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ABSTRACT 
It is of prime importance in everyday human life to cope with and 
respond appropriately to events that are not foreseen by prior 
experience. Machines to a large extent lack the ability to respond 
appropriately to such inputs. An important class of unexpected 
events is defined by incongruent combinations of inputs from 
different modalities and therefore multimodal information provides 
a crucial cue for the identification of such events, e.g., the sound of a 
voice is being heard while the person in the field-of-view does not 
move her lips. In the project DIRAC (“Detection and Identification 
of Rare Audio-visual Cues”) we have been developing algorithmic 
approaches to the detection of such events, as well as an 
experimental hardware platform to test it. An audio-visual platform 
(“AWEAR” – audio-visual wearable device) has been constructed 
with the goal to help users with disabilities or a high cognitive load 
to deal with unexpected events. Key hardware components include 
stereo panoramic vision sensors and 6-channel worn-behind-the-ear 
(hearing aid) microphone arrays. Data have been recorded to study 
audio-visual tracking, a/v scene/object classification and a/v 
detection of incongruencies. 

Categories and Subject Descriptors 
H5.1 [Multimedia Information Systems]: Multimedia Information 
Systems – Artificial, augmented, and virtual realities.  
I.5.5 [Pattern Recognition]: Implementation – Interactive systems, 
Special architectures. 

General Terms: Algorithms, Design, Experimentation, 
Human Factors, Security. 

Keywords: Augmented cognition, multimodal interaction, 
audio-visual, event detection, sensor platform. 

1. INTRODUCTION 
Under normal conditions, humans show a remarkable ability to 
identify and respond to unforeseen stimuli and events. Appropriate 
responses have frequently significant consequences (high utility), 
e.g., a car that suddenly approaches can lead to a potentially 
dangerous situation. Persons with sensory impairment (e.g., elderly) 
or high cognitive load (e.g., security personnel) would benefit from 
an assistive device that automatically detects such events and directs 
their attention towards them. 
Algorithmic identification of unexpected events is non-trivial since 
they frequently do not have the properties of simple outliers. For 
example, individual features may be well within their normal 
ranges, but their combination is atypical. In this manner, the 
components of such stimuli may “make sense” but their 
combination is unexpected in certain contexts or situations. The 
notion of incongruencies is therefore closely linked to unexpected 
events, and incongruencies across modalities are particularly 
prominent to motivate our research of rare events detection on 
multimodal processing. 
This contribution presents our initial progress towards developing a 
theoretical framework and a physical device for detection of 
unexpected events and highlights some results. The conceptual 
approach and its relevance for machine learning is outlined in 
section 2. We present building blocks of an audio-visual system that 
permits audio-visual tracking and classification in section 3. A high-
level cue integration system combines audio and video streams to 
perform multi-modal classification and detect incongruencies across 
modalities (section 4). The first example applications outlined here 
is an audio-visual gender detection task where incongruency is to be 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ICMI’08, October 20–22, 2008, Chania, Crete, Greece. 
Copyright 2008 ACM  978-1-60558-198-9/08/10...$5.00. 
 

289



detected when gender estimates based on visual appearance and 
speech characteristics diverge. Another task presented aims at 
audio-visual identification of in- or out-of-trusted-group subjects. 

2. RARE AND INCONGRUOUS EVENTS 
Machine learning systems build models of the world using training 
data sampled from the application domain as well as prior 
knowledge about the problem. These trained models are applied to 
new data in order to estimate the current state of the world. An 
implied assumption is that the future is stochastically similar to the 
past. This approach fails when the system is confronted with 
situations that are not anticipated from the past experience.  
In contrast, successful natural organisms identify new, unanticipated 
stimuli and situations and frequently generate responses that are 
most appropriate in these situations. Unexpected stimuli are 
indicated and can be defined by incongruence between the 
predictions induced by the prior experience (training) and the 
evidence provided by the sensory data. 
Our work attempts to emulate this biological ability by developing a 
theoretical framework for incongruent stimuli. To identify input as 
an incongruent stimulus, i.e., one that is not an element of a known 
class of objects or events, we use two parallel classifiers. The first is 
strongly constrained by specific knowledge (both prior and data-
derived), available for a particular class of items. The second 
classifier is more general and less constrained, potentially 
comprising a superset of the objects recognizable by the more 
specific classifier.  Both classifiers are assumed to yield class-
posterior probabilities in response to a particular input signal.  A 
sufficiently large discrepancy between posterior probabilities 
induced by input data in the two classifiers is taken as indication that 
an object or event should be considered to be incongruent. 
There are various ways to incorporate prior hierarchical knowledge 
and constraints within different classifier levels. One approach, used 
to detect images of unexpected, incongruous visual objects, is to 
train the more general, i.e., the less constrained classifier using a 
larger more diverse set of stimuli, e.g., two wheeled vehicles and the 
other classifier using a more specific (i.e. smaller) set of more 
specific objects (e.g. bicycles). An incongruous item (e.g. motor 
bike) could then be identified by smaller posterior probability 
estimated by the more specific classifier relative to the probability 
from the more general classifier.  

A different approach was applied in our work on identifying 
unexpected (out-of-vocabulary) lexical objects, e.g., new words [3]. 
The more general classifier was trained to classify (segment) speech 
into a sequence of phonemes, thus yielding an unconstrained 
sequence of phoneme labels. The more constrained classifier was 
trained to classify a particular set of words (highly constrained 
sequences of phoneme labels) from the information available in the 
whole spoken sentence. A word that did not belong to the expected 
vocabulary of the more constrained recognizer could then be 
identified by discrepancy in posterior probabilities of phonemes 
derived from both classifiers. To compare posterior probability 
streams, several techniques have been used, e.g. based on simple 
Kullback-Leiber (KL) divergence. Current version of the system is 
able to work with quite large vocabulary of about 5000 words. 
Multimodal information streams present a related means to detect 
incongruous events within this framework. The unimodal classifiers 
are regarded as weakly constrained and their classification results 
are used as input for a “fusion” classifier. An incongruency between 
the unimodal streams will be detected as the disagreement between 
the more constrained fusion classifier and one of the unimodal 
classifiers, provided that the unimodel outputs are obtained with a 
sufficiently high confidence score. 

3. THE AWEAR PLATFORM 
In order to experiment with the proposed framework in the 
multimodal arena we developed the mobile audio-visual hardware 
platform “AWEAR” (“audio-visual wearable device”, schematically 
depicted in Fig. 1). Extensive data recordings have been carried out 
in realistic environments and situations during which audio-visual 
data from several prototypical situations comprising audio-visual 
incongruent events have been obtained. 
The processing pipeline of the system is shown in Fig. 2. The 
unimodal sensor streams are first preprocessed and then fed into 
detection and tracking modules. These provide the inputs for the 
high-level sensor fusion system that performs multimodal 
classification and the detection of incongruous events. 
Vision data has been acquired by an omnidirectional camera 
consisting of the Nikon FC-E9 lens and Kyocera Finecam M410R 
providing 180 degrees of field of view at resolution 0.23 degrees per 
pixel and 3 frames per second.  Omnidirectional imaging helps to 
monitor a large surrounding of the user in a small number of images 
and thus detect many events at the same time at acceptable data 
flow. The exotic image projection was rectified by using automatic 
camera calibration [8, 13] to generate perspective cutouts or 
cylindrical panoramas which  ease further image processing and  
face and pedestrian detection. For moving cameras, structure from 
motion [9] can be used to estimate camera motion and to rectify the 
images as if taken by a steady camera [13]. 
Audio data has been recorded with a 6-channel worn-behind-the-
ears microphone array that consists of two hearing aid satellites, one 
behind each ear and each with three microphones. The resulting 
system is very unobtrusive and its geometry can be considered as a 
hybrid incorporating bio-inspired (binaural system) and engineering 
elements (near-linear 3-channel sub-arrays). Data was converted to 
digital using an Edirol FireWire AudioCapture FA-101 AD/DA-
converter. Depending on the setup of the recording situation, one or 
two additional channels have been recorded from close-talking lapel 
and headset microphones (Shure and Sennheiser, respectively).  

 
Figure 1: Schematic of the AWEAR setup. 
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3.1 Video Processing 
On the vision side, we combine a pedestrian detector with a face 
detection approach in order to deliver robust performance for a 
range of different distances. 
For pedestrian detection, we use the Implicit Shape Model (ISM) 
approach introduced in [10], which has been shown to work well in 
similar applications. This approach represents an object category by 
a set of local appearance features (a codebook), extracted by an 
interest point detector, and their learned spatial occurrence 
distributions. Because of the unequal camera resolution, objects that 
are farther away appear very small in the image, while foreground 
objects grow disproportionally large (and additionally suffer from 
distortions). Hence, several adaptations are necessary in order to 
apply this approach to the omnidirectional images available from the 
AWEAR platform. While in principle possible, it would be 
computationally inefficient to directly work with an omnidirectional 
camera geometry. Instead, we try to let the detector operate at its 
optimum resolution by creating a cylindrical panorama from the 
original omni-directional image. This way, pedestrians approaching 
the AWEAR setup in a 180° field of view are well visible and only 
show distortions when they get very close to the camera (at about 
1.5m distance). 
In addition, we can make several simplifying assumptions that 
together make detection considerably more robust. Using our 
knowledge about the camera setup, we can constrain pedestrian 
detections to lie on the ground plane. This results in a significant 
reduction of the search space for possible objects and thus speeds up 
detection. In addition, we impose a prior on plausible object sizes, 
which helps reduce the number of false detections.  
For face detection, we use a detector based on the well-known 
approach by Viola & Jones [14]. The detector is applied by sliding a 
detection window over the image at different scales and clustering 
the responses. The particular detector we use is trained on frontal 
faces, but exhibits some tolerance to small pose changes of up to 20-
30 degrees. The face detector is employed in combination with 
pedestrian detection. It serves two main purposes. One is to observe 
people at close range to the camera, where pedestrian detection may 
fail since only part of their body is visible. The second purpose is to 
identify if somebody in the surroundings is facing the AWEAR user 
and, if this is the case, deliver a close-up view of such a person’s 
facial area for visual gender recognition. 

3.2 Audio Processing 
Preprocessing methods used for the audio stream are motivated by the 
fact that real audio data is characterized by its strong amplitude 
modulation content, i.e., signal energy exhibits a large variance when 
observed with a time-constant of about 30 ms. To capture the 
modulation structure of the sounds, signals were first decomposed into 
17 different spectral “ERB” bands from about 50 Hz to about 3800 Hz 
with a spectral width of one ERB unit that resembles the 
logarithmically scaled sensitivity of human and animal auditory 
systems. Log-scaled signal amplitudes within each band were 
analyzed with a second spectral decomposition of 1 s long windows 
that characterized the time-scale of the amplitude modulations from 2 
Hz to 30 Hz within this spectral band. Hence, the original time-
domain audio signal was transformed into the 3-dimensional 
representation of the “amplitude modulation spectrogram” [7] with 
dimensions time, frequency and modulation frequency which was 
then employed as features for further larger margin-based 
classification stages for detection of sound and in particular speech 
sources. 

Tracking of audio sources is based on the DOA (direction of arrival) 
method that has been adapted to adequately reflect the acoustic 
properties of the head-worn microphone array. The basic version of 
the employed tracking algorithm is based on estimation of time-delays 
between left- and right-ear microphones and derives angular source 
direction estimates through the Woodworth-Schlossberg formula that 
compensates for the traveling time of the acoustic wave around the 
approximate sphere of the human head [12]. A refined version of the 
tracking algorithm compensates for the shading effect of the head that 
introduces level differences between left and right ears. 

4. AUDIO-VISUAL INCONGRUENCY 
DETECTION 
A multitude of audio-visual scenes with incongruencies across 
modalities has been recorded, covering in total over 100 scenes 
recorded with 27 speakers. One type of incongruency used pertains 
to localization, i.e., the spatial position or direction of a subject is 
different in audio and video channels. E.g., a person is appearing in 
the field of view at a frontal position but sound is localized as 
originating from the side. Another incongruency investigated is that 
of visual and audio appearance of gender. E.g., a male person would 
speak with a high-pitched voice leading to contradictory gender 
classification results in the different modalities. 
To integrate the audio-visual inputs from the AWEAR platform for 
performing audio-visual tracking, a/v scene/object classification and 
a/v detection of incongruencies, we use the high-level integration 
approach. A classifier is constructed for each separate cue, each of 
them providing a class label estimate. All those hypotheses are then 
combined together to achieve a decision. In case of audio-visual 
tracking, the hypotheses are the predicted positions. For 
classification and recognition tasks, the hypotheses are confidence 
values for the predicted labels. 
The integration strategy we applied is an extension of the weak 
coupling method called accumulation [5]. It is a weighted linear 
combination of the hypotheses on different cues. It has been shown 
in many cognitive and neurophysiology studies [4, 6] that humans 
use a similar approach for integrating multi-sensory inputs and 
integrate them in an optimal way. It has also been shown to achieve 
better performance when implemented on artificial systems [1]. The 
incongruent events are first defined as different classifiers giving 
contradicting decisions, however, both with very high confidence. 
To interpret these incongruencies also requires some prior-
knowledge, that is, to define a proper threshold so as to minimize 
the false alarm due to input noise, while maintaining a high 
detection rate. 

4.1 Detection Results 
We report first results for incongruency detection on data of 30 
audio-visual speaker sequences (17 speakers, 7 male and 10 female) 
acquired using the AWEAR platform, cf. Fig. 3 for an example 
snapshot. The speakers were asked to approach the camera and read 

 
Figure 2: Processing pipeline of our system. 
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a sentence about one minute long. The speech signals were captured 
by a head microphone worn by the actors. In a few sequences, the 
actors were asked to pretend an altered voice, that is, the male actors 
tried to speak with a high-pitched, female-like voice, and vice versa. 
We performed two kinds of experiments on the sequences, namely 
gender recognition and speaker verification, and found that 
integration of audio-visual cues could achieve better recognition 
performance than using a single modality alone, in particular under 
very noisy condition. For example, in some of the sequences the 
illumination conditions were very bad and the visual classifier gave 
many wrong decisions on each frame and provided low confidence 
in its output, while the audio classifier performed well and 
compensated for the weak classifier. The same effect was observed 
in the opposite direction when the audio chancel was noisy. 

In the gender recognition task, when the speakers were using 
altered voices, the audio gender classifier was usually “fooled” by 
the voice: It’s output indicated high confidence for a wrong 
decision, while visual gender classifier gave the opposite decision 
again with high confidence. In the speaker verification task, we 
randomly selected 6 speakers as the trusted group, and the rest of the 
speakers belonged to the untrusted group. Our algorithms can 
accurately recognize all the speakers in the trust group. In addition, 
an ROC curve for unknown speaker verification was obtained by 
varying the detection threshold (cf. Fig. 4). It shows that by 

integrating audio-visual cues we are able to achieve higher detection 
performance at lower false alarm rate. 

5. CONCLUSION 
The present contribution has motivated the significance of dealing 
with unexpected events and has proposed the use of multi-modal 
information to detect unexpected events that are characterized by 
cross-modal incongruencies. The study has been facilitated by data 
recorded with the AWEAR device that is intended as an audio-
visual cognitive aid. First results with our biologically-inspired 
approach on those data indicate that multimodal information 
provides significant cues for continuous evaluation of the 
consistency of events in our environment and thereby enables 
humans to identify cross-modal incongruous events. Our future 
work will be focused on evaluating and testing the approach in more 
realistic situations and applications. 
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Figure 3: Example omnidirectional image 

for speaker verification. 

 
Figure 4: ROC curves for speaker verification. 
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