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ABSTRACT 
We present a Fitts’ Law evaluation of a number of eye 
tracking and manual input devices in the selection of large 
visual targets. We compared performance of two eye 
tracking techniques, manual click and dwell time click, with 
that of mouse and stylus. Results show eye tracking with 
manual click outperformed the mouse by 16%, with dwell 
time click 46% faster. However, eye tracking conditions 
suffered a high error rate of 11.7% for manual click and 
43% for dwell time click conditions. After Welford 
correction eye tracking still appears to outperform manual 
input, with IPs of 13.8 bits/s for dwell time click, and 10.9 
bits/s for manual click. Eye tracking with manual click 
provides the best tradeoff between speed and accuracy, and 
was preferred by 50% of participants. Mouse and stylus had 
IPs of 4.7 and 4.2 respectively. However, their low error 
rate of 5% makes these techniques more suitable for refined 
target selection. 

Categories and Subject Descriptors 
H5.2. Information interfaces and presentation (e.g., HCI): 
User interfaces: Input devices and strategies.  

General Terms 
Human Factors 

Keywords 
Input Devices, Focus Selection, Fitts’ Law, Eye Tracking, 
Attentive User Interfaces. 

INTRODUCTION 
The use of eye input as a means for operating graphical as 
well as ubiquitous computing interfaces has been a topic of 
interest in human-computer interaction for quite some time 
[2,10,22,33,35]. One quest has been, particularly in the area 
of interfaces for the disabled [13], to incorporate eye 

trackers as pointing devices in graphical user interfaces. 
There are a number of reasons why the use of eye gaze as a 
means for target selection might seem compelling [26]: 

1) When the hands are occupied or unavailable, eye gaze 
provides an extra and independent channel of input. 

2) The eyes have the fastest muscles in the human body. 
Moreover, during target acquisition, users tend to look 
at a target before initiating manual action [10]. This 
means that eye gaze theoretically provides one of the 
fastest possible input methods available. 

3) Users can produce thousands of eye movements without 
any apparent fatigue. Use of eye gaze mitigates the need 
for repetitive manual actions, thus reducing the risk of 
repetitive strain injury. 

4) Users are familiar with the use of their eyes as a means 
for selecting the context of their commands. E.g., eye 
gaze is used during communications to indicate who is 
being addressed [29].  

However, it is important to note that humans are not very 
familiar with the use of their eyes as a pointing device. 
Firstly, the chief purpose of the eyes is to provide input to 
the human body, rather than provide output to the exterior 
environment. Secondly, the eyes move very rapidly 
between fixation points, to inhibit movement of the world 
on the retina [5]. Such movements between eye fixations 
are known as saccades, and typically complete within 60 ms 
[5]. This means eye input appears more suitable for the 
selection of discrete targets, than for pointing in a 
coordinate space. Perhaps as a consequence of this, some 
researchers have been disappointed with the use of eye 
trackers for interaction in Graphical User Interfaces.  

There are indeed many arguments against the use of eye 
tracking as a pointing device. Firstly, eye trackers have 
been known to be sensitive to user head movements. With 
advances in computer vision, recent systems such as the 
Tobii 1750 [28] as well as the LC Technologies’ EyeGaze 
System [13] now feature head movement tolerances of over 
30x15x20 cm. Secondly, eye tracking can be noisy. That 
said, on-screen accuracies of 1 degree or better are now the 
norm [28]. It has been suggested by Jacob and others that 
the accuracy of eye trackers in pointing is fundamentally 
limited by the size of the human fovea, which is in the order 
of two degrees of visual angle [5]. 
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However, accuracy limitations are mostly caused by 
limitations in computer vision of the pupil. As computer 
vision algorithms of the pupil improve, so should the 
accuracy of eye tracking input. Thirdly, eye trackers need to 
be calibrated. However, as work by Smith et al. 
demonstrates [26], discrete targets can now be tracked 
without any calibration whatsoever. Finally, eye trackers 
suffer from what is known as the Midas Touch Effect [10]. 
The Midas Touch Effect is caused by overloading the visual 
input function of the eye with a motor output task. 
Providing clicks with the eyes is useful particularly in cases 
where users do not have control over limbs other than their 
eyes. In such cases, the Midas Touch effect causes users to 
inadvertently select or activate any target they fixate upon. 
By issuing a click only when the user has fixated on a target 
for a certain amount of time (dwell time click), the Midas 
Touch effect can be mitigated. By issuing a click through 
another channel, such as with the hands or using the voice, 
it can be avoided entirely.  

A New Perspective: Eye Tracking As A Device 
for Deixis 
Given the above discussion, rather than thinking of eye 
tracking as a means for pointing in a coordinate space, we 
argue it is more useful to consider its use for 
disambiguating between targets that provide visual context 
to interaction. This is because eye input provides a very 
specific kind of information about the user: the objects that 
are subject to his or her visual attention. As Yarbus [35] 
showed, eye fixations tend to pertain to distinct objects, not 
arbitrary spatial coordinates. Fixations patterns in scenes 
are object-oriented, and different every time. They depend 
highly on context. This led Smith et al. to explore the 
notion of deixis as a metaphor for pointing [26]. Rather 
than providing a spatial coordinate, deixis specifies the 
referent, as in, “that object”, within a spatial context [2]. 
The act of looking at an object may inform other kinds of 
input activity, such as a button click or speech command, as 
pertaining to the semantics provided by that object. This fits 
well with the role of the eyes in the kinematic chain model 
proposed by Guiard [9]. He saw the hands function as 
serially assembled links in a chain, with the left (or non-
dominant) hand as a base link that provides context to the 
right (or dominant) hand, the terminal link. If we include 
the eyes in his model, we notice that their activity provides 
context to, and precedes, the activities of both hands. As 
such, we see eye input as best suited to provide context to 
the manual action that ends the kinematic chain. 

Outline of the Paper 
It is within the context of the above discussion that we 
performed a comparative study of the efficiency of a 
number of eye and traditional manual input techniques: not 
with the intent that eye input substitutes a manual device, 
but with the intent that eye input can be used to 
disambiguate between contexts of interaction, for example, 
as provided by two GUI windows. This fits a classic Fitt’s 
Law paradigm, where the object is to iteratively select 

between two visual targets presented on screen. For fair 
comparison, and given the relatively large size of typical 
interaction contexts, we deployed targets with low Indices 
of Difficulty, as compared to prior studies. We will first 
discuss some examples of systems that use eye input for 
context selection, as well as prior empirical work. We then 
discuss our experimental evaluation, concluding that eye 
tracking input is indeed faster, but also more inaccurate, 
than manual techniques. 

BACKGROUND 
Recently, a number of desktop interfaces have been 
developed that use eye input primarily as a means of 
selecting context for other channels of input. Many of these 
interfaces were inspired by early work by Bolt et al. [2,27].  

In [8], Fono et al. presented an elastic windowing interface 
that used an eye tracker for focus window selection. They 
argued eye trackers are most suitable for focus selection 
when windows do not overlap. Repositioning of a window, 
or scrolling, entails pointing in a coordinate space and is 
typically best left to the hands. They evaluated performance 
during window selection when hands were overloaded with 
a typing task. Results showed eye tracking with a manual 
click was twice as fast as the use of function keys or mouse 
for focus window selection. In [1], Ashmore et al. discussed 
the use of an eye tracker in fisheye views. They used eye 
input to determine the area of the screen that contained the 
region of interest. Fisheye magnification was subsequently 
activated with a manual click. Unfortunately, their 
evaluations did not compare performance between eye and 
manual input in this task. In [20], Qvarfordt and Zhai 
discussed iTourist, a system for city trip planning that 
senses users’ interest in locations on a map based on eye-
gaze patterns. Their system used a statistical visual interest 
score to determine which of a limited number of objects on 
a map the user might be referring to, e.g., when booking a 
hotel. However, manual pointing was deployed once the 
user committed to booking a place. 

Similar efforts are underway in the area of Ubiquitous and 
Mobile Computing. In [26], Smith et al. presented a simple 
wearable calibration-free eye tracker. Their system allows 
any real-world object to be augmented with eye tracking 
capabilities by embedding a small infrared tag. They 
discussed application scenarios where tags broadcast URL 
information as the user looks at a real-world billboard. 
Users subsequently retrieve the URLs on a PDA via manual 
interaction techniques. Eye tracking sensors have also been 
used to set the context for speech and remote commands 
[11,16,19,23,21,30], as well as for communications [12,29]. 
In all these interfaces, the use of an eye tracker is not to 
obtain a spatial coordinate, but to determine which of a 
limited number of clearly distinguishable objects the user is 
interested in. 

Empirical Studies 
Unfortunately, there are few empirical studies on the 
efficiency of eye tracking input devices in object selection 
tasks. Part of the reason for this has been the limited 
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availability of easy-to-use vision-based eye trackers. 
Perhaps because of technological problems, empirical 
results of target selection efficiency of eye tracking have 
traditionally been somewhat mixed. In one of the earliest 
available studies, Ware & Mikaelian [33] evaluated the use 
of an eye tracker in a pointing task. To assess performance, 
they used a standard Fitts’ Law experimental paradigm [7]. 
In this paradigm, size (width) and distance (amplitude) of 
two targets is varied systematically during a pointing task. 
The task requires participants to reciprocally select targets 
using their pointing device. Fitts’ Law relates their 
movement time (MT) in this task to the Index of Difficulty 
(ID) of the target pair, as given by the log term in the Fitts’ 
Law equation [15]: 

MT = a + b log (A/W +1)  (Equation 1) 

Here, a is a constant that describes the response time per 
selection, while b describes the relationship between 
movement time and ID of the task. A is the distance or 
amplitude between targets, and W the width of the targets. 
After measuring movement time for each target ID, 
regression is used to derive values for a and b. Performance 
of a device is given by the reciprocal of b, which is called 
the Index of Performance (IP), measured in bits/s. Ware and 
Mikaelian [33] compared three eye pointing styles for 
selecting targets on a CRT: (1) dwell time click, where the 
target was selected if the observers’ gaze fixated on it for 
more than .4 s; (2) screen button, where the observer had to 
fixate on a button on the screen after looking at the target; 
and (3) hardware button, where the observers pushed a 
keyboard button while fixating on the target. Unfortunately, 
they did not investigate performance of manual pointing. 
However, results show click times compared favorably to 
those of the mouse, with an intercept approximately twice 
as small. They suggest the Index of Performance was 
similar to the one reported for the mouse in Card et al. [4]. 
In their experiment, movement time for eye input was 
significantly affected by target width, particularly with 
targets smaller than 1.5 degrees of visual angle. Error rates 
were high in all eye tracking conditions, with about 12% of 
trials discarded. Miniotas [17] did compare dwell time 
activated eye input with mouse pointing in a Fitts’ Law task 
involving two widths (13 and 26 mm) and four amplitudes 
(26, 52, 104 and 208 mm). He found an Index of 
Performance of about 5.7 bits/s for dwell time activated 
selection, which was lower than that of the mouse (7.9 
bits/s). This finding may be attributed to the fact that the 
experimenter used a relatively high dwell time threshold of 
250 ms, which acted as a bottleneck during target selection. 
Unfortunately, the author did not report on error rates. 

In one of the most favorable experiments to date, Sibert and 
Jacob [24] evaluated the use of a mouse and eye tracker 
with dwell-time activated click in a pointing task that 
involved selecting one of 16 circles on a screen. Circles 
were 1.12 inch in size, and placed 2.3 inches from each 
other. They found that trial completion time with the eye 
tracker was almost half that of the mouse. Again, a 

relatively high error rate of 11% was reported for the eye 
tracking condition, compared to only 3% for the mouse.  

Wang et al. [32] discussed an evaluation of eye-based 
selection of Chinese characters for text entry. In their task, 
users chose one of 8 on-screen Chinese characters by 
looking at the character while pressing the space bar. 
Results showed eye-based selection was not significantly 
faster than traditional key-based selection. They attributed 
this to lag present in their eye tracking equipment, and the 
fact that the overall time required to complete their task was 
dominated by decision time, rather than movement time. 

Zhai et al. [35] evaluated the use of eye input in gaze 
assisted manual pointing. In their MAGIC pointing 
technique, an isometric joystick was used to select targets 
on a screen. However, to speed up isometric pointing, they 
positioned the cursor to a location close to the current eye 
fixation point whenever the user initiated movement with 
the joystick. Results were somewhat disappointing. MAGIC 
pointing only marginally improved movement time in a 
Fitt’s Law task, with a mean completion time 8% faster 
than manual pointing. The Index of Performance of 
MAGIC was reported to be higher than that of manual 
isometric pointing, with 4.6 bits/sec vs. 3.2 bits/sec. 

Fitts’ Law Fit 
Although manual pointing typically provides an excellent 
fit to the Fitts’ Law model, there has been some debate as to 
whether the same would be true for eye input. Although 
they did not report a correlation value, Ware & Mikaelian 
[33] found that eye input does indeed follow Fitts’ Law. 
Zhai [35] found correlations that were fairly low, in the 
order of r2=.75. The most likely cause for this was the 
presence of eye tracker noise in their experiment. Perhaps 
most interestingly, Sibert and Jacob reported little variance 
in movement time over distance [24]. Miniotas [17] 
reported the highest fit with an r2 = .98. 

 
Figure 1. Screen shot of the experimental task. 
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EXPERIMENTAL EVALUATION 
For our experiment, we selected a state-of-the-art Rev.II LC 
Technologies desk-mounted eye tracker capable of 
performing with an on-screen accuracy better than 1 degree 
of visual arc. We used this tracker to compare performance 
of a number of input techniques in a Fitts’ Law task. 

Input Conditions and Training 
We selected four pointing techniques for comparison, 
including two manual, and two eye tracker conditions: 

1) Mouse. In this condition, we used a Wacom mouse 
mapped to the screen in absolute coordinates [31]. Users 
used the center button of the mouse to click a target. 

2) Stylus: Here, users used a Wacom stylus to point at a 
target. Targets were selected by touching the tablet with 
the tip of the stylus. 

3) Eye tracking with manual click. In this condition, the 
eyes were used for pointing, and a mouse button was 
used to click.  

4) Eye tracking with dwell time click. Here, clicks were 
issued automatically after a fixation of 100 ms. While 
we realize this is too low for practical use, we 
purposefully chose this theoretical lower limit to 
investigate the Fitts’ Law performance of the eyes 
themselves, when not throttled or encumbered by large 
dwell times. 

In order to minimize lag in both eye tracking conditions, we 
performed as little processing as possible on the raw gaze 
coordinate obtained from the LC Technologies system. 
While this meant the on-screen cursor, in the form of a 
small crosshair, was moved to the location of the eyes 
without any form of temporal averaging, it reduced overall 
eye tracking latency by a factor two. All participants were 
trained with the use of every device prior to the experiment. 
Measurement started when their mean improvement in 
movement time was less than 10% between trials.  

Apparatus 
In all conditions, subjects were seated behind a 17” Dell 
LCD screen at about 60 cm. distance. This screen, with a 
resolution of 1024x768, was connected to a Rev. II LC 
Technologies Eyegaze system [13], which was used to 
constitute the eye tracking conditions. For the manual 
conditions, we used the standard stylus and mouse of the 
Wacom Intuos 2 [31] (model XD-0912-U, 30.4 cm x 45.7 
cm active area, 2540 lpi resolution). The tablet area was 
mapped to the screen area using a linear mapping and a 
control-display gain of 1 for both devices.  The software 
used to constitute the Fitts’ Law task was a standard java 
package designed by Smith [25] (see Figure 1), and ran on 
the LC computer. In the eye tracking conditions, cursor 
movements and clicks were generated by a custom package 
that used the LC API to obtain eye tracking coordinates. 
Participants were calibrated for the eye tracker at the 
beginning of the experiment using a standard 15 point 
calibration that lasted 15 seconds. Only participants that 

achieved a calibration bias error of .15 inch were allowed to 
continue. We did not include any participants with glasses 
or contact lenses. Participants’ head movements were not 
restricted in any way during trials. 

Experiment Design and Task 
Ten participants, 4 female and 6 male, carried out the 
experimental task. Participants consisted mostly of 
university students and faculty, with an average age of 27. 
90% of participants were right-handed, with all participants 
using their dominant hand. All participants had prior 
experience with a mouse, 50% had prior experience with 
eye tracking, and 60% had used a Wacom stylus before. 
Users were asked to use their input device to point and click 
alternately between the two presented targets, as rapidly 
and accurately as they could. There were three constraints 
on the selection of target stimuli. Firstly, the on-screen 
accuracy of the eye tracker with a calibration error of .38 
cm is about 1 cm. Target sizes should be double this in 
order to allow a good aim at the center of the target. This 
resulted in an absolute minimum target size of 70 pixels or 
2 cm on screen. Our second constraint was size and 
resolution of the screen given the 40 degree angular range 
of the eye tracker, which limited the distance between the 
largest targets to about 800 pixels on-screen. Our third 
constraint was to obtain the broadest and most evenly 
distributed range of IDs possible.  

Index of Difficulty 
This resulted in a stimulus set which varied target width and 
amplitude fully crossed as follows: 

 Target width: 70 pixels (2 cm or 2 degrees of visual 
angle at 60 cm distance), 100 pixels (3 cm or 3 degrees 
of visual angle at 60 cm distance) and 140 pixels  (4 cm 
or 4 degrees of visual angle at 60 cm distance); 

 Target amplitude: 200 pixels (6 cm or 6 degrees of 
visual angle at 60 cm distance), 400 pixels (12 cm or 12 
degrees of visual angle at 60 cm distance) and 800 
pixels (24 cm or 24 degrees of visual angle at 60 cm 
distance).  

This led to an even distribution of ID, with targets ranging 
between 1.28 and 3.6 bits in difficulty. To not overly 
disadvantage the eye tracker, we removed duplicate ID 
targets involving a width of 70 pixels, the absolute 
minimum accuracy of the eye tracker. We used a within-
subjects design in which all participants used all input 
techniques on all presented stimuli. Each target pair was 
presented 5 times per device. To counter order effects 
presentation of target stimuli was randomized. The order of 
input device presentation was counterbalanced using a 
Latin square design. 

Handling Errors  
An error was defined as a click outside the current target 
area, which was indicated using a red circle (see Figure 1).  
If the subject clicked off-target, a miss was logged but the 
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trial was continued until a target was hit. An extra trial was 
added to make up for the missed trial. In the eye tracking 
with dwell time condition, after an error, subjects had to 
move the cursor at least 32 pixels before dwell time 
clicking was reactivated. Only trials with no errors were 
collected for performance analyses. 

Hypotheses 
We expected both eye tracking techniques to outperform 
manual techniques in terms of IP and movement time 
across trials. We also expected eye tracking with dwell time 
click to outperform eye tracking with manual click. In terms 
of error rates, we expected eye tracking with dwell time 
click to be the outlier, with a higher percentage of errors 
than the other techniques. We expected both manual 
techniques to display superior accuracy. 

RESULTS 
Table 1 provides an overview of the mean movement times 
and standard errors during the experimental trials, per input 
technique. Movement time varied significantly with input 
technique: F(3,252)=52.22, p<.001. There was a significant 
interaction for ID x input technique: F(18,252)=5.68, p < 
.001. Post-hoc Bonferroni corrected results show highly 
significant differences in movement time between all input 
techniques, except between mouse and stylus (p=.344). Eye 

tracking with dwell time click was faster than eye tracking 
with manual click (p<.001), stylus (p<.001) and mouse 
(p<.001). Eye tracking with manual click was faster than 
stylus (p=.007) and mouse (p<.001). We also found 
significant effects of target width (F(2,252)=19.62, 
p<.001), target amplitude (F(2,252)=80.96, p<.001), as 
well as Index of Difficulty (F(6,252)=56.15, p<.001) on 
movement time. We found a significant interaction effect of 
target amplitude x input technique (F(6,252)=11.79, 
p<.001), but not of target width x input technique 
(F(6,252), p=.81), most likely because targets were large. 
Eye tracking with dwell time click featured significant 
effects of both target width (F(2,63)=3.46, p=.038) and 
target amplitude (F(2,63)=4.16, p=.02) on movement time. 

Regression Models 
Regressions showed completion time closely followed 
Fitts’ Law for both manual devices. For both eye tracking 
conditions the fit was somewhat lower but still good. Figure 
2 shows the regression models and mean data points for 
each device: 

Mouse: MT= .15 + .22 log2(A/W+1) (r2=.99) 

Stylus: MT= .07 + .24 log2(A/W+1) (r2=.98) 

Eye with click: MT= .36 + .086 log2(A/W+1) (r2=.87) 

Eye with dwell: MT= .32 + .055 log2(A/W+1) (r2=.86) 

All regression models were highly significant. The Index of 
Performance (IP) was much lower for manual devices in 
comparison with eye tracking conditions, with 4.7 bits per 
second for the mouse and 4.2 bits per second for the stylus. 
The Index of Performance for eye tracking with manual 
click was about 2.5 times higher at 11.7 bits per second. 
Eye tracking with dwell time click performed at 18.3 bits 
per second. Performance of the stylus was somewhat lower 
than typically reported in literature. If we look closely at the 
data points of the stylus (■) in Figure 2, we observe that 
this is probably due to the higher ID data points, which 
appear to fit on a different regression line than the cluster of 
low ID points. This is most likely because subjects used 
wrist action for targets with lower amplitudes, and elbow 
movement for targets with high amplitudes. For the lower 
four data points, the index of performance of the stylus is 
indeed closer to 5.8 bits per second (r2=.99). 

Error Rates 
Table 2 shows the error rates as a percentage of trials per 
input technique. As expected, we found a significant effect 

Input 
Technique 

Mouse Stylus Eye with 
Manual 

Click 

Eye with 
Dwell Time 

Click 
Movement 
time (s.e.) 

.66 
(.03) 

.63 
(.03) 

.57 
(.04) 

.45 
(.02) 

Table 1. Mean movement times (s) and standard error 
per input technique. 

Input 
Technique 

Mouse Stylus Eye with 
Manual 

Click 

Eye with 
Dwell Time 

Click 
Error rate 
(s.e.) 

4.6% 
(1.3%) 

6.2% 
(1.5%) 

11.7% 
(3.5%) 

42.9% 
(3.7%) 

Table 2. Mean error rates and standard error per 
input technique. 

 
Figure 2. Regression lines per input device comparing 
Movement Time (s) with Index of Difficulty (in bits). 
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for input technique on error rates: F(3,36)=42.62, p<.001. 
Bonferroni corrected pair-wise comparisons showed that 
eye tracking with dwell time click was indeed the outlier 
(p<.001), with all other comparisons insignificant.  

Welford Corrected Models 
According to Welford [34], error rates above 4% may lead 
to an inappropriate increase in IP (see also [5]). For fair 
comparison between eye tracking and manual conditions, 
our results required normalization to account for the larger 
effective width (We) aimed for by participants in the eye 
tracking conditions. We used a method proposed in [34] 
and popularized by MacKenzie [14]. For each subject and 
condition, we obtained the effective Index of Difficulty 
(IDe) by normalizing all target widths to a standard 4% 
error. IDe was calculated by multiplying the target width 
with the two-tailed z-score of 4% (i.e., 2% or 2.054) 
divided by the two-tailed z-score of the obtained error 
percentage per trial. Figure 3 shows the regression models 
and mean data points for each device: 

Mouse: MT= .15 + .21 log2(A/We+1)   (r2=.99) 

Stylus: MT= .08 + .24 log2(A/We+1) (r2=.98) 

Eye with click: MT= .38 + .091 log2(A/We+1) (r2=.88) 

Eye with dwell: MT= .35 + .073 log2(A/We+1) (r2=.89) 

All regression models were again highly significant, with a 
slightly better fit for the eye tracking conditions. The 
corrected Index of Performance (IP) was again much lower 
for manual device conditions, with 4.7 bits per second for 
the mouse and 4.2 bits per second for the stylus. By 

comparison, the Index of Performance for eye tracking with 
manual click was about 2.6 times higher than the stylus at 
10.9 bits per second. IP for eye tracking with dwell time 
click was 3.3 times higher than that of the stylus at 13.8 bits 
per second. Figure 3 also shows how Welford correction 
caused a shift in the evaluated ID, particularly for eye 
tracking with dwell time click. Eye tracking with manual 
click was less affected by the operation. Differences in the 
resulting sets of IDs per device made it difficult to make a 
fair comparison of absolute movement time between 
manual input and eye tracking conditions after correction. 
We do note that even after correction, mean movement time 
for both eye tracking conditions appeared lower than for 
manual input when comparing a similar set of IDs. This can 
easily be observed in Figure 3: eye tracking regression lines 
are largely below those of manual conditions.  

Questionnaire 
Table 3 shows the mean scores per input technique for three 
Likert-style questions on the questionnaire, with scales 
varying from 1 (strongly disagree) to 5 (strongly agree). 
Non-parametric within-subjects analysis of variance 
(Friedman Test) showed differences in perceived speed 
between input techniques were significant. Eye tracking 
with dwell time click ranked as the fastest technique: 
χ2(3)=11.9, p<.008. Input techniques also differed 
significantly in perceived accuracy, closely following 
results for error rates, with eye tracker with dwell time click 
obtaining the lowest score: χ2(3)=12.6, p<.006. Input 
techniques did not appear to differ significantly in 
learnability: χ2(3)=6.9, p=.07. 50% of participants ranked 
eye tracking with manual click as their preferred technique. 

DISCUSSION 
Our hypotheses were confirmed. However, the performance 
comparisons in this study underline both the strengths as 
well as the shortcomings of eye tracking as a technique for 
selecting even large sized targets. Eye tracking with dwell 
time click provides the fastest technique, with a very high 
IP of over 13.8 bits per second after Welford correction. 
This agrees with the general consensus that the eyes 
provide the fastest muscle set in the human body, and 
shows that considerable bandwidth gains can be made by 
incorporating eye tracking input in computer interfaces. 
Results generally agree with observations by Sibert and 
Jacob, with eye input with dwell time click on average 46% 

          
Figure 3. Regression lines per input device comparing 
Movement Time (s) with Effective Index of Difficulty. 
 

Input 
Technique 

Mouse Stylus Eye with 
Manual 

Click 

Eye with 
Dwell Time 

Click 
Fast 

Accurate 

Easy to 
Learn 

3.7 

4.2 

4.5 

3.1 

4.1 

4.3 

3.9 

3.4 

4.1 

4.3 

2.7 

3.8 

Table 3. Mean score per questionnaire item for each 
input technique. 
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faster than the mouse in the uncorrected case. The speed 
advantage of eye tracking is almost entirely explained by 
performance with higher indices of difficulty. We believe 
there are three possible explanations for this. Firstly, in our 
study, the intercept for both eye tracking conditions was 
about twice that of the manual conditions. This constant 
takes up a greater proportion of movement time in low ID 
cases. Secondly, speed gains of the eye muscles are greater 
over larger distances. This is because in those cases, manual 
input relies on the use of relatively slow muscles in the 
elbow, rather than the muscles of the wrist.  Thirdly, when 
targets are further apart, participants are more likely to 
fixate on each target before initiating hand movements. 
While the fit to a Fitts’ Law model of our eye tracking 
conditions is not as good as that of manual conditions, it is 
sufficient. Contrary to Sibert and Jacob [24], we did find an 
effect of target amplitude as well as width on movement 
time for eye tracking with dwell time click. The intercept of 
both eye input techniques was considerably lower than that 
reported by Ware and Mikaelian [33], but higher than the 
intercept of the mouse. The intercept in the eye tracking 
conditions can, in large part, be attributed to eye tracker 
latency. If we subtract the dwell time of 100 ms from the 
intercept of eye tracking with dwell time click, we obtain a 
remaining system latency of approximately 200 ms. We 
believe future eye tracking systems may reduce this latency 
to more acceptable levels. The higher regression line of eye 
tracking with manual click, reflects, in part, a speed penalty 
of 100 ms with this technique, as compared to dwell time 
clicking. 

The Trouble With Eye Tracking 
Our positive results are, however, still affected by the 
inaccuracies observed in the eye tracking conditions. A 5% 
error rate is generally regarded as acceptable in manual 
input studies. How useful is an extremely fast input device 
if it cannot be used to reliably select targets several 
centimeters in diameter? Welford-corrected results may 
show that eye tracking is superior in terms of speed when 
we disregard error, but this will not help the user selecting a 
small target using an interactive system. 

Error rates were consistent with those reported in prior 
experiments. Our hypothesis that the eye tracker with dwell 
time click would be the outlier in terms of error rate was 
confirmed. At 43% overall, the error rate in this condition 
was unacceptably high. The high error rate of the dwell 
time condition can be attributed to the short threshold of 
only 100 ms, which we purposefully chose to observe 
maximum speed benefits. This does not necessarily mean 
that accuracy was simply traded for speed in this condition. 
High error rates in dwell time activated eye tracking should 
be considered a function of the interaction between noise 
present in the eye tracking data and the Midas Touch effect: 
users happened to click wherever their gaze appeared to 
rest. While the bulk of this noise is generated by current 
limitations in computer vision technology, and not by the 
muscles of the eyes themselves, the Midas Touch effect and 

associated high error rates make dwell time activated eye 
tracking less suitable for performing the kind of selection 
tasks common in graphical user interfaces.  

At 10.9 bits per second after Welford correction, eye 
tracking with manual click provides the most reasonable 
tradeoff between accuracy and speed for use in selection of 
large targets (i.e., larger than 2 cm on screen). This is 
reflected in the preference of the majority of participants for 
this technique. While limitations in the accuracy of this 
technique may disqualify it for use in the kind of high 
resolution pointing tasks common in GUIs, eye tracking 
with manual click provides a fast alternative for the 
selection of large visual contexts several centimeters in 
size, such as windows, without a Midas Touch effect. We 
believe that for eye tracking to become a mainstream input 
device, continued refinements of computer vision 
algorithms, in terms of lag as well as spatial resolution, 
range, bias error and noise, remain necessary. This is worth 
the effort as the eye does appear to provide one of the most 
efficient forms of spatial input the human body has to offer. 

CONCLUSIONS 
In this paper, we presented a Fitts’ Law comparison of the 
efficiency of eye tracking and manual input as a means for 
selecting large visual targets on a display. We compared 
performance of two eye tracking techniques, one with a 
manual click and one with a dwell time click, with that of 
mouse and Wacom stylus. Our findings indicate eye 
tracking with manual click outperforms the mouse by about 
16%, with eye tracking with dwell time click about 46% 
faster. Due to the large intercept in both eye tracking 
conditions, speed gains pertained mostly to higher-ID 
targets. Eye tracking conditions also suffered from a high 
error rate of 11.7% for manual click and 43% for dwell time 
click. After Welford correction, eye input still appears to 
outperform manual devices, with dwell time click the 
fastest technique at an IP of 13.8 bits/s. Eye tracking with 
manual click performed at an IP of 10.9 bits/s, and appears 
to provide the best tradeoff between speed and accuracy. 
This input technique was also preferred by 50% of 
participants. The mouse and stylus performed relatively 
poorly by comparison, with IPs of 4.7 and 4.2 respectively. 
However, these techniques provided superior accuracy, 
with error rates in the order of 5%. We conclude that 
accuracy of eye input remains an issue even with large 
targets, thus limiting its suitability for refined target 
selection tasks. 
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