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ABSTRACT
This paper presents a realtime system for analyzing group
meetings that uses a novel omnidirectional camera-microphone
system. The goal is to automatically discover the visual fo-
cus of attention (VFOA), i.e. “who is looking at whom”, in
addition to speaker diarization, i.e. “who is speaking and
when”. First, a novel tabletop sensing device for round-
table meetings is presented; it consists of two cameras with
two fisheye lenses and a triangular microphone array. Sec-
ond, from high-resolution omnidirectional images captured
with the cameras, the position and pose of people’s faces
are estimated by STCTracker (Sparse Template Condensa-
tion Tracker); it realizes realtime robust tracking of multiple
faces by utilizing GPUs (Graphics Processing Units). The
face position/pose data output by the face tracker is used
to estimate the focus of attention in the group. Using the
microphone array, robust speaker diarization is carried out
by a VAD (Voice Activity Detection) and a DOA (Direction
of Arrival) estimation followed by sound source clustering.
This paper also presents new 3-D visualization schemes for
meeting scenes and the results of an analysis. Using two
PCs, one for vision and one for audio processing, the system
runs at about 20 frames per second for 5-person meetings.

Categories and Subject Descriptors
H1.2 [Models and Principles]: User/Machine System —
Human Information Processing
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1. INTRODUCTION
Face-to-face conversation is one of the most basic forms of

communication in daily life and group meetings are used for
conveying/sharing information, understanding others’ inten-
tion/emotion, and making decisions. In the face-to-face set-
ting, people exchange not only verbal messages but also
nonverbal messages. The nonverbal messages are expressed
by nonverbal behaviors in multimodal channels such as eye
gaze, facial expressions, head motion, hand gesture, body
posture and prosody; psychologists have elucidated its im-
portance in human communications [2]. Therefore, it is ex-
pected that conversation scenes can be largely understood
by observing people’s nonverbal behaviors with sensing de-
vices such as cameras and microphones.

In recent years, multimodal meeting analysis has been ac-
knowledged as an emerging research area and intensive ef-
forts have been made to capture meeting scenes, recognizing
people’s actions in meetings, and analyzing group interac-
tions in meetings [7]. To date, virtually all research on meet-
ings have focused on pre-recorded data and offline process-
ing. However, realtime techniques for processing/analyzing
meetings are necessary for realizing applications such as
computer-mediated teleconferencing and interaction involv-
ing social robots/agents. Also, even for non-realtime ap-
plications such the archiving/browsing of multimodal meet-
ings and psychological/social/clinical studies of human be-
haviors, realtime or near realtime processing would signifi-
cantly enhance the effectiveness of the tasks including play-
back of meetings with reference to analyzed data created on
the spot.
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This paper presents a realtime multimodal system for an-
alyzing face-to-face meeting scenes that uses a new omnidi-
rectional camera-microphone system. The goal is to auto-
matically estimate the visual focus of attention (VFOA), i.e.
“who is looking at whom” and “who is attracting more gaze
than others”, in addition to speaker diarization, i.e. “who
speaks and when”, in realtime. To the best of our knowl-
edge, this paper is the first to propose a realtime multimodal
system to visually track not only face position, but also face
pose in realtime for analyzing group meetings. A system
that uses two PCs, one for vision and one for audio process-
ing, runs at about 20 fps (frames per second) for 5-person
meetings.

In this paper, we first describe our tabletop sensing de-
vice for round-table meetings; it consists of two cameras
with two fisheye lenses and a triangular microphone ar-
ray. From the high-resolution omnidirectional images that
are captured, the position and pose of people’s faces are
estimated by STCTracker (Sparse Template Condensation
Tracker), which realizes realtime robust tracking of multiple
faces by utilizing GPUs (Graphics Processing Units). The
face position/pose data output by the face tracker is used
to estimate the focus of attention in the group. Using the
microphone array, robust speaker diarization is carried out
using VAD (Voice Activity Detection) and DOA (Direction
of Arrival) estimation, followed by sound source clustering.
This paper also presents new 3-D visualization schemes for
meeting analysis and the results of some trials.

This paper is organized as follows. Section 2 overviews
related works. Section 3 proposes our system, and Section
4 details the system configuration. Section 5 describes the
experiments and visualization schemes. Finally, Section 6
presents our conclusion and some discussions.

2. RELATED WORKS

Omnidirectional vision system
To effectively capture round-table meeting scenes, omnidi-
rectional cameras have been acknowledged as a reasonable
solution, because they allow one image to cover the whole
view [21, 24, 5]. However, omnidirectional vision has yet
to supersede conventional camera systems, which capture
meeting scenes using multiple cameras located at different
viewpoints. One of the reasons is as follows. First, typical
omnidirectional system employs catoptrics, i.e. equipping
the camera with a mirror. Due to the low optical quality of
the mirror and intrinsic complexity in the projection system,
the effective resolution of peoples’ faces and figures is rela-
tively low. Second, the camera system is usually located at
eye-level at the meeting; this obstructs natural gaze interac-
tion. Placing the camera system on the table yields slanted
views of people’s faces. These problems limit the range of
applicable computer vision techniques.

To avoid the problems triggered by mirror-based omni-
vision, another approach has been drawing attention; an
omni-view image is created by fusing the images from the
multiple cameras, which are embedded in a single body [14].
This type of system can provide near frontal images of peo-
ple’s faces with higher resolution than mirror-based systems.
However, the main drawback of this system is the discon-
tinuity created by image combination; the discontinuities
hamper accurate face tracking.

To maximize the image resolution and to minimize the im-

age discontinuities, we developed an omnidirectional vision
system composed of two cameras and two fisheye lenses. A
fisheye camera can capture hemispherical view, and two fish
cameras facing in opposite directions can provide approxi-
mately spherical coverage. This system can provide frontal
face images with higher resolution than mirror-based sys-
tems (and even multi-camera-based system). More specifi-
cally, our system yields 4896 pixels for 360-degree coverage
on the horizontal plane, and achieves the grabbing frame
rate of 30.0fps. Its high resolution allows precise vision
tracking and useful data for human observers.

Face tracking in meetings
Face tracking is a common task in visual meeting analysis,
and tracking methods can be categorized in terms of the
goal pursued; one estimates only face position (the local-
ization problem), the other estimate face position and pose
(also called head pose or face direction). Examples of the
former include [20, 23] for normal cameras and [24, 5, 4, 14]
for omni-cameras. Examples of the latter include [11, 8, 18]
for normal cameras and [21] for omni-cameras. So far, al-
most all tracking methods for meeting analysis have targeted
only offline processing of pre-recorded meeting videos; most
papers did not even mention the speed of their methods.
Pose tracking entails higher computational complexity than
localization, especially for multiparty meetings, and it also
requires higher image quality. So far, these reasons have pre-
vented realtime face pose tracking from omni-images. Our
system resolves these problems by using our new omni-vision
system and a GPU-based face-pose tracking algorithm.

Visual focus of attention
The importance of measuring face pose arises from the fact
that it is reasonable indicator of people’s gaze and direction
of visual attention. Among the nonverbal messages/behaviors
possible, eye gaze is especially important because it has var-
ious roles such as monitoring others, expressing one’s atti-
tude/interest, and regulating conversation flow [9]. How-
ever, gaze direction during natural conversation is difficult
to measure directly. Therefore, face direction is often used
as a reasonable alternative. Moreover, face direction is more
than just an alternative; by itself it is a useful indicator of
people’s attention to others during meetings. In addition,
the temporal changes in face direction indicate head gestures
such as nodding. Therefore, face direction is an important
cue in analyzing meetings.

In recent years, authors have indicated that the conver-
sation structure, i.e. “who is talking to whom, when”, can
be estimated by using the utterance pattern (the speech or
silence of people) and the gaze pattern among meeting par-
ticipants, i.e. visual focus of attention in a group [16, 18].
They use a dynamic Bayesian network to jointly estimate the
gaze pattern and the conversation structures from observed
utterances and face directions. Ba and Odobez have also
focused on face direction as an important cue in estimating
the focus of attention, and have built a gaze estimator [3].

Multimodal smart rooms
Recently, a number of multimodal systems for meeting ap-
plications have been developed by a number of research
groups; they are often referred to as “smart rooms”. AMI
and AMIDA projects built a multimodal recording infras-
tructure for collecting meeting data; it uses microphone ar-
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Figure 1: Diagram of system

rays, close-talk microphones, normal cameras, and omnidi-
rectional cameras [19]. A team of USC has been developing
a smart room equipped with microphone array, omnidirec-
tional cameras, and far-field cameras [4]. They implemented
a system that realizes a multiview localization and identifi-
cation of people in meetings. The CHIL project is especially
interested in using far-field active cameras and multiview
techniques for tracking face pose to assess VFOA and re-
alize personal identification [23]. In contrast to the “smart
rooms” above mentioned, we aim to develop portable table-
top devices that do not require camera calibration or instal-
lation.

3. PROPOSED SYSTEM
Our system consist of three parts as shown in Fig.1, (a)visual

processing, (b)audio processing, and (c)meeting processing
parts. This paper targets meeting scenes as shown in Fig.2.
The visual processing part consists of our new omnidirec-
tional camera system (Fig.3) and face tracking system using
the image output by the camera system. For face track-
ing, we employ STCTracker [12, 13]; it includes an initial-
ization part and particle filtering. The audio processing
part employs a microphone array to capture the voices of
the participants. Robust speaker diarization (”who speaks
when” estimation) is carried out. Diarization is realized by
a VAD (Voice Activity Detection) and DOA (Direction of
Arrival) estimation followed by sound source clustering. Fi-
nally, the meeting processing part determines the utterance
status (speaking or silent) of each meeting participant by
cross-referencing the visual and audio information obtained
in part (a) and (b). This data association is conducted by
combining the face positions estimated by visual face track-
ing and the sound source locations as estimated by the audio
processing part. Also, gaze direction (focus of attention) is
estimated based on the position and direction of faces. This
information is displayed on a monitor using our new visual-
ization schemes.

3.1 Visual Processing
To estimate the face position and pose of each meeting

participant in realtime, this paper employs STCTracker (Sparse
Template Condensation Tracker) proposed in [12, 13]; its
effectiveness for meeting analysis was verified in [17]. STC-
Tracker consists of two main parts, initialization part and
particle filtering part. According to [17], the advantages of
STCTracker are its robustness against large head rotation,
up to ±60 degrees in the horizontal direction, and its speed;
it can track multiple faces simultaneously in real-time by
utilizing a modern GPU (Graphics Processing Unit). Also,
it can automatically build 3-D face templates upon initial-
ization of the tracker.

In [17], STCTracker was applied to pre-recorded video se-
quences captured with normal cameras, which were carefully
configured to catch each person’s full face in each frame;
large enough for precise tracking, but with enough room to
permit reasonable head movement during conversations. In
contrast, the system proposed in this paper newly incor-
porates a realtime STCTracker for simultaneously tracking
people’s faces on omnidirectional images captured in meet-
ings.

3.1.1 Fisheye-based omnidirectional cameras
Fig. 3 shows our omnidirectional camera-microphone sys-

tem. The camera part of the system consists of two cameras
with fisheye lenses, which are facing in (180 degree) opposite
directions. Since each fisheye lens covers a hemispherical re-
gion, the camera system can capture a near spherical region.
Our system captures only a horizontal strip as shown in Fig.
4(a), so that meeting participants are just covered by the im-
age; this minimizes the transmission rate and affords high
processing rates. Depending on lens type, image circle, and
size of imaging device, two discontinuities and dead zones
at right angles to the optical axes may occur. This is the
main drawback of this camera system, and requires careful
seating arrangements.
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P1

P2
P3

P4

P5

Figure 2: Meeting scene. LCD on near side shows
the result of realtime processing.

Our system employs a fisheye lens with so called f ·θ pro-
jection, which is typical in fisheye lens. A point in the world
is projected on to a point on the image plane; its distance
from image center is proportional to the angle of incidence θ;
f denotes the focal length. To resolve the distortion caused
by this fisheye projection, and to obtain more suitable pro-
jection for face tracking, we perform a panoramic transfor-
mation. Fig. 4(b) shows an example of panorama images
converted from fisheye images (Fig. 4(a)).

3.1.2 STCTracker
The basic idea of STCTracker is combining template match-

ing with particle filtering. In contrast to traditional tem-
plate matching, which assesses all pixels in a rectangular
region, sparse template matching focuses on a sparse set
of feature points within a template region. The state of
a template, which represents the position and pose of the
face, is defined as a 7 dimensional vector consisting of 2-
DOF(Degree of Freedom) translation on the image plane,
3-DOF rotation, a scale (we assume weak-perspective pro-
jection), and an illumination coefficient. The particle filter
is used to sequentially estimate the posterior density of the
template state, which is represented as a particle set. The
weight of each particle is calculated based on matching er-
ror between input images and the template whose state is
assigned by each particle; higher weight is given to particles
with smaller matching error. STCTracker has significant
speed owing to the sparseness of the feature points and ro-
bustness owing to robust template matching combined with
multiple-hypothesis generation/testing by the particle filter
framework. Although the face model (template) is rigid, it
can accept a certain amount of facial deformation caused
events such by utterances and expression changes.

The upper-left part (a) of Fig. 1 shows the framework of
STCTracker; it consists of initialization and particle filter-
ing parts. The initialization stage detects faces in images,
generates templates, and initializes the particles. The ini-
tialization stage first detects newly appeared frontal faces
by using the Viola & Jones face detector [22]. Next, the
Active Appearance Model (AAM) is used to locate facial
parts and contours from the facial subimages detected by
the face detector. AAM represents the combination of eigen
face textures and eigen face shapes. Next, a set of feature

Microphone Array

Figure 3: Omnidirectional camera-microphone sys-
tem

points is extracted from each facial region. Finally, from
the personalized 2-D AAM model and an average 3-D face
model, the depth value of each feature point is calculated to
form a face template (face model) for tracking. Note that
before AAM and feature extraction, the detected face region
is converted to its perspective projection equivalent.

Particle filtering consists of update stage, prediction stage,
and averaging stage. The update stage calculates particle
weight based on matching error of each template assigned
by a particle state. The resulting particle distribution rep-
resents the posterior distribution of template states. The
prediction stage resamples particles and predicts the par-
ticle distribution at the next time step. The update stage
and prediction stage are alternately repeated for each im-
age frame. The averaging stage calculates point statistics
from the posterior particle distribution output by the up-
date stage. Note that, in the update stage, when matching
the face template against input images, the face template is
projected as a panoramic image to compensate the difference
in projection system between template and input image.

3.2 Audio Processing
Speaker diarization is done based on the audio signals

from a microphone array as shown in Fig. 3. The array
consists of three tiny microphones placed at the vertices of a
triangle with 4cm sides, and is located atop the camera unit.
To realize diarization, this paper employs methods proposed
in [1]; the key parts are a noise-robust voice activity detector
(VAD), a direction of arrival (DOA) estimator, and a DOA
classifier. Traditionally, the GCC-PHAT technique [10] has
been employed for estimating DOA in meeting situations
as in ICSI and CHIL. However, the GCC-PHAT technique
sets the constraint of just one DOA per frame and it often
fails to detect speakers correctly in the case of overlapped
speech. To avoid this problem, this paper employs the time-
frequency domain DOA called TFDOA, which was recently
proposed in [1].

The goal of speaker diarization is to determine “who is
speaking” at each time step, from temporal signals captured
by the microphone array. The observation process assumes
that the signals observed by the microphones can be formed
by convoluting the source signals and the impulse response
of mixing process, and adding stationary background noise.
That is, speaker diarization is the inverse of the observation
process, i.e. find the source signal from the observed signal.
Here, we assume that no prior knowledge is available as re-
gards the number of people, speech sources, and the mixing
process.
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(a)

(b)

Figure 4: Camera images, (a)Fisheye images, (b)Panorama images. Two images from each camera are aligned
side by side to form 360-degree view (image size = 4896×512 pixels).

The process flow of the diarization is shown in the lower-
left part (b) of Fig. 1. First, short-term Fourier transforma-
tion (STFT) yields the time-frequency representation of the
observation. Here f and τ denote frequency and time-frame
index, respectively. Second, speech activity (human speech
or noise) is estimated from a continuously observed signal by
using a VAD. The speech activity of each sound source (po-
tential speaker) is then determined by clustering/classifying
the direction of arrival (DOA). The DOA is estimated by
the TFDOA method [1].

3.2.1 Voice Activity Detection (VAD)
This paper uses a VAD method called “Multi Stream

Combination of Likelihood Evolution of VAD” (MUSCLE-
VAD)[6]. It employs two speech/non-speech discriminators;
one is aperiodic component ratio-based detection (PARADE),
the other is the SKF(switching Kalman filter)-based method.
PARADE is robust against burst noise and SKF is robust
against stationary and non-stationary noise. Therefore, this
VAD method is robust against a wide variety of noises.

3.2.2 Direction of Arrival (DOA) estimation
The TFDOA(Time-frequency domain DOA) conducts DOA

estimation for each time-frequency slot (f, τ ), instead of the
time domain DOA offered by GCC-PHAT [10]. TFDOA
outputs DOA vectors q(f, τ ), whose component includes
azimuth angle and elevation angle of arrival for each slot
of frequency f and time frame τ . Next, an online cluster-
ing algorithm, known as leader-follower clustering, is ap-
plied to DOA vectors so that one cluster corresponds to
one sound source, which should be a potential speaker. Fi-
nally, the speech activity of individual speakers is deter-
mined by thresholding distance between the newly detected
sound source and the cluster’s centroid.

3.3 Meeting Processing
The meeting processing part uses the outputs of the vi-

sual processing and audio processing parts. Currently, our
system implements utterance detection and estimation of
focus of attention. The presence/absence of utterances of
each person is determined by combining the DOAs of speech
from the audio processing part and the face positions from
the vision processing part. This process is a data associa-
tion problem; it aims to find the visual source responsible
for utterances or noise. Here, we simply tackle this problem
by the nearest neighbor rule with thresholding.

The face position/pose from the face tracker is used to
estimate the visual focus of attention in the group. More
specifically, this paper focuses on the discretized gaze direc-
tion of each person, i.e. looking at one person among all, or

looking at no one. To estimate the gaze direction, we intro-
duce a likelihood function that represents the distribution
in his/her head direction when a person looks at a target.
Here this paper employ a Gaussian function, which was also
used in [16]. The method used in [16, 18] tries to estimate
the parameters of the Gaussian likelihood function because
the relative position of people is not available due to the lack
of camera calibration. Although our system can not obtain
the exact 3-D position of each person, it does provide angles
relative to the camera system. In a round-table setting, we
assume that the distance to each person from the camera is
approximately the same.

Fig. 5 illustrates the relative position among people; the
camera is located at the origin of this coordinate system. In
Fig. 5, the position of each person is indicated by angles
hi, (i = 1, · · · , N), which can be obtained from horizontal
position in the panorama image; N denotes the number of
meeting participants. The horizontal head direction of each
person can be represented as an angle; when a person points
his/her face directly towards the camera, the angle of head
direction is zero. Let ϕi,j be the head direction of person
Pi, when he/she looks straight at person Pj . This angle ϕi,j

can be calculated as

ϕi,j = − tan−1 [1/ tan ((hi + hj)/2)] (1)

Using the face angle from one person to another, ϕi,j , the
likelihood function of head direction hi,t of person Pi when
person Pi is looking at person Pj can be written as,

L(hi,t|Xi,t = j) := N(hi,t|κ · ϕi,j , σ
2), (2)

where Xi,t denotes the gaze direction of person Pi at time t,
and N(·|μ, σ2) represent a Gaussian distribution with mean
μ = κ ·ϕi,j and variance σ2. In Eq.(2), κ denotes a constant
(set here to 1). In addition, the likelihood function rep-
resenting the person averting his/her gaze from everyone is
defined as a uniform distribution. Using the likelihood func-
tions, gaze direction is determined by the maximum likeli-
hood scheme. Next, the focus of attention in the group at
each time step can be determined by counting the number
of gazes that each person receives from the others.

4. SYSTEM CONFIGURATION
Fig. 6 shows the hardware configuration of our system.

The specifications of the vision-processing PC are as follows.
CPU is Intel Core 2 Extreme QX9650 3.0GHz, and GPU is
NVIDIA GeForce9800GX2 (two GPU cores are set in one
package). OS is Windows XP SP2. The cameras are Point
Grey Research’s Grasshopper (B/W 5.0 Mega pixel model,

261



h
h
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Figure 5: Spatial configuration of participants and
their relative angles

2/3” CCD). The fisheye lens is Fujinon’s FE185C086HA-
1(f=2.7mm). The camera and PC are connected by IEEE1394b
links. The audio processing PC uses an AMD Athlon 64, 2.4
GHz, and its OS is Linux. The two PC’s are connected via
a Gigabit ether network. The basic program of the vision
system was written in Microsoft Visual C++ 8. The GPU
program was written in NVIDIA CUDA 1.1. The VAD com-
ponent was written in C language and the speaker diariza-
tion part uses MATLAB6.5.

4.1 Data and Processing
Although the original image size of each camera is 2448 ×

2048 pixels, we captured only a horizontal strip (2448 × 512
pixels) that covers the upper-body of meeting participants;
this contributes to the achieved frame rate of 30.0 fps. Pixel
depth was 8 bits (256-step grayscale). The two cameras
were synchronized. The panorama projection from fisheye
images was executed on a GPU core and face tracking was
performed on another GPU core. The panorama images
were written on a hard disk at 30.0 fps without any image
compression. For audio processing, the sampling rate was
16 kHz and the frame size for STFT was 64ms; frame shift
was 32 ms. For each frame, detected speech activity data
and sound data were transmitted to the vision processing
PC by TCP/IP over the Gigabit ether network.

5. EXPERIMENTS
Experiments were conducted to verify the performance of

the proposed system. We targeted a round-table meeting
with 5 participants. Fig. 2 shows the meeting environment
and the participants. To observe and verify the realtime
speed of the system, another camera system was set up to
jointly capture both the participants’ behaviors and a PC
monitor that displayed the result of the realtime analysis, as
shown in Fig. 2 1. Fig. 7 is taken from an actual screenshot
of the PC display during a meeting. In Fig. 7, green meshes
illustrate the result of face tracking, and the red dots along
the axes indicate the DOA of voice. Also, speaking person is
indicated by a red frame around his/her face. The number
of particles for face tracking was 1500 per face. It was con-
firmed that the system ran at around 20 fps for 5 people;
no system known to the authors has achieved comparable
speed. The latency of visual processing (including image
grabbing, panorama transform, tracking, and display) was
about 170ms. The latency of audio processing (including
A/D convert, STFT, DOA estimation, VAD, and transmis-
sion over ethernet) was about 80ms on average.

1Demonstration movies are available from our website
http://www.brl.ntt.co.jp/people/otsuka/ICMI2008.html

RAID
system

1394b
  I/F

GeForce 
9800GX2

Figure 6: Hardware configuration

5.1 Visualization
To visualize the conversation scenes for meeting observers,

who could be remote meeting participants in the teleconfer-
encing situation or users of meeting archive systems, two
visualization schemes with a manually configurable inter-
face were implemented, as shown in Fig. 8. Fig. 8(a) shows
the cylindrical visualization of panoramic images and the
relative position of each meeting participant (indicated as a
circle). Also, Fig. 8(a) shows the approximate field of view
as (blue) translucent triangles; overlapped fields of views in-
dicate where people pay attention to each other. Moreover,
the voice activity of each participant is displayed by the red
dot in each person’s circle in Fig. 8(a).

Fig. 8(b) is an example of the output of the second vi-
sualization scheme, called piecewise planar representation;
the face image of each person is mapped to a planer surface,
which is arranged to indicate the relative position of the par-
ticipants. This visualization provides the viewers with larger
face images which enables better understanding of the indi-
vidual’s expressions, while still clearly indicating their inter-
personal positioning and interactive behaviors. In addition
to field of view and voice activity included in Fig. 8(a), Fig.
8(b) shows discretized gaze directions of each person by ar-
rows and the focus of attention, people who are attracting
the gaze of more than a person, is indicated by a circle(s).

For both visualization schemes, our system offers a ma-
neuverable interface by using a 3-D mouse, 3Dconnexion’s
SpaceNavigator. With this device, the users can freely and
intuitively manipulate their viewpoints, as shown in Fig.
8(c) and 8(d). The rotation operation can choose the per-
son (by literally rotating the knob of SpaceNavigator) and
zooming operation can control the focus (by pushing/pulling
the knob); from one-person (Fig. 8(d)) to all people, as in
Fig. 8(b). Due to the high-resolution imaging provided by
our new system, zoom-up face images retain sufficient de-
tails.

5.2 Quantitative Evaluation
To quantitatively evaluate system performance in a pre-

liminary test, this paper targeted a 5-person conversation of
3 minute duration.

Table 1 shows the evaluation results of the speaker di-
arization. Table 1 includes diarization error rate (DER),

DER =
Wrongly estimated speaker time length

Entire speaker time length
× 100[%],

which has been established by NIST [15]. Table 1 also
presents the diarization errors including the missed speaker

262



Wireframe:
face position 
and pose

Red dots: 
DOA of voice

Red frame:
speaker

Framerate 
of tracking

P1
P2 P3

P4 P5

Figure 7: Screenshot of system monitor displaying face tracking and VAD results

Table 1: Evaluation results of speaker diarization[%]
DER MST FAT SET
4.0 0.9 3.0 0.1

Table 2: Average accuracy of gaze directions[%]
All P1 P2 P3 P4 P5
55.9 69.5 55.9 20.6 57.6 74.6

time (MST), the false alarm speaker time (FAT), and the
speaker error time (SET). Table 1 confirms that our system
can realize accurate diarization. The scores are at least com-
parable and can even outperform our previous work [1]. This
is partially due to the fact that we targeted a formal-style
meeting with less overlapped speech.

To evaluate the accuracy of gaze direction (VFOA) esti-
mates, we first developed an annotation tool based on the
visualization scheme proposed in this paper. The annotation
was created by an annotator. Table 2 shows the frame-based
accuracy of gaze direction, which is the ratio of frames in
which gaze estimates coincided with the human annotation.
Except for P3, the gaze estimates are reasonably successful
given past studies [16, 18] that also estimated gaze direc-
tion from head direction. The main reason for the error is
that humans can move his/her gaze without moving his/her
head, e.g. looking sideways and casting down one’s eyes.
Also, when turning gaze from one to another, the eye moves
first and the head then follows. The low accuracy of P3 re-
sults from the fact that he restlessly and meaninglessly let
his eyes rove throughout the meetings. For all participants
P1∼P5, about the half of the inconsistencies between the es-
timates and the human label were related to gaze aversion,
i.e. the labels indicate looking at no one. About 45% of the
inconsistencies were cases in which the person looked at was
sitting next to the estimated target.

6. DISCUSSION AND CONCLUSION
This paper proposed a realtime system for multimodal

meeting analysis by combining face pose tracking and speaker
diarization. A novel data capturing device for group meet-
ings was proposed based on two fisheye cameras that can

provide omnidirectional views and a triangular microphone
array. A realtime face tracker based on particle filtering and
its GPU implementation provides face position and direction
of each meeting participant; the data is used to estimate the
focus of attention in meetings. From the acoustic signals
captured by the microphone array, robust speaker diariza-
tion realized by VAD (Voice Activity Detection) and DOA
(Direction of Arrival) estimation followed by sound source
clustering. The system runs at about 20 frames per second
for 5-person meetings, given two PCs, one for vision and one
for audio processing.

Future works include the following. First, we need to in-
crease the range of head rotation accepted and to better fol-
low rapid head motions. Second, more robust and accurate
diarization is required, because current VAD+DOA can be
degraded by the reverberations created by various objects
such as computer displays and white boards. In addition,
it is necessary to conduct more comprehensive evaluations
in various meeting scenes with different numbers of partic-
ipants and different seating arrangements. Furthermore, it
is necessary to verify the effectiveness of the visualization
schemes, e.g. how clearly meeting content can be delivered
to viewers.

Although the meeting analysis implemented in our cur-
rent system is currently at a primitive level, the main con-
tribution of this paper is to foster a new field, realtime
multimodal meeting analysis. Authors believe that VFOA
and utterance information are essential information for ad-
vanced meeting scene analysis such as the role of partici-
pants (speaker, addressees, and side-participants), conver-
sation structures, dialogue act, floor control, and the de-
tection of dominant speaker. Furthermore, it is important
to discover and build real applications based on the output
of meeting analysis, such as multimodal meeting archival
systems, computer-mediated teleconferencing systems, and
human-robot interaction.
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