshold was tuned based on a relatively small test-set. With the 

LRT faint/clear sound detection, the 15 subclasses mentioned 

above are eventually generated. 

Table 2: Confusion matrix without segment-ID refinement  

 Key Child Clear Adult TV Others 

Key Child 75.9 12.1 0.1 11.9 

Clear Adult 3.1 81.0 3.9 12.1 

TV 0.4 8.1 70.5 21.0 

Others 4.7 14.1 6.2 75.0 
 

The diarization performance of the above segmentation/segment-

ID method is shown in the confusion matrix of Table-2, where 

each row adds up to 100% and is based on human transcription, 

and each column is the machine result. The testing data were 

selected from 70 recording files from natural home environments, 

with child age ranging from 2-month to 36-month and each 

month-age containing 2 recordings from 2 different children. 1-

hour high speech activity regions were further selected randomly 

from each recording file for human transcription. So, there are 70 

total hours of test data from 70 recordings of 70 children.  

For LENA’s language environment monitoring and automatic 

child vocalization assessment purposes, the accurate detection of 

key-child and adult is important. The detailed analysis of the 

above confusion matrix showed that there is confusion among 

key-child, other-child and adult which may have a negative 

impact on the goal of the LENA system. To further reduce such 

confusion, a model-based feature, PMVDR [13], is utilized, 

which potentially works better for live human segments because 

the model assumption fits better to human speech. The final 

segmentation/segment-ID confusion matrix with PMVDR-based 

refinement is shown in Table 3. As can be seen the confusion 

among human segments is reduced. 

Table 3: Confusion matrix with PMVDR-based refinement  

 Key Child Clear Adult TV Others 

Key Child 76.0 7.3 0.1 16.6 

Clear Adult 1.9 82.0 3.9 12.3 

TV 0.5 7.8 70.5 21.1 

Others 4.5 13.6 6.2 75.7 
 

Overall, the segmentation/segment-ID performance varies from 

70.5 – 82.0%, where chance is 25%. The computation load of 

segmentation/segment-ID mainly comes from the Gaussian 

calculation for likelihoods. A fast Gaussian calculation method 

was implemented which improved the speed by more than 5 times 

without losing segmentation/segment-ID accuracy. This is the 

major factor which assures 0.5 real-time overall processing speed. 

5. ADULT WORD COUNT ESTIMATION 
As pointed out by Hart and Risley [3], adult word count (AWC) is 

one of the most important factors contributing to child language 

environment. As one tries to speak more to a child, the topic and 

content tend to be diversified, and so is the vocabulary. 

Consequently, AWC is one of the major LENA measurements for 

child language environment. 

Although word count is the by-product of word speech 

recognition, it is quite a unique task. The focus is to obtain count 

not content. How to utilize the uniqueness to optimize the 

problem for high performance, especially at the macro-level, is 

our major consideration. Because of the different focus, word 

recognizer based AWC estimation is naturally considered “heavy-

weight”. The potential problems of this approach are the choice of 

vocabulary and grammar. A prior lexicon that contains all 

available words is needed as well, and depending on each family 

environment, as well as specific proper names, places, expressions 

used for the child, this is a major research task itself. For highly 

spontaneous speech in a natural environment, it is difficult to find 

appropriate choices. In addition, it is highly language dependent 

and susceptible to dialects, accents, and family specifics.  

The method used in the current proposed solution is based on 

phone-decoding and Least-Squares linear regression with vowel, 

consonant counts and their nonlinear variants, along with the 

durations in order to target human transcription word counts. This 

proposed method can overcome many problems associated with 

the word-based method, providing flexibility over different 

environment/family cases. More importantly, one more layer of 

modeling actually provides a chance for adjustment which could 

even “remedy” the error caused by incorrect segmentation. 

Theoretically, Least-Squares linear regression is unbiased under 

the Gauss-Markov condition [14], which represents another 

benefit for consideration. It has been shown that the asymptotic 

performance of the count estimation will be lower bounded by the 

bias of the estimator. Achieving an unbiased estimation of the 

adult word count then becomes critical.  

Specifically, based on experiments, the formula for AWC 

estimation for an adult segment (or utterance) is determined as: 

sdbdbvbcbvbcbAWC 654321 +++++=  



where ib  are coefficients trained with Least-Squares, c  is 

consonant count,  v  is vowel count, d  is duration of the 

segment, 
sd  is the duration without silence.  

To measure the performance, two quantities are used. They are the 

relative error mean (or relative average error) and the relative 

Root Mean Square Error, defined as %100][/][ ×= tEeEem
 

and %100][/][ 2
×= tEeErmse  respectively, where E  

is the expectation, e  and t  are the error and true-value of AWC 

for a specific measuring region. So, rmse  is related to error 

standard deviation or variance, while 
me  is about error mean.  

 

Adult Word Count Relative RMSE

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8 9 10 11 12

Recording Time (hour)

R
M

S
E

 (
%

)

Real Case

Theoretical Ideal Case

Figure 2: Adult Word Count (AWC) Performance Measured 

in terms of Relative Root MSE (in %) versus Measuring Time. 

 

Currently, the relative overall word-count error for the 70-hour 

test set is 2%. A Leave-One-Out-Cross-Validation [19] 

experiment yielded similar results. As noted above, adult word 

count estimation at the micro-level for natural environments might 

be difficult. However, the under-estimations and over-estimations 

over time are expected to cancel out at a larger scale. Experiments 

have shown that the relative RMSE will decrease with the 

increase of the measurement time. The graph in Figure 2 shows 

the relative RMSE result for our current AWC processing 

algorithm on the 70-hour test set. The blue-diamond line is the 

actual real case. The result shows that the relative RMSE for 

AWC for 1-minute regions is 42%. It reduces to 33% for 5-minute 

regions, 30% for 10-minute regions, 17% for 1-hour regions, and 

so on. When the measurement region is above 5 hours, a level of 

relative RMSE near 7-8% is achieved and the overall trend is 

decreasing all the time. The red-square line in Figure 2 is the 

theoretical ideal case where estimation is unbiased and the 

estimation errors in different recording regions are uncorrelated 

and identically distributed. It can be shown that under this ideal 

case, the relative RMSE is going to decrease at the rate of the 

square root of r when the measurement time length increases at 

the rate of r .  In other words, the decreasing factor is  r/1 . 

Starting with the same 42% relative RMSE for 1-minute and 

applying the factor of r/1 , the theoretical performance curve 

under the ideal case can be derived. We can see that the actual 

relative RMSE has the same trend as the theoretical one. The 

difference between them is bigger when measurement time length 

is relatively short, and the difference becomes smaller when 

measurement time length increases. This is probably because in a 

real case, the estimation errors of adjacent recording regions tend 

to have some correlation while the estimation errors of regions 

some time apart tend to be uncorrelated. These curves show how 

AWC macro-level performance is related to and improved from 

micro-level performance.  

6. AUTOMATIC VOC ASSESSMENT 
Child language development is a process involving both cognitive 

and articulation algorithm development. The related status of a 

child will somehow be “encoded” in his/her voice. At the very 

early stage, crying is the way to communicate; next quasi-vowels, 

squeals, growls and other protophones will be developed, 

followed by babbles, syllables and eventually words, phrases and 

sentences [10]. Naturally, the composition of a child’s speech 

(vocalization) could provide some indication of his/her language 

development status. How to automatically extract such 

composition information from recording data is the actual 

problem. The child vocalization composition could be at different 

levels, starting from acoustic feature space to phone, syllable, 

word, etc. It is known that child speech or vocalization 

recognition is a very difficult task because of the high variation of 

vocalization and the not-well-formed pronunciation due to the 

nature of the child speech development process. Child speech 

recognition at a higher level such as word or phrase may have 

more uncertainty than that of a lower level such as phone or 

acoustic feature space. As an initial exploration, we chose to focus 

on the lower level of phone and acoustic feature space. For early 

child speech development from 0 to 36 months or so, the lower 

level composition may be more relevant. This is another reason 

for our current focus. The phone composition used so far is the 

phone count distribution or the frequency for each possible phone 

or similar unit. 

The major difficulty in child speech (vocalization) recognition is 

the modeling of child speech. Even at the phone level, there are 

many variants of phones compared to adult speech. How to find 

different variants from data and model them is a challenging 

problem. For convenience and as an initial exploration, we chose 

to use the Sphinx adult acoustic model for phone decoding [21]. 

Obviously, from general speech recognition point of view, using 

an adult acoustic model for child speech recognition may result in 

a mismatch. Here again, we argue that different from normal 

speech recognition, the detail accuracy is not the final goal, what 

matters is the information about child speech development and 

whether the phone composition or distribution defined or 

partitioned by an acoustic model can reserve enough relevant 

information. Actually, for a specific vocalization, whether it is 

called (or recognized) as [a] or [i] may not be that important as 

long as the phone decoder behaves consistently and the resulting 

phone distribution contains sufficient child speech development 

information. 

The process of child speech development actually gives us 

another angle to look at the problem. During language 

development, children learn from the adults around them. Child 

speech approaches adult speech and eventually converges to adult 

speech. The difference between child speech and adult speech 

should become smaller and smaller as child speech development 

proceeds. Thus, adult speech can actually serve as a reference for 



child speech development. From this point of view, using an adult 

speech model for child speech development assessment makes 

some sense. Actually, we tested this idea by decoding child and 

adult speech in our corpus using Sphinx phone decoder with adult 

acoustic model and measuring the Kullback-Leibler divergence 

(roughly distance) between the child phone distribution of each 

recording and the average adult phone distribution of the corpus. 

Figure 3 shows the result where each point corresponds to each 

recording and the line is a polynomial fit of all points. It is 

verified that the difference between child speech and adult speech 

becomes smaller as child age increases, and the child phone 

distribution obtained by using an adult speech model does contain 

information about child speech development. 

 
Figure 3: K-L divergence between child and adult phone 

distributions as a function of child chronological age. 

 

Based on the child phone distribution described above, we tried 

two tasks. One is to estimate the chronological ages of typically 

developing children. The other is to predict the child speech 

development scores assessed by human speech language 

pathologist (SLP).  

For the first task, the experiment data consisted of 243 children 

with the age ranging from 2 to 48 months. There are 2124 natural 

home environment recordings from these children. All recordings 

are above 12 hours. These children were selected based on SLP 

assessment with the scores within 1-standard-deviation of the 

mean. Because of the typical status they have, their chronological 

ages could be considered as their developmental ages. Delayed or 

advanced children were not selected for the experiment because 

their developmental ages may deviate from chronological ages to 

a relatively large extent. This task uses a 2-stage linear regression 

model to estimate the chronological ages of the children. Since 

each child may have more than 1 recording at different times, 

his/her age is changing and should be associated with the 

recording. Thus, there is a total of 2124 estimated ages. The 2-

stage linear regression model could be regarded as a piecewise 

linear model. At the first-stage, a global linear model is used to 

estimate a preliminary age:  

∑= iip pba  

where 
ib  is a linear coefficient, 

ip  is a phone frequency. At the 

second-stage, a local finer linear model is selected based on the 

preliminary estimate 
pa  to give refined final age estimation: 

∑= ipif paba )(  

where )( pi ab  is the local linear model parameter associated 

with 
pa .  All linear models are trained with Least-Squares. The 

leave-one-child-out-cross-validations [19] are done for both 

stage-1 and stage-2 and the overall cross-validation experiment 

gives 0.90 correlation between the chronological ages and the 

estimated ones. 

For the second task, the experiment data consists of 336 children 

with the age ranging from 2 to 48 months, including both delayed 

and advanced children. There are 2910 natural home environment 

recordings from these children. All recordings are above 12 hours. 

Each child was assessed by a human SLP for either his/her PLS4 

score [7] or REEL score [8] on a day which was within a week 

from a recording day of that child. Both PLS4 z-score and REEL 

z-score are age-normalized scores so that the scores of a large set 

of children from a month-age have zero-mean and unit variance. 

The PLS4 score or REEL score is the shifted and rescaled version 

of its z-score so that the mean is 100 and the standard deviation is 

15. Thus, SLP assessed scores are all about the relative 

comparison of the development status of the children with a same 

month-age. Since the scores for different ages have the same 

distribution (same mean and variance), they can be compared 

across different month-ages. For robustness, in the experiments 

for this task, all the SLP assessed scores for a child were averaged 

to obtain one single score for the child. Thus, in this task, each 

child has one averaged SLP score as the “truth” for the 

development status of the child. The task is to predict the 

development “truth” for each child based on his/her phone 

distribution derived from each recording. The predicted score 

from each recording of a child was averaged together to 

eventually give the final predicted score for that child. Intuitively, 

in order to be consistent to the age-normalized nature of SLP 

scores, the prediction model need to be age-dependent, i.e. for 

each month-age, there should be a prediction model. Linear 

models are used for each month-age as: 

∑= ipiaws ),(  

where a  is a month-age, ),( iaw  is the linear coefficient for age 

a  and phone i , s  is the predicted score.  Least-Squares was 

used to train all linear models. For the model training of age a , 

the data from age )(aba −   to age  )(aba +  will be used.  

)(ab  is called age-band and could be different for different ages.  

Optimal age-bands were obtained by Dynamic Programming 

under age-smooth-constraints. The leave-one-child-out-cross-

validation experiment gives 0.72 correlations between the SLP 

“truth” and the predicted scores. 

In order to incorporate the sequence information contained in 

decoded phone-sequences, bi-phone instead of uni-phone is 

considered as the inputs of linear models. Since the number of bi-

phone is the square of that of uni-phone which is much larger and 

may cause over-fitting. To resolve this issue, Principal 

Component Analysis (PCA) is used to reduce the dimension of bi-

phone inputs. Experiments showed that the dimension reduction 

to 50 gives the best cross-validation result. Under this scheme, the 

leave-one-child-out-cross-validation gives 0.75 correlations 



between the SLP “truth” and predicted scores. The final scatter 

plot of the target scores and the predicted scores of Leave-one-

child-out-cross-validation experiment is shown in Figure 4.  Since 

each child used a different prediction model in this cross-

validation experiment, the effect of different models could be 

regarded as some extra “noise”. In spite of this “noise” and the 

potential “noise” of human SLP scores such as the ones due to the 

subjectivity, limited observation time, etc., AVA scores still 

highly agree with SLP scores, signifying the validity of the 

method. 

 

Figure 4: AVA scatter plot. AVA score versus SLP score. 
 

As a summary, the proposed solution here therefore allows for an 

ongoing, long-term assessment of child vocalizations leading to 

language development, as well as an assessment of the adult 

language environment the child is exposed to during their 

formable years (0-48 months). 

7. DISCUSSION 
The proposed LENA hardware and speech processing algorithms 

open a new and exciting field for engineers and scientists 

interested in child speech/language assessment using signal 

processing, machine learning, and other technologies. Further 

detailed technical papers are emerging in the fields of early 

childhood language development and are expected to be 

published in the near future. The integrated LENA 

hardware/software system has addressed a number of new 

technical issues, and further technical challenges will be 

addressed as user feedback accumulates. The current system and 

technologies are by no means final. The proposed processing sub-

tasks presented in this study have shown reliable acoustic event 

detection for key child, clear adult, TV, and other classes, as well 

as effective adult word count (AWC) estimation over time. These 

factors will contribute to advances in the field of child language 

development assessment. The proposed LENA system will 

continue to evolve with further improvements and new processing 

features added in the future. 
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