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ABSTRACT
The synthesis of child speech presents challenges both in the
collection of data and in the building of a synthesiser from
that data. Because only limited data can be collected, and
the domain of that data is constrained, it is difficult to ob-
tain the type of phonetically-balanced corpus usually used
in speech synthesis. As a consequence, building a synthe-
siser from this data is difficult. Concatenative synthesisers
are not robust to corpora with many missing units (as is
likely when the corpus content is not carefully designed),
so we chose to build a statistical parametric synthesiser us-
ing the HMM-based system HTS. This technique has pre-
viously been shown to perform well for limited amounts of
data, and for data collected under imperfect conditions. We
compared 6 different configurations of the synthesiser, us-
ing both speaker-dependent and speaker-adaptive modelling
techniques, and using varying amounts of data. The out-
put from these systems was evaluated alongside natural and
vocoded speech, in a Blizzard-style listening test.

1. INTRODUCTION
Child speech presents particular difficulties for data-driven
speech synthesis due to the type and quantity of data which
it is feasible to collect. Three characteristics are desirable in
a corpus for constructing high quality synthetic voices: pho-
netic coverage, consistency, and quality of recording. Firstly,
the material recorded should contain as wide a coverage of
speech units in different phonetic and prosodic contexts as
possible. This can be achieved by gathering a very large
corpus of text and automatically extracting a sub-corpus in
such a way that the phonetic coverage of the sub-corpus is
optimised (e.g., [9]). Phonetically well-balanced recording
scripts resulting from such methods are typically not coher-
ent texts that children could be persuaded to read. It is
more feasible to us, for example, story books familiar to the
child, as is done in this work. This will typically result in a
corpus with poor phonetic coverage.

Secondly, consistent speech quality is important in a speech
synthesis database. The vocal and emotional control neces-
sary to minimise inconsistency during and between recording
sessions does not come readily to children. Use of a coher-
ent ‘script’ enjoyable to the speaker increases the effects of
emotional engagement with what is being read, which may
be problematic from a speech synthesis perspective. In the
present case, it led at times to fluctuations in speech quality
and a variable reading style very different from that gener-
ally favoured in speech synthesis corpora.

Thirdly, the data must be well recorded, free from rever-

beration and background noise and with consistent acoustic
quality. This is straightforward to achieve in the record-
ing studio; however, it is more difficult to get a child into
the studio than a paid voice talent. In the current work,
the recordings were all made in the child’s home and con-
sequently contain considerable background noise, including
page turns.

We addressed these problems, inherent in the recording of
children’s speech, by the use of HMM-based speech synthesis
combined with particularly careful preparation of the data.
HMM-based speech synthesis offers comparable quality to
typical unit selection and concatenation systems [5]. How-
ever, it also offers two important capabilities that concate-
native methods do not: an integrated data-driven method
for dealing with missing units, and speaker adaptation. In
the work reported here, we explore the potential of both of
these capabilities for synthesising child speech. As far as we
are aware, this is the first time HMM-based synthesis has
been applied to child text-to-speech.

Speaker adaptation has become a key technique in many au-
tomatic speech recognition (ASR) systems. Methods from
the Maximum Likelihood Linear Regression (MLLR) and
Maximum A Posteriori (MAP) families are used to trans-
form or adapt the parameters of already-trained HMMs,
such that the likelihood of some adaptation data are in-
creased. Speaker adaptation techniques have been used to
adapt speech recognisers trained on adults’ speech to the
task of recognising children’s speech, with some success. For
example, part of the procedure described in [10] uses Max-
imum Likelihood-based model adaptation to adapt acoustic
models trained on adults to child target speakers. In [3],
Structural MAP Linear Regression is used for the same pur-
pose. In speech synthesis, these methods have been used to
adapt HMMs to new speakers using a very limited amount
of data [15] – far less data than would be required to build a
concatenative system, for example. The fact that it is possi-
ble to use HMMs that have been trained on cleanly recorded
data, rich in phonetic contexts, as the basis for adapta-
tion means that high-quality speech can be synthesised even
when the adaptation data is noisy and sparse. Here, we
present the application of speaker adaptation methods to
the adaptation of adult-trained models to a child speaker
for speech synthesis.

It should be noted also that speaker normalisation tech-
niques figure prominently in work on using ASR systems
trained on adult speech to recognise the speech of children.
The use of Vocal Tract Length Normalisation is widely re-
ported [7, 6, 4, 10, 11], and [11] also uses uniform scaling



of speaking rate. Voice conversion approaches that might
be considered the synthesis equivalent of ASR speaker nor-
malisation techniques could be used to convert the output
of an adult-trained synthesiser to the voice of a child target
speaker. But as successful alteration of segmental duration
in voice conversion is not straightforward, it would be very
difficult to achieve childlike hesitation or disfluency using
these methods.

Dealing with missing units is straightforward in HMM-based
voices, both speaker-dependent and speaker-adapted. HMM-
based speech synthesis is able to construct a model for any
missing unit, by sharing its parameters with existing mod-
els. This is achieved using similar data-driven, tree-based
state clustering techniques to those used in ASR. In con-
trast, concatenative systems, when synthesising a sentence
that requires an unseen unit (e.g., a particular diphone, or a
diphone in a certain context), must select a substitute unit,
typically on the basis of heuristics.

Together with the robustness of HMM-based speech synthe-
sis to imperfect recording conditions [14], these capabilities
are well suited to the task of child speech synthesis. We re-
port an experiment comparing several configurations of an
HMM-based speech synthesiser for child speech. We com-
pared speaker-dependent and speaker-adaptive modelling for
varying amounts of data in a listening test which evaluated
similarity to the target speaker, naturalness and intelligi-
bility. Since there may also be challenges in F0 tracking,
spectral estimation and vocoding of child speech, we also
evaluated vocoded speech alongside the synthetic speech.

2. BUILDING THE SYNTHESISER
2.1 Data Collection and Preparation
The North American-accented English speech of a 7-year
old tri-lingual (Spanish, English, German) female was col-
lected using a headset microphone in an informal setting at
the home of one of the authors over the course of several
months. The subject was very familiar with the story book
text, which she was allowed to read without interruption. A
total of just over 100 minutes of speech data were collected.

The data processing was slightly more complex than for
adult data. The data were split into shorter fragments in
order to exclude disfluencies, screaming, singing, sighs, page
turns, and other non-speech sounds. We did not attempt
to incorporate these elements into the synthetic voice. The
data were hand-transcribed in standard orthography. Spe-
cial care was taken to deal with mispronunciations and word-
fragments in such a way that the final phonetic transcrip-
tion would accurately reflect the contents of the audio files.
Where there was a word in the lexicon that matched the
speaker’s mispronunciation, this word was used in the tran-
scription (e.g. the speaker often read “cells” as “seals”, and
so the second word was used in the transcription). Where
there was no existing lexical item to match the speaker’s pro-
nunciation of a word or fragment, an invented word was used
in the normal spelling transcription, and then this invented
word was added to the lexicon with the speaker’s pronunci-
ation before the phonetic transcription was generated.

At this stage, 30 sentences were chosen for their fair degree
of fluency and medium length (4–9 words) from across the
recording sessions and held out for use in evaluation.

A phone transcription was produced for the rest of the data

with the Multisyn voice-building tools [2]. An initial phone
transcription was produced by performing lexical look-up
from the augmented lexicon. This initial transcription was
then refined by forced alignment with the audio, in which
vowel reduction and the insertion of pauses between words
are allowed where supported by the audio data. Pause inser-
tion is particularly important in the case of such hesitantly
read data.

Three datasets (for training or adapting the HMMs) of vary-
ing size were constructed (small: 15 minutes of speech mate-
rial; medium: 30 minutes; whole: all 94 minutes). Sentence
order was randomised before partition into these three sets
to avoid effects of the considerable difference between the
recordings from different sessions.

2.2 HTS Systems Used
Two types of HMM-based speech synthesiser were built us-
ing HTS version 2.1 [17]: speaker-dependent and speaker-
adaptive. The procedure used for building the speaker-
dependent voices was the same as that for the HTS entry in
the Blizzard Challenge 2005 [18]. The speaker-adaptive sys-
tem adopted the gender-mixed average voice from the HTS
entry in the Blizzard Challenge 2007 (using feature vectors
with 40 mel-cepstral coefficients) [16]. Adaptation to the
target speaker was performed with the procedure used for
the same HTS entry in the Blizzard Challenge. A brief ac-
count of these procedures is given below.

2.3 Parameter Extraction
For both types of system built, the speech was parameterised
as 40 mel-cepstral coefficients, log F0 and the energy of ape-
riodic components in 5 frequency bands, and the dynamic
and acceleration features derived from all of these, to yield
a 138-dimension observation vector for the HMMs. F0 was
extracted using a three-stage procedure. First, the ESPS
get_f0 tool was used to extract F0 for all the speech data.
These preliminary F0 values were then plotted as a his-
togram, from which a rough F0 range for the speaker was de-
termined. F0 values were then re-extracted within the deter-
mined range using a voting method based on get_f0, Tempo
and IFAS, the final F0 for each frame being the median of the
three extracted values for that frame. Spectral analysis was
performed with the high quality vocoder STRAIGHT [8],
and the STRAIGHT spectra were converted to mel-cepstral
coefficients.

2.4 Model Structure and Context Clustering
For both types of system built, speech units were modelled
with HMMs of 5 emitting states in a left-to-right topology.
In all cases, the same set of units was used: phones depen-
dent not only on neighbouring phones, but on an extensive
list of phonetic, linguistic and prosodic contexts (see [19] for
the list).

The rich context-dependency of the speech units results in a
very large number of models. This in turn means that almost
all models will be sparsely represented in the training data
(typically we find just one example of each in the training
data!) and that, at synthesis time, models of missing units
will certainly need to be created. Both of these problems
are solved by the use of decision-trees. In the construction
of these trees during training, model parameters are pooled
and then repeatedly divided by the application of yes-no
questions relating to the contextual features that define the
models (e.g. ‘Is the state part of a nasal consonant phone?’,
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Figure 1: Listening test results. Boxplot format follows [1]: “the median is represented by a solid bar across
a box showing the quartiles; whiskers extend to 1.5 times the inter-quartile range and outliers beyond this
are represented as circles.”
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Figure 2: Results of pairwise Wilcoxon signed rank tests between systems; a black square shows a significant
difference between systems with α = 0.01 (with Bonferroni correction).

‘Is the state part of a phone that occurs at the end of a
word?’ etc.). Questions are selected and ordered in the
trees during training so that acoustically similar states end
up pooled in the same leaf nodes of the trees. This solves
the problem of data sparsity during training by allowing the
parameters of acoustically similar states in a leaf node of the
tree to be “tied” (re-estimated as a single distribution with
the pooled training data). The trees solve the problem of
unseen models at synthesis time by allowing the creation of
these models: for each state of an unseen model, the relevant
trees are traversed by answering the questions appropriately
until a leaf node is reached. The probability distributions
pointed to by this leaf node are then used to populate the
relevant state of the unseen model.

Separate trees are made for spectral, F0 and aperiodicity
measure distributions of each emitting state, and a single
tree for duration is made for all states, resulting in 16 trees
in the present set-up. This allows the clustering of units
for spectral quality, F0, duration and aperiodicity measures
with different trees using different context questions; as we
would expect, different aspects of context affect the spectral
quality than those affecting F0.

Although tree-building starts with a set of contexts (or yes-
no context questions) which are hand-crafted to specify the
phonetic and linguistic contexts which we think will have an
effect on the acoustics of speech units in a given language,
tree-building itself proceeds automatically. That is, ques-
tions are selected one by one according to some criterion and
added to the tree until a stopping condition is met. In the
current procedure, nodes associated with context questions
are added to the trees until the MDL (Minimum Description
Length)/BIC (Bayesian Information Criterion) criterion is
met. The MDL/BIC criterion is a well-known information
criterion for avoiding over-fitting of models to the training
data and can specify an appropriate size for the decision tree
[13].

2.5 Speaker Dependent System
For the speaker-dependent systems, model training began
with the estimation of monophone models (phone models
independent of context). These were then used as the ba-
sis for full-context models, which were re-estimated before
decision-tree based context clustering was applied to spec-
tral, log F0, aperiodicity and duration features separately.
The clustered parameters were tied and re-estimated, then



Table 1: Identifying letter for each system
Synthetic speech

Modelling technique
Amount of data Speaker Average voice
from target speaker dependent adapted
15 minutes A B
30 minutes C D
94 minutes E F

Natural speech
Vocoded G
Original H

the procedure was repeated: parameters were untied and
re-estimated, clustered and and re-estimated a second time.

2.6 Speaker Adaptive System
As noted above, the speaker-adaptive system adopted an
already-trained gender-mixed average voice from previous
work. Details of training are given in [16]. This gender-
mixed average voice model was trained on the six adult
speakers of CMU-ARCTIC speech database (four male, two
female). First, two gender-dependent average voice models
were trained using Speaker Adaptive training (SAT); that is,
speaker normalisation was applied during estimation of the
models, to avoid different speaker-dependent voice charac-
teristics “diluting” the average models. Then, the parame-
ters of both gender-dependent models were clustered and
tied using decision-tree based clustering, with gender in-
cluded as a context feature. Then the clustered HMMs were
re-estimated using SAT, regression classes for the normalisa-
tion being determined from the gender-mixed decision-trees.
State durations obtained during this estimation were used to
initialise duration probability distributions which were then
clustered. SAT was performed on the complete HSMMs to
re-estimate all parameters (including duration) with speaker
normalisation.

Adaptation of the gender-mixed average voice model was
performed using data from the target speaker, the labels
being modified to include target speaker gender. Adaptation
was performed with a combination of constrained structural
maximum a posteriori linear regression (CSMAPLR) and
maximum a posteriori (MAP) adaptation.

2.7 Synthesis
The held-out sentences to be used in evaluation were syn-
thesised with Festival. Festival’s front-end performed the
phonetic and linguistic predictions needed to provided a se-
quence of context-dependent labels for each utterance. Based
on these predictions, parameters were generated using the
models that had been trained, and waveforms were synthe-
sised from those parameters.

3. EXPERIMENTS
3.1 Experimental Procedure
The evaluation of the various systems was carried out us-
ing a similar protocol to the Blizzard Challenge [5]. Each
variant of our system was a ‘participant’ in this challenge.
Included in the set of participants were two benchmarks –
natural speech and vocoded natural speech – in which held-
out sentences from the corpus were used, instead of actual

Table 2: Sentences used to evaluate intelligibility
No. Sentence text
1 I will eat only the pieces that fall off.
2 They rode away in trucks.
3 Snow? Mrs. Tate looked shocked.
4 Almost like diamonds, she said.
5 I am not a sheep, he said.
6 He put some salt on it.
7 The fire grew bigger.
8 He ran after little cats.

synthesis. The vocoded speech was constructed by per-
forming the speech analysis described earlier, followed by
waveform generation without any modification of the fea-
tures. The vocoder we use (STRAIGHT for analysis and
a mixed-excitation source-filter model for waveform genera-
tion) does degrade the signal slightly, and we wished to eval-
uate the effect of this on child speech. The higher F0 value
and higher formant frequencies of child speech, compared to
adult speech, may cause spectral envelope estimation to be
less accurate.

The listening test, which was conducted via a web browser
under quiet laboratory conditions using headphones, con-
sisted of 3 sections. An 8-by-8 Latin Squares design was
employed. There were 8 systems and 8 listener groups, with
8 different utterances per section (a total of 24 different
utterances). In any given section, a single listener group
heard every system once, each time with a different utter-
ance. Every system was used to synthesise every utterance
once within each section. We used a total of 24 paid listeners
(3 people per listener group), who were all native speakers
of English between the ages of 18 and 25.

In the first section, listeners were asked to rate the similarity
of each stimulus to the original speaker. Two natural ref-
erence utterances were provided, which listeners could play
at any time, as many times as they wished. Listeners could
also listen to each stimulus as many times as they wished. A
five point scale was used; the end points of the scale were de-
scribed to the listeners as “1 – Sounds like a totally different
person” and “5 – Sounds like exactly the same person”.

The second section followed the same format as the first, but
this time listeners were asked to rate the naturalness of each
stimulus on a 5 point scale, with end points described to the
listeners as“1 – Completely Unnatural”and“5 – Completely
Natural”.

In the final section, listeners were asked to type in a tran-
scription of each test stimulus. Normally, we would use Se-
mantically Unpredictable Sentences for this type of test, to
avoid ceiling effects on transcription accuracy. However, we
felt that such sentences sounded extremely unnatural when
uttered by a synthetic child voice. Additionally, we did not
have natural recordings of the speaker saying such sentences.
Therefore, we used sentences held out from the corpus for
this part of the test. These sentences are listed in Table 2.

3.2 Results and Discussion
The listening test data were analysed using the same sta-
tistical techniques used in the Blizzard Challenge 2007 [1],
and we present results in Figure 1. Significant differences



between systems are presented in Figure 2. The differences
in the results for all three sections are measured by the same
test used in the Blizzard Challenge 2007: a Wilcoxon signed
rank test with α = 0.01 and Bonferroni correction. It should
be noted that WER was computed from a set of sentences
of differing lengths; six of the sentences consist of 4–6 words
and the remaining two, 7 and 9 words. This was neces-
sitated by the fact that the test sentences were naturally
occurring sentences, ‘harvested’ from the recordings rather
than generated specifically for the evaluation. This had an
unfortunate consequence: the within-subjects design of the
Wilcoxon test used meant that significant differences be-
tween systems for WER had to be based on scores for each
listener for each system already normalised for word length.
However, it was not thought that the sentences vary greatly
enough in length that the outcome of the significance test
for WER would be seriously affected by this.

There are several trends observable in Figure 1 which receive
partial or no support from the significance test, but which we
expect would be detected as significant effects under more
extensive evaluation, with a greater number of listeners giv-
ing greater statistical power.

In most cases increasing the amount of training or adapta-
tion data gives a higher median score in sections 1 and 2
and a lower mean WER in section 3 between systems of the
same type, as we would expect. In three cases this effect was
found to be significant (between systems A and E in section
1 and between systems A and E and systems B and F in
section 2), and we would expect to find a greater number of
significant differences if a more extensive listening test were
to be performed. We note that the Blizzard Challenge uses
many hundreds of listeners, yet still cannot detect statisti-
cally significant differences between all pairs of participating
systems.

In most cases, a speaker-adaptive voice yields higher me-
dian opinion scores and lower mean WER than a speaker-
dependent voice trained on the same amount of data. Al-
though none of these differences were found to be statis-
tically significant, this is a trend that we would expect in
the light of previous research showing that adaptation of an
average voice with a few minutes of target speaker data re-
sults in more natural synthetic speech than the training from
scratch of a speaker dependent voice on a larger dataset [16].
It should be noted that in the present case, the average voice
was trained on very different speakers (adults) to our target
speaker (a child), and yet the same result appears to hold.
Despite speaker differences, the average voice – trained on
plentiful context-rich data – nevertheless incorporates a lot
of prior knowledge about speech in general and can provide
the basis for successful speaker adaptation.

There is an interesting exception to the two trends men-
tioned above in the case of section 1 of the evaluation. When
the amount of data is increased from 30 to 94 minutes in
this section, the median similarity of the speaker-dependent
voice to the original speaker increases but the median for
the average voice-based system remains unchanged. The
median similarity score of the speaker-dependent voice is
the same as that of the adapted voice. This suggests that
improvements in similarity to the original speaker achieved
by increasing the size of the dataset are smaller when per-
forming adaptation than when training speaker-dependent
voices. Similarity to the original speaker is perhaps the as-
pect of the speaker-adaptive approach that needs the most

improvement.

In the evaluation of naturalness, the natural vocoded speech
received a median opinion score of one point less than that of
the original speech, and in the evaluation for intelligibility,
it received a higher mean WER. Although neither of these
differences was found to be statistically significant, these
scores suggest that vocoding alone is causing degradation of
the speech signal. The difference in scores was larger than we
had expected; whether this degradation in quality is specific
to child speech could be the subject of useful future research.

In the evaluation of similarity to the original speaker, even
the natural speech received a median opinion score of 4,
where we would expect “5 – Sounds like exactly the same
person”. This might be attributed to the variability of the
child speech data: the two natural speech samples given for
reference in the evaluation were taken from different record-
ing sessions and have slightly different qualities. The syn-
thetic speech in effect “averages out” the speaker/recording
condition variability across all the data, and as such is dif-
ferent in quality from either of the two natural samples. If
it were possible to evaluate voices built on more consistent
data, then we would expect natural speech to receive a me-
dian opinion score of 5 in this section of the evaluation.

4. CONCLUSIONS
This paper has described the application of existing HMM-
based speech systems to the synthesis of a child’s speech.
We have built both speaker-dependent voices and speaker-
adapted voices, where an average voice model which had
previously been trained on adult speakers was successfully
adapted to the child target speaker.

We consider the experiment successful in that the synthetic
speech clearly reflects the qualities of the training data.
That is, the synthetic speech sounds like the speech of a
child reading, with the same patterns of hesitancy and dis-
fluency that we observed in the training data. However, such
disfluency will not be desirable in all applications of such
a synthetic voice, and ways of synthesising fluently-spoken
child speech without recording additional data will be the
subject of future work. One way to achieve this would be
to combine models trained on different speakers. Previous
work has examined the interpolation of different emotions
and speaking styles [12]; it would be interesting to hear the
results of interpolation of speakers of different ages. Another
method would be to use a combination of F0, spectral and
duration models taken from different speakers. For example,
a model composed of the duration model from a fluent adult
speaker and the spectral and F0 models of a child speaker
may result in fluent yet child-like speech. We plan to try
this in future.

Examples are available at http://homepages.inf.ed.ac.
uk/s0676515/child_speech
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