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ABSTRACT
The use of speech technology in children’s reading assess-
ment can help teachers to diagnose reading difficulties and
plan appropriate interventions for a large number of stu-
dents. We present a Bayesian Network model of student
reading comprehension that can be used to estimate auto-
matic scores for a child’s spoken answers to open-ended ques-
tions about a text. Through the use of features derived from
language models capturing different degrees of comprehen-
sion, we found that on the TBALL dataset we could achieve
0.8 correlation with reference comprehension scores derived
from teachers, exceeding the teachers’ own correlation with
this same reference. This student model also proved to per-
form without bias due to a speaker’s native language, which
was not the case for a comparable baseline method, nor for
the teachers themselves.

1. INTRODUCTION
As children grow into more advanced readers, their teachers
place a stronger emphasis not just on the fundamental skills
of decoding sounds from text, but on the longer-term goal of
all literacy education: comprehension of what a text and its
sounds together mean. The latter skill is to some degree a
consequence of the former, of course - children who struggle
through sounding out individual words are likely to miss the
point of a passage as a whole [5]. Some children, however, in
spite of normal word-level decoding skills, still have trouble
understanding main ideas in a text, and even when listening
to spoken material [8]. To diagnose independent problems in
these related areas would be the goal of every conscientious
reading teacher.

Students can demonstrate reading comprehension indepen-
dently of word reading in many ways, but perhaps the most
telling is for them to respond to open-ended questions about
a passage in their own words. Based on the child’s pronun-
ciation, choice of words, and manner and rate of speaking,
teachers can infer the child’s degree of comprehension, and
can adjust their judgments according to prior knowledge of
the child’s background, the difficulty of the questions, no-
tions of expected right and wrong answers, and many other
factors. However, the way this inference is synthesized from
all the available cues is not only very complex but not en-
tirely transparent to the teacher who does it. The problem
remains poorly-defined from a perceptual point of view, and
is subjective enough to prohibit complete agreement among

teachers [8].

This paper presents an extension of the work in [3] toward
automatically assessing a child’s answers to these open-ended
reading comprehension questions. Due to the complex in-
teraction among the various sources of evidence and prior
knowledge, we propose using a generative model for student
comprehension based loosely on the Bayesian Network clas-
sifier first proposed in [7]. The point of using automatic
methods is not to replace teachers, but to provide them
with the tools to plan individualized interventions for a large
group of students over a number of discrete reading skill sets,
with a minimum of teacher time or energy invested in ac-
tually conducting these assessments. Our goal, then, is to
infer a child’s degree of comprehension as we hypothesize
a teacher would, so that our automatic scores agree with
teachers as well as teachers can agree among themselves.

2. CORPUS
The children’s speech data used in this study was composed
of native and bilingual English speakers recorded at Los An-
geles public schools as part of the TBALL project [1]. Under
real classroom conditions, 33 first-graders and 37 second-
graders were prompted by an animated user interface to read
a short paragraph out loud. The material was the same for
all students, though unique to each grade level. To test their
comprehension of this paragraph, students were asked to an-
swer 8 yes/no questions and 3 open-ended questions. Each
of five elementary school teachers then listened to recordings
of these 210 open-ended answers and scored each one on a
three-point scale: complete comprehension (1), zero compre-
hension (0), or partial comprehension (0.5). The reference
score for each particular answer was taken as the quantized
mean of the scores from all five teachers: mean scores below
0.25 were quantized to 0, those above 0.75 were quantized
to 1, and everything in between was set to 0.5. The aver-
age inter-teacher correlation in these scores was 0.752, and
each teacher’s average correlation with the quantized mean
score from the other four was 0.794 - this justifies using
the quantized mean as a reference, since it correlates bet-
ter than a sixth teacher would. Each child’s utterance was
also transcribed on the word level, and we collected statis-
tics about each child’s native language (L1) through surveys
of their parents - 39 of the children were reported as native
Spanish speakers, 21 as native English speakers, and for the
remaining 10 this statistic was missing, possibly because the
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Figure 1: A high-level graphical illustration of the
open-ended question student comprehension model.
Shaded nodes denote Hidden variables. The dashed
lines are not probabilistic relations, but indicate how
the overall comprehension score for question t + 1 is
derived from the combined scores of the previous
question.

parents chose not to respond.

3. THE STUDENT MODEL
In this section we describe the student model we used to
calculate a score representing a child’s degree of reading
comprehension. It consists of two components: one, the
standard automatic speech recognition (ASR) models that
estimate the Evidence to be used by the second component,
the Bayesian Network that generates an overall score based
on that Evidence and other knowledge about the child and
the test. The ASR acoustic and language models used to es-
timate this Evidence are essentially models for teacher per-
ception and prior notions of “correct”answers - the Bayesian
Network that combines them is the student model proper.

3.1 Acoustic and Lanuage Models
Our acoustic models were standard three-state left-right Hid-
den Markov Models for context-dependent phonemes. With
32 Gaussian mixtures per state, these models were esti-
mated using standard 39-dimensional MFCC features in-
cluding first- and second-order derivatives. These were trained
both on the TBALL data (different speakers from those in
Section 2’s open questions dataset) and about 16 hours of
children’s speech from a comparable corpus available from
OGI [4]. The models were further refined to speaker-adapted
ones using a text-independent method based on CMLLR. We
trained a baseline bigram language model on text from the
two read passages and all transcripts of answers to the ques-
tions. This model was then adapted three separate times
- with transcripts of the answers demonstrating complete
comprehension, those demonstrating zero comprehension,
and those for partial comprehension - resulting in three dif-
ferent bigram models, one for each type of answer. Combin-
ing these acoustic models with the baseline language model,
Viterbi decoding of the open-ended questions’ answers re-
sulted in 14.1% WER compared to the manual transcripts.

3.2 Comprehension Model
The available variables that teachers might use in making
a judgment of a student’s reading comprehension were di-
vided into three categories: Evidence, Underlying variables,
and Hidden variables. A Hidden variable is one that can
only be inferred by the teacher - in this case, the child’s de-
gree of comprehension - and is modeled as one causal root
of the Evidence seen as clues to that comprehension. We
propose two Hidden variables: qt, the item-level compre-
hension for question t - a discrete variable of cardinality 3
(complete, partial, and zero comprehension, trained on the
answers elicited from teachers as described in Section 2).
The other is rt, a continuous-valued running score that rep-
resents overall comprehension and is estimated at each test
question as the mean of the scores from all previous ques-
tions (and is initialized as r1 = 0). The item-level Hidden
state was modeled as conditionally dependent on this overall
comprehension variable, based on the assumption that the
child’s comprehension on, for example, the third question,
may be informed by their performance on the previous two.

By Evidence, Et, we mean anything the teacher might ob-
serve directly at the time of the child’s response, e.g. their
rate of speaking, their word choice, etc. Using the acous-
tic and language models described in Section 3.1, we calcu-
lated three Evidence features by first using Viterbi decod-
ing to estimate likelihood scores of the observed MFCC fea-
tures, O, given each of the three language models: P (O|M1),
P (O|M0.5), and P (O|M0). We then used these likelihoods to
estimate three posterior probabilities, one for each language
model ML:

P (ML|O) =
P (O|ML)P (ML)∑
n P (O|Mn)P (Mn)

(1)

Here the priors for each model, P (ML), were assumed to
be equal. These posteriors represented an individual an-
swer’s distance from the three sets of comprehension lev-
els captured in the language models. This use of language
model posteriors as Evidence of comprehension was based
on the simple idea that different types of answers (complete,
zero, or partial comprehension) would exhibit unique distri-
butions of n-gram word strings, and so models trained sepa-
rately on each could be used to automatically score unknown
text. The model with the highest likelihood estimated from
Viterbi decoding served as another Evidence variable:

M̂ = argmax
L

P (O|ML) (2)

This was a discrete value representing the best comprehen-
sion level if a teacher were asked to pick just one of the three.
One last Evidence variable was the child’s rate of speaking
(ROS), defined as the number of phonemes recognized per
second.

Underlying variables, Ut, are the ones that might influence
our expectations of the child’s Hidden comprehension states
and also perhaps of the Evidence, e.g. their grade level, de-
mographic information, or the difficulty of the test question.
Included in our Underlying variables were the following dis-
crete statistics: the child’s grade (1st or 2nd), gender, L1
(either Spanish or English), and the assessment text (one of
two) and question index for that text (out of three), assum-
ing that the questions and texts might vary in difficulty.



Table 1: Item- and student-level overall score correlation between automatic results and reference teacher
scores, over various scoring methods

baseline Bayes Net Student Model teacher

recognition only M̂ no Et no Ut no rt all variables agreement

Item-level correlation 0.784 0.777 0.401 0.800 0.717 0.693 0.794

Student-level correlation 0.846 0.829 0.301 0.809 0.701 0.684 0.828

Our hypothesized model dependencies, shown graphically in
Fig. 1, propose to unite all these variables in a way that re-
flects how we hypothesize a teacher would conceive of read-
ing comprehension. The child’s cognitive degree of compre-
hension, qt, is the source of the observed Evidence, Et, but
Underlying variables, Ut, might inform our expectations of
the cognitive state and the Evidence as well. Inference on
the degree of comprehension for item t was then calculated
as follows:

P (qt|Et, Ut, rt)

= P (qt, Et, Ut, rt)/P (Et, Ut, rt)

=
P (qt|Ut, rt)P (Et|qt, Ut, rt)P (rt|Ut)P (Ut)

P (Et|Ut, rt)P (rt|Ut)P (Ut)

=
P (qt|Ut, rt)P (Et|qt, Ut, rt)

P (Et|Ut, rt)
(3)

where a final score for answer t was defined as

Sqt = 1 ∗ P (qt = 1|Et, Ut, rt)

+0.5 ∗ P (qt = 0.5|Et, Ut, rt) (4)

This proposed network structure is similar to (and inspired
by) the Knowledge Tracing model of procedural knowledge
acquisition [2], in which a student’s observed answers to test
questions (the Evidence) may be the result of their knowl-
edge state (a Hidden variable) or scaffolding on the part of
a tutor (an Underlying variable), but this tutoring can af-
fect future inference on the Hidden knowledge state as well,
if the information is actually taught beyond just scaffolding
the answer.

The network in Fig. 1 was implemented using BNT [6] with
all continuous nodes modeled as Gaussian distributions, all
discrete nodes with no continuous parents modeled as prob-
ability tables, and all discrete nodes with continuous parents
modeled as softmax functions. All Evidence variables and
the item-level Hidden comprehension state, qt, were modeled
as conditionally dependent on all Underlying variables, but
the overall comprehension variable rt was modeled as only
dependent on the Underlying variables that applied glob-
ally: grade, gender, L1, and the text. Table 2 shows these
hypothesized dependencies in more detail.

4. EXPERIMENTS AND RESULTS
Our experiments were intended to address the following ques-
tions:

• How does the proposed student comprehension model
compare to a simpler recognition-based baseline?

• What is the relative importance of the novel features
proposed in this work?

• Is it possible to improve results by automatically re-
fining the hypothesized network structure?

• How do these automatic results compare to teacher
agreement with the reference scores?

To address these questions we divided the available data
into 7 subsets separated by speaker - all results are reported
in terms of a 7-fold crossvalidation on the entire dataset.
Features and scores were estimated using the methods out-
lined in Section 3. The baseline recognition-based method
was simply to take the Evidence variable M̂ representing
the Viterbi-decoded maximum-likelihood estimate of com-
prehension and use that for a score as it was elicited from
the teachers in Section 2: 1 for complete comprehension
(M̂ = M1), 0.5 for partial comprehension (M̂ = M0.5), and 0

for no comprehension (M̂ = M0). For comparison with this
baseline, we generated automatic scores from the Bayesian
Network student model using different subsets of features:
just the baseline M̂ as the only feature, and using the whole
set but separately leaving out each of the novel feature cat-
egories (Et, Ut, and rt). Correlation of these automatic
scores with the reference scores is reported in Table 1, both
on the item and student levels, where student-level scores
were defined as the sum of their three item-level scores.

Some of the variables thought to be dependent may not in
fact be, and with finite training instances and an overly com-
plex model there is always the possibility that true depen-
dencies might not be estimated properly due to a dearth
of training instances representative of all combinations of
dependent variables - this proved to be the case for the hy-
pothesized structure outlined in Section 3. For these reasons
we propose a forward-selection greedy search algorithm to
refine the network structure. The algorithm begins with just
one arc in the network representing a baseline dependency:
the arc from qt to the comprehension recognition Evidence
variable, M̂ . Then it proceeds in a random order to add each
hypothesized arc individually, keeping an arc if it improves
the likelihood of the training variables given the Bayesian
Network. This process is looped until it has been shown
that adding any remaining hypothesized arc will decrease
the model likelihood. This method is also useful in that
analysis of the refined network may reveal the true depen-
dencies present in the data. The likelihood of the training
set given the model was defined as the log-likelihood after
EM convergence, and convergence was defined as either 10
iterations of EM or the number of iterations required to
make the following inequality true:

|LL(i) − LL(i − 1)|
mean{|LL(i)|, |LL(i − 1)|} < 0.001 (5)



Table 2: Using the forward selection procedure
outlined in Section 4, these are the total number
of times each of the hypothesized network depen-
dencies was selected for the final refined network,
summed over 7 crossvalidation training sets. Cells
left empty were not part of the original hypothesized
structure - these parent/child combinations were as-
sumed to be independent

Children

Et

Parents rt qt ROS M1 M0.5 M0 M̂

Ut index 7 7 7 7 7 7

text 7 7 7 4 7 7 3

L1 7 7 7 7 7 7 7

gender 7 7 7 7 7 7 7

grade 5 4 7 7 5 5 7

rt 0 7 7 7 7 0

qt 7 7 7 7 7

Here LL(i) is the log-likelihood after iteration i. Ordinarily,
EM on our data met this inequality within 7 iterations.

5. DISCUSSION
The first thing to notice about Table 1 is that the base-
line method’s correlation is already at the levels of teacher
agreement - the differences in these correlation coefficients
was not statistically significant using the one-tailed test for
difference in correlation. This was due partly to the use of
speaker adaptation in the acoustic models - without it, this
baseline method had 0.713 item-level and 0.741 speaker-level
correlation, and these are significantly less than the baseline
results reported in Table 1 with p ≤ 0.05. The Bayesian Net-
work with only M̂ as a feature performed almost identically
to the baseline, as we might expect.

Including only the rest of the Evidence and Hidden vari-
ables in the network (the “no Ut” column in Table 1) did
not change the correlation results significantly. We did find
that leaving out the Underlying variables, Ut, was benefi-
cial, probably because the relative sparsity of the data would
not allow for these nodes’ parameters to be trained reliably.
Omitting just the overall comprehension variable, rt, did
significantly degrade performance compared to the “no Ut”
set (p ≤ 0.02), but this is possibly also from including the Ut

features. However, leaving out the Evidence, Et, worsened
performance most dramatically - clearly the Evidence were
the most important of the cues to reading comprehension
proposed in this work.

Interestingly, the refined version of the full network structure
did not improve correlation at all. This is curious since the
forward selection procedure explained in Section 4 only al-
lowed for hypothesized conditional dependencies in the final
network structure if having them improved the likelihood of
the feature set given the network. This suggests that each of
the 7 crossval training sets was too small for an improvement
in their likelihoods to translate to improved correlation in
their respective test sets. Table 2 gives the counts for how

many times each hypothesized dependency was selected for
the network, and in that we see a couple of trends. First
off, any dependencies that would have required softmax dis-
tributions (i.e. discrete children with continuous parents)
were avoided entirely - continuous rt was not allowed as a
parent of discrete qt or M̂ . However, rt was not omitted as
a parent variable entirely, so this must speak to a general
problem with adequately estimating the parameters of the
softmax distribution. We also see that the grade and the
text variables were sometimes excluded as parent variables.
This can be explained in that they are probably redundant
when used together, since each text passage was generally
given exclusively to only one grade level of student.

The baseline method correlated with the reference scores
more for native Spanish-speaking than for native English-
speaking students, and for 1st graders more than for 2nd
graders (both with p ≤ 0.05). The latter was true for the
“no Ut” results, but the difference in performance based on
native language was not significant at this confidence level.
The same was true for possible score bias: both the baseline
method and the teacher evaluators gave significantly higher
scores to native English over native Spanish speakers, and
to 1st graders over 2nd graders (p ≤ 0.05 using a one-tailed
test for difference in proportions). The “no Ut” Bayesian
Network mirrored this difference in proportions based on
grade level, but not on L1. Thus the student comprehension
model is, in terms of native language, less biased than both
the baseline method and expert evaluators.

6. CONCLUSION
This work presented a student model intended for auto-
matically scoring children’s reading comprehension based on
their recognized responses to open-ended questions about a
reading passage. With three different language models - each
adapted to answers demonstrating complete, partial, and
zero comprehension, respectively - we found that we could
use maximum-likelihood Viterbi decoding to estimate read-
ing comprehension scores that correlate with teacher-derived
reference scores as well as teachers themselves do. Using ex-
tra features (including pronunciation evidence, child demo-
graphics, and prior knowledge of the test) in a Bayesian Net-
work student model framework did not improve upon these
results, possibly due to a sparsity of training data. We did
find, however, that the best-performing student model’s au-
tomatic scores were not biased in favor of either native lan-
guage, whereas this could not be said for the baseline method
of comprehension recognition, nor for the teacher evalua-
tions. Future work in this area would see the most benefit
from using more features related to pronunciation and lan-
guage model Evidence - the few proposed here were found to
have much more predictive power in automatic scoring than
any of the Underlying demographic or test-related variables.
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