
 
Figure 1 Top-down view of the one of attention
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ABSTRACT 
 The estimation of the direction of visual attention is critical to a 
large number of interactive systems. This paper investigates the 
cross-modal relation of the position of one’s feet (or standing 
stance) to the focus of gaze. The intuition is that while one CAN 
have a range of attentional foci from a particular stance, one may 
be MORE LIKELY to look in specific directions given an 
approach vector and stance. We posit that the cross-modal 
relationship is constrained by biomechanics and personal style. 
We define a stance vector that models the approach direction 
before stopping and the pose of a subject’s feet. We present a 
study where the subjects’ feet and approach vector are tracked. 
The subjects read aloud contents of note cards in 4 locations. The 
order of ‘visits’ to the cards were randomized. Ten subjects read 
40 lines of text each, yielding 400 stance vectors and gaze 
directions. We divided our data into 4 sets of 300 training and 100 
test vectors and trained a neural net to estimate the gaze direction 
given the stance vector. Our results show that 31% our gaze 
orientation estimates were within 5°, 51% of our estimates were 
within 10°, and 60% were within 15°.  Given the ability to track 
foot position, the procedure is minimally invasive. 

Categories and Subject Descriptors 
H.5 INFORMATION INTERFACES AND PRESENTATION 
(e.g., HCI) (I.7) I.5 PATTERN RECOGNITION,  

General Terms 
Human Factors 

Keywords 
Human-Computer Interaction, Attention Estimation, Stance 
Model, Foot-Tracking, Multimodal Interfaces 

1. INTRODUCTION 
The estimation of a subject’s zone of attention is important to 
such domains in human-centered computing as computer-
supported collaboration, teaching and learning environments, 
context-aware interaction, large-scale visualization, smart homes, 

multimodal interfaces, wearable computing, and analysis of group 
interaction. Systems that estimate such attention typically involve 
intrusive sensing technology such as video tracking and wearable 
technology. In this paper, we explore the possibility of estimating 

one’s ‘zone of attention’ by tracking one’s footfalls and standing 
stance. The specific mode of tracking is not the focus of this 
paper, although one might imagine pressure sensitive carpets with 
[1, 2] thin piezoelectric cables [3], sensorized tiled floors [4-8], 
and a variety of wearable devices [9-11]. If such zone of attention 
estimation is possible, a range of multimodal interactive systems 
will be enabled that present timely information on ambient 
displays, support human meetings by estimating the zone of 
attention of one’s interlocutor, and create active displays that are 
attention-sensitive. 
By ‘zone of attention’, we mean the sector of visual space of a 
subject. Our interest here is not in the exact angle of gaze as might 
be required when using an eye-tracker to support gaze control of a 
screen cursor. Rather, we want to estimate the general zone of 
attention (or where the subject is looking) centered on some sector 
axis as shown in Figure 1. Observe that our estimate does not 
require that the center of the attention zone be coincident with the 
‘nose-forward’ vector. 
Our approach is to exploit the anatomical and behavioral 
constraints of the subject when her feet are set and to employ a 
biomechanical model from whose parameters we estimate the 
zone of attention using a classifier or by function estimation. In 
Section 2, we discuss the rationale for our approach by reviewing 
the need for gaze/awareness, and reviewing existing attention 
awareness approaches. We show that there is need for a coarse-
scale attention estimation approach that is able to work over a 
large area. In Section 3, we ground our approach by outlining our 
biomechanical assumptions and discussing our model. In Section 
4, we describe our empirical approach and report our 
experimental results. We conclude in Section 5. 

2. Attention Awareness and Tracking 
2.1 Rationale 
We make a distinction between gaze tracking and attention 
awareness. The former typically requires precise detection of the 
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angle or locus of gaze so that, for example, one may control a 
screen cursor with the output. Attention awareness requires that 
the zone of gaze be detected to determine the object or area of 
visual attention. The focus in this paper is the latter. The ability to 
detect attentional focus is critical to a wide variety of multimodal 
interaction and interface systems. These include computer-
supported group interaction [12-16], wearable computing, 
augmented reality [17-21], context/attention aware applications 
[21-26], education and learning [26, 27], smart homes [28, 29], 
and meeting analysis [30-36]. In many of these applications, non-
intrusiveness in the mode of sensing is more important than the 
accuracy of gaze angle tracking. We investigate the estimation of  
the zone of attention from a standing stance unobtrusively using 
information that may be obtained entirely from a sensing carpet, 
smart floor, or instrumented shoes. In this section, we review the 
state of the art in tracking visual attention, discuss the biometric 
and psycho-social behavioral constraints in direction of visual 
attention with respect to stance, and advance our model for zone 
of attention detection and tracking. 

2.2 Review of Attention Awareness 
Approaches 
Allocation of attention is a key aspect of collaboration, meeting 
conduct, and interaction that is a prime determiner of information 
flow among participants or supporting technologies. Gaze has 
long been recognized as a primary indicator of zone of attention 
and as a conversational resource that assists participants in 
assessing connection, comprehension, reaction, responsiveness, 
and in interpreting intention [37]. Other researchers have 
investigated the attentional behavior of subjects who are 
observing the gaze of others [38, 39]. As several researchers point 
out, however, it is still possible to visually fixate one location 
while diverting attention to another [40, 41]; even though eye 
tracking may be highly accurate, gaze direction is not necessarily 
a highly accurate estimator of attentional focus. 
Eye tracking has been by far the technology of choice for gaze 
estimation. There has been much interest in the use of gaze to 
control interaction [42, 43], to modify information presentation 
[44-46], and to interact directly with data [47]. Duchowski [40] 
partitions eye tracking applications into either diagnostic or 
interactive categories, depending upon whether the tracker 
provides objective and quantitative evidence of the user’s visual 
and attentional processes or whether it serves as an interaction 
device. 
Eye tracking has been of intense interest for many years, and 
many techniques have been proposed [48]. Some, such as 
electrooculography [49], which involves attaching electrodes near 
the eyes, and magnetic eye-coil tracking, which involves special 
contact lenses, are particularly invasive and uncommon. Most 
current tracking methods are video based and fall into one of two 
categories, using either infrared illumination or passive tracking. 
The use of remote fixed cameras is not of great interest except in 
special studies because of the problems of occlusion, head 
tracking, and tracking multiple subjects simultaneously. Excellent 
work has also been done in the case of head mounted trackers to 
minimize the invasiveness of the camera, mount, and cabling [50], 
but the apparatus is always present in front of the wearer. 
The so-called limbus trackers are usually passive trackers that 
utilize ambient light to track the limbus, which is the junction 

between the iris and the white surrounding sclera. These trackers 
are somewhat simpler since they do not require a special 
illumination source but suffer from the uncontrolled nature of the 
ambient light and limitations in vertical tracking due to eyelid 
movements. On the other hand, the use of an infrared illumination 
source makes it practical to track the pupil, which is a more 
sharply defined and less occluded feature than the limbus. 
However, infrared trackers can suffer in the presence of other 
infrared sources such as natural sunlight. Other infrared trackers 
make use of the so-called Purkinje images [51], which are due to 
reflections from the several optical boundaries within the eye such 
as the surfaces of the lens and cornea. The measurement of 
individual features requires that the head position be fixed or 
tracked; sophisticated trackers can avoid this by tracking features 
that move differentially when the eye moves as opposed to the 
head. More important, neither approach is feasible for estimating 
attention of subjects over a large space. 
Some eye trackers separate the process of determining head 
orientation from the local process of determining eye orientation 
given the head pose [52-55]. Others have proposed the use of 
head pose alone as an estimator of gaze direction [41, 56, 57] in 
order to eliminate the need for invasive head mounted hardware. 
Stiefelhagen’s results [41, 57] provide strong evidence to support 
the effectiveness of head orientation alone as an estimator of focus 
of attention. 
The prime deterrents to the use of eye trackers for gaze analysis 
have been the cost of eye tracking, its invasiveness, its lack of 
robustness, and the difficulty of performing the analysis 
simultaneously on large groups of meeting or collaboration 
participants. Yet other problems concern calibration, dynamic 
range, response time, and angular range. Since gaze direction does 
not uniquely determine focus of attention, there are many 
applications in which determining zone of attention to high 
accuracy (< 1 degree) is unnecessary, applications for which gait, 
location, identity, and pose are sufficient estimators of the desired 
information. 
The advent of wearable computing has sensitized researchers to 
the need for deeper context awareness that includes, among other 
things, the pose and location of the wearer. As always, the 
dilemma is how to determine this information as noninvasively as 
possible, simultaneously for multiple individuals, and over a large 
area where the motion of users are minimally constrained. Our 
hypothesis is that useful estimates of zone of attention can be 
obtained from floor stance and approach vector, so that the search 
for suitable sensor systems can be shifted to shoe and floor 
systems. An extensive sensor system for determining floor stance 
has been proposed by the Responsive Environments Group at the 
MIT Media Laboratory in which each participant shoe is fitted 
with a rich complement of wireless sensors [9-11].  
In summary, head-mounted and wearable trackers encumber the 
user; many are still tethered by cabling, which is especially 
problematic in multi-user environments. Other systems that 
employ video and electromagnetic technology restrict the 
movement of the user to the effective tracking volume of the 
technology. 
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Figure 3 Degrees of freedom of attention with fixed stance
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Figure 2 Coordination of eye, head and trunk rotation 
during gaze shift.  Diagram of a typical 90° turn (five 

phases) after locomotion approach to a target at T 
(Land, 2004).  Eye movement completed by phase 2, 

head movement completed by phase 4, and trunk rotates 
continuously until phase 5 – with feet directed forward

 
Figure 4 Subject stance and gaze estimation 

model 

3. Stance Model 
3.1  Biomechanical Orientation Constraint 
Floor stance and approach vector during locomotion can provide 
useful estimates of zone of attention. Figure 3 shows the degrees 
of freedom available to a human viewer when the feet are set. 
Human locomotion is guided by optic flow and egocentric 
direction strategy utilizing variant degrees of target visual context 
[58-61]. Optic flow describes temporal changes in image structure 
as a walker moves; and egocentric direction strategies describe 
how one walks in different contexts (e.g. in dimly lit areas one 
may use egocentric coding that minimizes angular distances to the 
goal.) The assumption behind both of these locomotion strategies 
is that the goal is visible, and as such, directly related to the 
salience of the visual context [62]. The saliency dependence of the 
visual context suggests that gaze transient (i.e., flow and 
direction) of a target is an important parameter for goal directed 
gait. This can be conceptualized as a constraint on the way one 
approaches a target of focal attention prior to the static (standing) 
stance or configuration. 

Gaze control involves motion coordination of eyes, head and trunk 
to allow both flexibility of movements and stability of gaze. During 
straight walking, gaze is maintained in the direction of forward 
locomotion with small head yaw oscillations in space, despite 
relatively large oscillations and lateral displacements of the body. A 
study investigating three-dimensional head, body and eye angles 
during walking and turning, it was found that the peak body yaw of 
3.5˚ in space was compensated by the relative peak head yaw of 3˚, 
which consequently resulted in a very small head yaw angles (less 
than 1˚) in space. Additionally, the naso-occipital axis of the head 
was closely aligned with the anterio-posterior direction of 
locomotion [63]. The head pitch and roll angles peaked at 
approximately 3˚ as observed both in over-ground walking [63] and 
in treadmill walking [64, 65]. In terms of gaze behavior, eyes were 
found to spend the majority of the time (78.8%) fixating the aspects 
of the environment along the direction of locomotion and a small 
amount of time (16.3%) searching for possible future routes. What 
appears to be random point inspecting only took 4.9% of the time 
during walking [66]. Furthermore, such gazing patterns (fixating 

along the direction of walking) appeared not to be influenced by 
individual differences [66]. 
During turning, gaze is directed in advance of the body heading, 
and after turning, gaze is returned to align with the direction of 
motion. During a 90˚ turn while walking, head yaw was 
maintained smoothly in space, with a maximum 25˚ deviation 
from the heading direction of the body [63]. Eye position, 
however, was found to shift in saccades in the direction of turn 
(Figure 2), reaching yaw angles as high as 50˚ relative to the head. 
Once the turn was complete, eye position and foot position 
returned to zero relative to the head [67]. Our goal, then, is to 
determine the pattern of behavior that relate both the vector of 
approach and the final pose of the static stance with the likely 
final focus of attention. 

3.2 Modeling Stance and Attention 
In addition to biomechanical constraints in the previous section, 

we add behavioral constraints of instrumental gaze. In our work 
on meeting analysis [30-32, 35, 68], we observed that there is a 
difference between interactive deployment of gaze and an 
instrumental one [32, 69-71]. Interactive gaze takes place between 
people, and is influenced by aspects of social behavior such as the 
avoidance of ‘nose-to-nose’ fixations, and back-channeling 
behavior. Instrumental gaze involves the deployment of gaze for 
the purpose of acquiring information (such as reading, or viewing 
a graphic). Our preliminary analysis of meeting room data 
suggests that there is greater variation in gaze deflection from the 
‘nose-forward’ vector of head orientation for interactive gaze with 
respect to instrumental gaze. Since our interest is in instrumental 
use of gaze with technology, our expectation is that eye deflection 
variability is reduced for such activity. Furthermore, the kind of 
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Figure 6. Experiment setup 

instrumental gaze necessary to access information requires the 
deployment of central-foveal vision. 
Figure 4 illustrates our base model of stance for the estimation of 
the zone of visual attention. We call this the base model because 
we expect that our model will have to evolve as more is known 
about the relationship between gaze and stance. The reference 
frame of the model is formed by the connecting line between the 
centers of mass of the feet, and the normal to that line in the 
forward direction of the subject (shown as the x-y reference frame 
in Figure 4). The orientations of the right and left feet are 
described by the angles φr and φl respectively. The approach angle 
γ describes the direction of locomotion prior to stopping in the 
resultant pose. d describes the width of the stance. The angle θT is 
the angle of gaze to the target of attention as a deflection off the 
stance normal. By this model, vi = [φr, φl, d, γ] constitutes an 
input stance vector, and the value θT is the output value to be 
estimated. 

4. Experiment 
To test the hypothesis that stance may be a predictor of gaze 
direction, we designed an experiment where subjects are required 
to read a series of lines of text that are mounted on aluminum 
posts. The text is small so that the subjects had to move to the 
target to read the lines. We tracked the feet of the subjects to 
obtain the stance vector and used a neural net approach to learn 
the gaze direction. The point of this experiment is not to advance 
any specific learning approach. It is to ascertain if any patterning 
exists by which our cross-modal hypothesis may be validated. 

4.1 Experiment Design 
Figure 5 shows the plan view of our experimental configuration. 
Since our model describes only horizontal gaze deployment 
(Figure 4 does not include viewing pitch) the target cards are set 
at eye height for each subject. Figure 6 shows a picture of our 
experimental setup in the laboratory. Two gaze targets can be 
seen. We employ our Vicon near-infrared motion trackers to 
estimate the parameters in our model to obtain the stance vector, 
vi = [φr, φl, d, γ]. By tracking the retro-reflector marker 
configurations on the frame attached to the subject’s shoes (see 
Figure 6 inset), our experiment software produces a time-
stamped stream of quaternions from which we derive the basis 

vectors of the tracked frame for each foot. To simplify the 
determination of the approach vector, we also track the location 
of the subject’s head (tracked goggles in Figure 6). This also 
gives us access to the subject’s head orientation, although we 
did not use it for this experiment. 

By having the subject place her foot in a box of known 
coordinates and orientation marked on the floor we obtain the toe-
forward vector from the basis frame of each tracked position. 
Given the unit basis matrix BC of the calibration box, and the unit 
basis matrix B0 of the tracked frame attached to a foot, we obtain 
the tracking transformation Mf = BC × B0

T (for foot f, where f is r 
or l for the right and left foot respectively). Given a subsequent 
tracked unit basis matrix Bi, the toe-forward frame is simply given 
by Mf × Bi. 
The subjects are directed to read lines in 12-point font printed on 
3×5 cards placed at in four known coordinates in the laboratory 
(pictured in Figure 6, and labeled A, B, C, D in Figure 5). Each 
line of each card contains three columns: a sequential index (A.1, 
A.2 … for card A, B.1, B.2 … for card B etc.), a line of text to be 
read, and the index of the next line to be read. The station for the 
next line to be read is randomized so that the subject will go from 
station to station to read the next line. The small fonts ensure that 
subject must move from one station to the next. The subject reads 
each line aloud so that we know when her attention is fixed on the 
target 3×5 cards. With this information, we can extract the 
parameters described in Figure 4 (Section 3.2). Each time a target 
is read, we record a stance vector vi=[φr, φl, d, γ] and attention 
angle θT. For each trial, the subject reads 40 lines randomly 
located at the 4 targets. This trial is repeated 10 times with 10 
subjects, yielding a training dataset containing 400 vectors. 

4.2 Gaze Estimation from Stance 
We employed a standard three-layer backpropagation neural 
network parameter approach [72] to estimate θT from vi. 
Kolmogorov [73, 74] showed that any continuous function can be 
represented as a linear additions of multiple continuous functions. 
In our implementation, the input layer has four neurons for the 
input of the four parameters φr, φl, d, γ. The output layer has one 
neuron for the parameter θT and the hidden layer has 15 neurons 
(using a rule of thumb of between 4 and 5 times the number of 
input neurons) [72]. The network was initialized with random 
weights. After training with samples, the network can learn the 
relationship [φr, φl, d, γ] → θT. We can apply it to estimate the θT 
for some new vi. For our study, we divided our dataset into four 

 
Figure 5 Plan view of experimental setup 
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Figure 7 Histogram of errors of θT estimates 
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Figure 8 Error estimates plotted against absolute deflection in 

test data 

sets of 300 training vectors and 100 test vectors. We trained our 
network on the former, and ran the resulting network using the 
stance vectors from the latter group. 

4.3 Results and Discussion 

Figure 7 is an histogram of the absolute difference abs(θT
' - θT), 

where θT
' is the estimated attention direction and θT is the 

measured direction. For this dataset, 31% of the estimations fell 
within 5º of the measurements. 51% of estimations were within 
10º, and 60% of the estimates were within 15º of error. 

Figure 8 shows plots the absolute values measured θT against the 
absolute error abs(θT

' - θT) for a particular dataset (testing against 
100 vectors). This shows that our estimation error increases with 
the size of deflection. Given the limited size of our dataset (only 
400 samples), this might be expected since the data becomes 
sparser with larger θT. 
These results show an estimation accuracy far in excess of chance. 
For example, assuming that the subject is capable of viewing 180º  
from a particular stance, chance would predict that a 5º estimate 
of 2.77%, a 10º estimate at 5.56% and a 15º estimate at 8.33%. It 
should be noted that this experiment did not take individual 
differences into account, and the training sets are not extensive. 
Hence, one might expect that the results to improve with more 
user-specific training. Also, we acknowledge that our stance 
vector is an initial principled guess. One might imagine that 
extension of the stance vector to include weight distribution, 
subject parameters (e.g. height), etc. the estimate may be 
improved. Our purpose here is to advance a proof-of-concept for 
consideration by the research community. 

5. Conclusion and Future Work 
We have demonstrated a rather audacious presupposition that one 
is able to estimate a subject’s instrumental gaze direction or 
attentional focus from her approach vector and standing stance.  
We presented our rationale for our research by reviewing the need 
and the technologies for gaze/attention estimation. We showed 
that there is need for a non-intrusive coarse scale attention 
estimation approach that is able to track over a large area.  
We ground our proposed stance model and the expectation that 
we may be able to estimate attention from stance by discussing the 
biomechanics of approach and gaze fixation. We present our 
stance model comprising only four parameters. 
We present a set of experiments by which we track subjects’ feet 
and approach vector to an attention target using a motion tracking 
system. Subjects were required to move to one of four stations 
randomly and read a line of text. We extracted 400 stance vector – 
attention direction sets, and employed a neural net system to learn 
the relationship. The results are promising. 
While the results are promising, more needs to be done. The 
approach is to find a mapping between the stance vector and the 
direction of attention. Our initial stance vector, while arrived at in 
a principled manner, ignores many other possible vectors that may 
be deterministic. Examples of these include weight balance (right 
foot vs left foot, forward lean vs backward lean), dynamics of 
approach, and duration of gaze.  
Also, in our study, our subject approached an initial target and 
directed visual attention at it. We can think of this as the initial 
zone of attention from a particular stance. This does not address 
the retargeting of attentional focus from such a fixed stance after 
the initial attentional gaze. We conjecture that once a stance is 
fixed, there is a ‘zone of comfort’ where a subject can redeploy 
gaze without moving her feet (shifting her stance). This might 
occur when the subject has selected a stance for a particular initial 
target and a new target appears in close proximity to the original. 
Let δx be the distance of some secondary target from the initial 
target. To characterize the range of δx, a second type of 
experiment is required that utilizes a large display system such as 
our tiled wall-sized display (seen in the background in Figure 6). 
When an initial target is displayed, the subject approaches and 
reads as before. Secondary targets are displayed at different δx’s 
to determine typical range thresholds that engage adjustment of 
stance. The range of these ‘within-stance attention redeployments’ 
may require extension of the stance vector to include balance 
components, or it may define a zone of uncertainty of secondary 
gaze targets.  
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