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ABSTRACT 

Feature-based motion perception shows high robustness against 

environmental influences, large scalability and is highly adaptable 

to different situations. Furthermore, the motion of features relative 

to each other usually gives information about the motion 

properties of the underlying structure; it allows reconstructing the 

motion and body structure of a moving object without any prior 

information regarding its appearance. In this article, we show an 

extension of the Kanade-Lucas-Tomasi feature tracking method 

appropriate for feature-based articulated motion detection. The 

motion-based feature tracking restricts the number of features to 

track to only the moving ones. This allows focusing subsequent 

data analysis on a subset of feature candidates. We show that by 

this method, we get a mean feature correctness of 80% with an 

acceptable stability over more than 50 frames. We compared the 

overall runtime of the presented method to the general Kanade-

Lucas-Tomasi method, showing a performance increase of more 

than 70%. 

Categories and Subject Descriptors 

I.2.10 [Artificial Intelligence] Vision and Scene Understanding - 

Motion - Texture - Video analysis - Intensity, color, photometry, 

and thresholding.  

General Terms 

Experimentation, Algorithms, Performance 

Keywords 

Motion based feature tracking, articulated body tracking, human 

motion analysis. 

1. INTRODUCTION 
One of the main abilities of the human perception system is to 

determine the form and the underlying body-structure of any 

moving object. This perception is mostly independent from any 

environmental influences like a moving background, but also 

from the visual representation of the object itself, e.g. its size, 

color or surface appearance. This ability of biological motion 

perception is, amongst other things, also based on the perception 

of features, as has been shown in the experiments of Johansson 

with moving light displays [6]. 

In everyday life, experimental moving light displays can be 

represented by points, lines, corners or any distinguishable, 

unambiguous visual representation. The geometrical clustering 

and definition of relations among features can be based on spatial 

relations, but also on the analysis of motion properties. The 

differentiation between moving and static features as well as their 

intuitive alignment and clustering allows the reconstruction of 

complex structures and their recognition even in suboptimal 

circumstances and with incomplete visual information.  

For practical applications, it is important to first differentiate 

between moving and static feature points in order to focus on 

moving regions. To preserve the association over a longer time, it 

is necessary to observe that moving features can vanish from 

view, e.g. by overlapping or occlusion and new features can 

appear. It is therefore necessary to define a dynamic model for the 

continuous integration of new features and for the rejection of 

invalid features.  

In this context we propose a motion-based Kanade-Lucas-Tomasi 

feature tracker that works exclusively on moving features. This 

extension of the usual Kanade-Lucas-Tomasi (KLT) feature 

tracker allows reducing the overall number of features with the 

effect that less features have to be taken into account e.g. for 

articulated body tracking. It also handles the initialization of new 

features, their temporal tracking as well as the rejection of no 

longer valid features. With the reduced feature set, it is possible to 

identify rigid body structures just by their feature motion. Because 

the way they move is defined by the motion of the underlying 

body structure and their projection in the 2D image, it is possible 

to estimate the motion of the underlying rigid body. So it becomes 

possible to estimate the underlying body structure by analyzing 

the motion properties of feature points. 

2. STATE OF THE ART 
Automatic detection and tracking of people in different contexts 

with the goal of motion analysis and recognition is an important 

subject in many application areas of computer vision, such as 

human-computer-interaction, entertainment, surveillance, sports 

analysis and even medical rehabilitation. The growing importance 

of this field is clear from the increasing number of surveys 

touching on this subject ([1], [9] and [10]).  

Feature-based human motion detection and analysis in this context 

is mainly based on marker tracking [3], because predefined 

marker positions usually allow direct reconstruction of the 

underlying skeleton [12]. This type of motion analysis is mainly 

used in diagnostic applications for professional sports and medical 

rehabilitation ([7], [4] and [17]), because here a high data quality 

is needed, what justifies the effort of using markers. 

Feature-based human motion detection without predefined 

markers is described in [14], [15]. Most work in this area is based 

on experiments of moving light displays from Johansson [6]. But 

the important role of feature properties for motion recognition is 

still not finally defined and also an active research area in 

neuroscience [5]. 



 

3. THEORETICAL APPROACH 

3.1 Motion-based Feature Tracking 
The idea behind motion-based feature tracking is that all features 

which do not underlie moving regions are not of interest. 

Furthermore, it is easy to see that a moving region can be detected 

only by a change of color, brightness or intensity in its region. To 

put it in another way, in a region with constant color nothing 

changes, so nothing moves. To explain this phenomenon, one can 

imagine a monochrome object moving across a contrastive 

background. The only way to perceive this motion is through the 

change of color around the borders of the object. This assumption 

holds a fortiori for intensity-based feature tracking methods like 

the method of Lucas and Kanade [8] and Tomasi and Kanade [16] 

we employ here. 

3.2 Focus on Moving Features 
The first step towards motion-based feature tracking is to find 

regions where we expect intensity changes. To do this, we first 

build the difference image Idiff of two temporally adjacent frames 

I(i) and I(i+1) is build, as can be seen in Fig. 1a) and b):  
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The difference image Idiff can be binarized by a static threshold 

(Fig. 1c) to obtain a first approximation for a mask image Imask, 

which will define the region-of-interest in which existing features 

are tracked and new features are sought. Because of small motion 

variations from one frame to the next one, a fixed threshold of 

10% of the mean intensity μ(I) of the difference image Ιdiff can be 

applied to the difference image Idiff to yield the mask image Imask: 

,)(
1

1
)( 




n

x
I xI

n
  n  = number of pixels of image I. 













)(

)(

1.0),(,0

1.0),(,1
),(

diff

diff

Idiff

Idiff

mask
yxI

yxI
yxI




 

To allow a larger range for the search for features to track, the 

mask image Imask is treated by the dilation operation δ with a 

structuring element B (Fig. 1d) as described by Soille [13]:  

)( maskBmask II   

The final mask image Imask defines the regions where we track 

features. (Fig. 1e). 

3.3 Initialization of New Features 
For the definition of features, we used the ‘good features to track’-

criterion defined by Shi and Tomasi [11] and Bouget [2]. Here, a 

feature is defined as a window or point, which can be tracked by 

optimizing some matching criterion with respect to affine 

transformations. As described in [2], it is important to find an 

acceptable threshold for the acceptance of new features. If the 

capture environment has constant light and contrast conditions, it 

is possible to define just an initial threshold by applying this 

method to the first image I(0) and use the resulting image If (0) to 

define an overall threshold of 10% of its intensity:  
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If the environment tends to change, it may be necessary to repeat 

this procedure to adapt the threshold to actual image conditions. 

Before the method for the detection of ‘easy-to-track’-features can 

be applied to the image regions defined by the mask image, it is 

necessary to remove all regions where features already exist. 

Because already known features are presumably again good 

candidates and multiple initialization of the same feature has to be 

avoided, these regions are removed from the mask image. The 

'easy-to-track' method can then be applied to the regions defined 

in the image mask, and new features found in these regions can be 

added to the existing feature set. 

3.4 Rejection of Features 
Following the recommendation of [2], a feature is declared ‘lost’ 

when it falls outside the image boundaries or a final error function 

is larger than a predefined threshold; here the latter occurs when 

the gradient in the feature region tends to zero. Additionally, a 

feature is declared ‘lost’ when the recommended new position 

falls outside the mask boundaries. 

4. IMPLEMENTATION 
The feature tracking approach presented in this paper is mainly 

based on the KLT-tracking method described in [8] and [16]. The 

implementation follows the pyramidal KLT feature tracking 

implementation by [2]. 

In a first step, a threshold for the 'easy to track' feature detection is 

calculated. Then the first difference image is built. The result is 

binarized by a static threshold and the resulting mask image is 

dilated with a morphological element in the dimension of the later 

applied feature. Regions with already know features are removed. 

In the rest of the image defined by the mask we look for new 

'easy-to-track' features and added them to the existing feature set.  

Figure 1: Levels of motion-based feature tracking: a) Original image I(i+1), b) Difference image of I(i) and I(i+1), c) Binarized 

difference image, d) Dilated difference  image, e) Final mask image with new feature points 



For the tracking a pyramidal approach of the KLT feature tracking 

method is used with a pyramid level of 2 or 3 and a window size 

of 2 3+1 pixels. The tracking of a feature in image I(i+1) is based 

on the detail of its position in image I(i). If a feature violates the 

predefined acceptance criteria, it is declared lost and removed 

from the feature set. 

5. RESULTS 
The algorithm has been evaluated in three video series of which 

one is an artifical 3D-motion sequence rendered by 3D Studio 

Max with 16 camears by 30 fps and a resolution of 600x800 px 

(Fig. 2a,b). The other two series are different video captures of 

human motion. The first is a motion serie captured by a 

BumbleBee stereo camera with 20 fps and a resolution of 

640x480 px with 12 motion variations with durations in the range 

of 5 - 20 seconds (Fig 2c,d). The second motion serie has been 

captured with a 4-camera system with 11 motions and 30 fps, a 

resolution of 640x480 px and a duration of 15 - 18 seconds per 

sequence (Fig. 2e,f). 

5.1 Feature Correctness 
To evaluate the correctness of the tracked features according to a 

later clustering and definition of body segments, we labeled the 

markers of over 30 motion videos to define a ground truth for 

relevant features. Here we only accepted features allocated on 

moving segments like arms and legs, because they allow a later 

clustering by segment. The evaluation led to a mean true positive 

rate of 81.11%, displayed in Fig. 3.  

5.2 Feature Stability 
To allow clustering based on motion features, it is important to 

track the features for as long as possible to get comparable motion 

trajectories. To evaluate this stability, we measured the ‘lifetime’ 

of features, namely the number of frames that a feature is tracked 

until it is rejected. We analyzed the ‘lifetime’ of features over all 

three sequences with approximately 50000 features. The mean 

lifetime over all features was about 100 frames as can be seen in 

Fig. 4. For the relevant ‘lifetime’, which must be longer than at 

least 10 frames we got about 73.77% of all features.  

5.3 Runtime Performance 
We evaluated the runtime on an Intel Core 2 Duo Processor 

machine with 2 GB RAM on seven different video sequences with 

500 frames per video sequence. The implementation and 

experiments have been realized with Matlab. As can be seen in 

Fig. 5 the overall runtime per frame of the presented motion-based 

feature tracker decreases by 74.54% compared to the usual 

pyramidal implementation, but depends mainly on the scenario.  

Figure 2: Results of feature reduction with the motion-based 

feature tracking (right) compared to the general KLT feature 

tracking (left) 

Figure 3: Statistical evaluation of correct detected features per 

frame with a mean true positive rate of 81.11%.  

Figure 4: Evaluation of ‘lifetime’ of features; the mean 

lifetime over all features is about 100 frames 



For the second sequence, the runtime decreases by 90.8%, but 

only about 50.85% for the fourth one. 

The runtime performance per feature decreases by 96.50%, shown 

in Fig. 6. We see that the improved performance depends not only 

on the decreased number of features to track, but also on the 

decreased area size, in which new features are searched.  

6. CONCLUSION 
We have shown an extension of the Kanade-Lucas-Tomasi feature 

tracking method which allows with a high accuracy the exclusive 

tracking of moving feature points. This motion-based feature 

tracking leads to better performance increase, and enjoys a good 

selection of features relevant for articulated body tracking. The 

results show potential for clustering feature points according to 

their 2D motion and the estimation of the underlying body 

structure.  
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