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1. ABSTRACT
In this work we present our efforts towards the multi-modal
estimation of a driver’s affective state under naturalistic con-
ditions. Multi-modal data from 18 subjects (2.3h) who in-
teracted with an automatic speech recognition system while
driving are recorded. A transcription protocol is designed
to provide a meaningful description of the driving environ-
ment. A data fusion model based on Bayesian network is
proposed and used for estimating a driver’s level of irrita-
tion. Information on transcription labels, physiological sig-
nals, driving behavior and speech recognition accuracy are
integrated. Preliminary results are very encouraging.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems—
human factors, human information processing; I.5.2 [Pattern
Recognition]: Design Methodology—feature evaluation and
selection; I.5.4 [Pattern Recognition]: Applications—sig-
nal processing

General Terms
Design, Human Factors
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2. INTRODUCTION
The assessment of a driver’s affective state becomes increas-
ingly important the more we understand the effect negative
emotions have on the way drivers behave. Emotions such as
anger often lead to openly aggressive actions, degrade infor-
mation processing, and increase the likelihood of an accident
[1]. The interpretation of a driver’s current affective state is
a key point for the development of intelligent in-vehicle inter-
faces, which help enhancing the driving experience, without
contributing to performance degradation.

There are only a few studies on driver’s affective state es-
timation and due to complications and costs imposed by
multi-modal driving data collection, the vast majority rely
on controlled laboratory settings, e.g., driving simulators.
Besides, given the richness of information available from the
driver and the driving environment, the use of knowledge
from a single modality can also be regarded as a drawback of
current approaches. For example, in [6], authors recognized
four emotional states—euphoria, disappointment, high, and
low stress—based on physiological signals. Data from ten
drivers were collected under laboratory conditions and emo-
tional states annotated by coders. Overall classification rate
was 79.3% using support vector machines (SVM). In [11], au-
thors relied on speech for the classification of four emotional
states—anger, confusion, joy, and neutrality. Data from ten
subjects were collected while they drove a driving simulator.
Overall accuracy of 77.8% was achieved also using SVM. In
[7], a facial expression-based emotion recognizer was pro-
posed. Six different types of facial expressions were acted
while subjects drove a real vehicle in a cloudy day. Recogni-
tion accuracies above 90% were reported, but experimental
conditions were described poorly and no information what-
soever on the number and characteristic of subjects was pro-
vided. In [4], authors recognized independently four emotion
primitives—valence (positive vs. negative), activation (calm
vs. excited), and dominance (weak vs. strong)—from clean
speech superimposed to vehicle noise. The clean signal was
obtained from utterances recorded during a talk-show. The
noise was recorded under various driving conditions. Er-
ror rates of 13%, 16%, and 15% were achieved for valence,
activation, and domination, respectively.

Reasonable recognition rates have been achieved under con-
trolled setups, but in order to ensure that results will be
applicable in real-world, algorithms still must be validated
under real driving conditions, which pose further difficul-
ties on the emotion recognition task. Not only the severe
noise coming from different sources, but also the dynamical
driving environment that continuously affect the way drivers
behave, may contribute to degradation of algorithms vali-
dated under laboratory or controlled naturalistic settings.
Results based on acted or carefully elicited emotions, al-
though useful to a certain extent, are also hardly repeatable
under real-world conditions. Consequently, the estimation of
a driver’s affective state in naturalistic environments poses
several challenges that still need to be met before significant
improvements in driving comfort can be observed.



In this research we focused on developing a system for esti-
mation of a driver’s level of irritation. Our system’s design
overcomes three crucial obstacles that limit the use of cur-
rent approaches to driver’s state estimation: (1) the use of
driving simulator data in experiments; (2) inaccurate anno-
tation of driver’s state; (3) the disregard for information on
the driving context. Some of these limitations affect not only
systems aimed at estimating a driver’s affective state, but
also systems focused on detecting conditions such as stress
or high workload.

3. MATERIALS AND METHODS
3.1 Data Collection and Transcription
To overcome the first limitation, we used in experiments
multi-modal real-world driving data, recorded from 18 drivers
(total of 2.3h). Video footage, driving behavior, and phys-
iological signals were recorded synchronously with audio in
a vehicle under both driving and idling conditions. Partic-
ipants drove on city streets in the city of Nagoya, Japan.
During the experiment, drivers interacted with a spoken di-
alogue system to retrieve and play songs from a list of 635
titles from 248 artists. Music can be retrieved by artist
name or song title, e.g., “Beatles” or “Yesterday.” All sub-
jects are trained in the proper method for performing the
retrieval prior to the start of the experiment. Experimental
setup was designed so that not only the traffic, but also the
human-machine interaction could be regarded as sources of
irritation. Detailed information on the recording apparatus
can be found in [10].

Given a real-world driving database, the problem of how to
interpret efficiently multi-modal information naturally arises.
While driving, our actions are, most of the time, carefully
planned after a complex cognitive decision-making process
that takes into account different variables such as weather
conditions, road structure, and traffic density. An effec-
tive transcription of multi-modal driving data is essential
for providing a meaningful description of traffic situations.
Assessing a driver’s state without fully understanding the
environment might lead to wrong conclusions. For example,
an assessment, based on physiological signals, of a driver’s
stress levels due to a secondary task is in essence inaccurate
because the causes of stress cannot be fully explained.

In this work, we proposed a transcription protocol for multi-
modal driving data that takes into account variables in six
major groups: driver’s affective state (level of irritation),
driver actions (e.g. facial expression), driver’s secondary
task, driving environment (e.g. type of road, traffic den-
sity), vehicle status (e.g. turning, stopped), and speech /
background noise. Data from all drivers were tagged by
six coders using video footage. Transcription reliability was
verified using Cohen’s kappa κ [3].

The second limitation of current approaches to affective state
estimation has to do with the way emotions are labeled on a
time series. Analysis of questionnaires subsequent to exper-
iments and subjective labeling by trained coders have been
widely used as labeling strategies. Although effective to a
certain extent, these procedures may fail to either represent
the actual emotional intensity or to precisely locate emotions
on a timeline. In this research we proposed a new labeling
strategy: after each experiment, the driver was asked to as-

Figure 1: Interface used for assessing level of irrita-
tion.

sess his/her level of irritation by referring to the front-view
and facial videos as well as the corresponding audio. A user
interface for such assessment, shown in Fig. 1, was designed
so that drivers could slide a bar from normal condition to
highest irritation. Resulting signal is a continuous metric of
driver’s state and can be used to model dynamical variations
in emotion.

3.2 Data Fusion
The third limitation of current approaches concerns the type
of information frequently used in driver’s state estimation.
While driving, emotions can be regarded as the result of
a wide range of contextual variables. For example, irrita-
tion can be related to factors such as high-density traffic,
long waits at red stop signals, and frequent obstructions of
the vehicle’s path by pedestrians. Therefore, a system that
takes into account not only drivers reactions, such as speech,
facial, and physiological changes, but also the environment
that may have caused these reactions, is highly desirable.
In this research, we proposed a mathematical model that
explicitly explains driver’s status based on both his/her re-
sponses and also on the driving context. Apart from the
level of irritation, assessed by drivers, other transcription la-
bels, and driver’s physiological state (skin potential), in this
work we introduce two new features for affective state esti-
mation: driving behavior (brake and gas pedals operation)
and recognition errors from the speech dialogue system. The
last is a binary feature, indicating the presence or absence
of errors that can be classified into three groups: deletion,
insertion, and substitution. A deletion error occurs when
a speech command is ignored or part of it is missing from
the recognition. A substitution error is a word mistakenly
recognized as another word. Finally, an insertion error is an
extra word which was mistakenly added.
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Figure 2: BN structure used in experiments.

In order to effectively estimate irritation, a model that inte-
grates evidence from multiple sources in an efficient language
is needed, and a Bayesian network (BN) is the natural choice
to deal with such task. A Bayesian Network (BN) is a knowl-
edge representation that creates a very efficient language for
building models of domains with inherent uncertainty. A
BN consists of a set of variables and a set of directed edges
between variables. Each variable has a finite set of mutu-
ally exclusive states. These variables, together with their
directed edges, form a directed acyclic graph (DAG). To
each variable A with parents Pa(A1), ...., Pa(An), there is
attached the potential table Pr(A|Pa(A1), ...., Pa(An)) [5].
Figure 2 shows our BN designed to integrate transcription
labels, driving behavior, physiological signals, and speech
recognition error. Squares represent discrete (tabular) nodes
and circle represents a continuous (Gaussian) node. Num-
bers represent the number of mutually exclusive states each
node can assume.

Conditional probabilities in the network were learned from
data. Individual networks were trained using 50 to 70%
of data from each driver. The remaining portion was used
for testing. Expectation Maximization (EM) algorithm was
used to calculated Maximum Likelihood Estimates (MLEs)
of the parameters. If Ai is a discrete node, the parameter
vector is θijk = Pr(Ai = k|Pa(Ai) = j), which is just a table
of numbers (conditional probability table). In the discrete
case, the sufficient statistics are Nijk, the number of times
the event (Ai = k, Pa(Ai) = j) occurs in the training set.
Since

θijk =
Pr(Ai = k, Pa(Ai) = j)

Pr(Pa(Ai) = j)
≈

1
N Nijk

1
N Nij

, (1)

where Nij =
P

k Nijk, the MLE is dθijk = Nijk/Nij . For
continuous nodes, on the other hand, means and covariance
matrices are calculated from training data. ML approach
can give severely over-fitted results for small data-sets, so
as a future work, we plan to investigate the introduction of
a prior distribution over the parameters. Detailed learning
process can be found in [9].

3.3 Feature Extraction
For representing the physiological state of drivers, we used
the skin potential signal, represented as S. Skin potential
is one of the basic methods for the measurement of Electro-
dermal Activity (EDA), which is a term used to describe
changes in the skin’s ability to conduct electricity in re-
sponse to, for example, stress or anxiety [2]. S was first
down-sampled to 10 Hz and low-pass filtered using a second-
order Savitzky-Golay smoothing filter with a length of 40.1
seconds, forming a smoothed skin potential G. Filter char-
acteristics satisfactorily removed high-frequency noise from
the raw signal. The G signal was then normalized as follows:

G̃ =
G− µG

max(G)
. (2)

µG and max(G) represent, respectively, the mean and max-
imum of skin potential of all training and testing data for a
given driver. Let G̃(n) represent the value of the nth sample
of the smoothed signal, where n = 1, ...., N, with N = 128.
We investigated the following two statistical features:

1. Mean of normalized signal (mean skin potential):

f1 =
1
N

NX

n=1

G̃(n) (3)

2. Absolute value of the first-order difference of the nor-
malized signal (∆ skin potential):

f2 =
NX

n=1

˛̨
˛G̃(n + 1)− G̃(n)

˛̨
˛ . (4)

Features were calculated for a window size N of 128 and
shift of 5 points. f1 was further quantized into four levels
and f2 into two.

For the network’s driving behavior node, features were ex-
tracted through spectral analysis of the gas and brake pedal
signals by using a special feature called “cepstrum,” which
is defined as the inverse Fourier transform of the short-term
log-power spectrum. Cepstral coefficients proved to be very
effective in driver modeling and identification using pedal
operation [8]. The cepstral coefficients were obtained as fol-
lows:

c(m) =
1
N

N−1X

k=0

log |X(k)|e2πkmj/N , (5)

m = 0, 1, ...., N − 1.

where X(k) denotes the N -point discrete Fourier transform
of the windowed signal x(n).

Cepstral analysis is a source-filter separation process com-
monly utilized in speech processing. By keeping only the
first several coefficients in the lower “quefrency” and setting
others to zero, we can obtain a spectral envelope, the filter,
which represents the process of acceleration or braking. On
the other hand, a fine structure of the spectrum, the source,
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Figure 3: Result of irritation estimation for driver
1.

which works as the command signal for hitting a pedal, can
be obtained by maintaining a higher “quefrency” range and
setting the lower “quefrency” coefficients to zero. Cepstral
coefficients c(0) to c(7) and their time derivative, calculated
from a window of 1.0 seconds for brake and gas pedal sig-
nals, were utilized as features. Irritation level was linearly
quantized into five levels; therefore driving behavior node
was represented by five 32-dimensional Gaussians, one for
each level. Before cepstral analysis, gas and brake signals
were down-sampled to 10 Hz, and a median filter of 500 ms
was utilized to remove spikes. Features were calculated us-
ing an analysis window of length N = 128 and shift of 5
points.

Transcription labels were also processed before being input
in the network. To better model the influence of labels on
drivers, anticipatory effects due to planning and persistence
effects due to slow recovery should be taken into account.
Using one of the basic operators in the field of mathemat-
ical morphology, called dilation, signals were dilated, i.e.,
had boundaries enlarged using a structure element of five
seconds. The level of irritation, after quantization, was also
dilated using the same structure element.

3.4 Evaluation
We evaluated the capacity of the proposed system to detect
irritation. Estimation and actual irritation, originally hav-
ing five states, were quantized into two levels: irritated and
not irritated. We then filtered the estimation using a me-
dian filter of ten seconds in order to reduce spikes and short
gaps. In order to estimate the overall detection effective-
ness, we added together true/false positives/negatives from
all drivers, so that we could calculate a single point in the
ROC space. We also specifically investigated the importance
of the two proposed features: driving behavior and speech
recognition error, by training networks with and without
information on these two nodes.

4. RESULTS AND CONCLUSIONS
Figures 3 and 4 show examples of estimation results. Solid
lines indicate the actual level of irritation, while dashed lines
indicate the estimate. Irritation observed from approxi-
mately 100 to 130 seconds was correctly detected in Fig.
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Figure 4: Result of irritation estimation for driver
2.

3. Results shown in Fig. 4 are also satisfactory, although
the classifier was unable to follow the actual level in great
details. Networks trained without information on neither
speech recognition nor driving behavior nodes achieved an
overall true positive (TP) rate of 0.65 for an overall false pos-
itive (FP) rate of 0.19. When adding information on driving
behavior and speech recognition error, TP rate and FP rate
were 0.71 and 0.13, respectively. Adding the new evidences
improved the estimation. Results are reasonable and very
encouraging, especially given the multiple challenges of a
driver’s affective state estimation under real driving condi-
tions.

In this work we proposed a new approach to affective state
estimation. Our main contributions were: the design of a
transcription protocol for various detailed events; the intro-
duction of a new mathematical model for representing mu-
tual dependencies between driver and driving context; and
the investigation of the effect of pedal operation and speech
recognition error on irritation estimation—adding new evi-
dences improved the estimation. Nevertheless, this is a pilot
study and additional feature extraction methods have to be
investigated, as well as the extension to dynamical BN.
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