
Robust Gesture Processing for Multimodal Interaction

Srinivas Bangalore
AT&T Labs Research

180 Park Ave
Florham Park, NJ 07932

srini@research.att.com

Michael Johnston
AT&T Labs Research

180 Park Ave
Florham Park, NJ 07932

johnston@research.att.com

ABSTRACT
With the explosive growth in mobile computing and com-
munication over the past few years, it is possible to access
almost any information from virtually anywhere. However,
the efficiency and effectiveness of this interaction is severely
limited by the inherent characteristics of mobile devices, in-
cluding small screen size and the lack of a viable keyboard
or mouse. This paper concerns the use of multimodal lan-
guage processing techniques to enable interfaces combining
speech and gesture input that overcome these limitations.
Specifically we focus on robust processing of pen gesture in-
puts in a local search application and demonstrate that edit-
based techniques that have proven effective in spoken lan-
guage processing can also be used to overcome unexpected or
errorful gesture input. We also examine the use of a bottom-
up gesture aggregation technique to improve the coverage of
multimodal understanding.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g.
HCI)]: User Interfaces—input devices and strategies (e.g.
mouse, touchscreen),natural language; I.2.7 [Artificial In-
telligence]: Natural Language Processing—language pars-
ing and understanding

General Terms
Algorithms, Experimentation, Human Factors

Keywords
finite-state methods, local search, mobile, multimodal inter-
faces, robustness, speech-gesture integration

1. INTRODUCTION
With the explosive growth of wireless communication net-

works in the past few years and advances in the capabilities
of mobile computing devices, it is now possible to access

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’08, October 20–22, 2008, Chania, Crete, Greece.
Copyright 2008 ACM 978-1-60558-198-9/08/10 ...$5.00.

almost any information from virtually everywhere. How-
ever, the efficiency and utility of mobile information access
is still severely constrained by the user interfaces of mobile
devices. With small keyboards and limited screen real es-
tate it quickly becomes cumbersome to maintain the same
established techniques used in non-mobile human-computer
interaction. The efficiency of human interaction with mo-
bile devices can be dramatically improved when their user
interfaces are augmented with natural modalities such as
sketched pen input [20], touch input, and speech. These
interfaces are most effective when they support multiple dif-
ferent modalities of input [3, 23, 21, 7, 11, 22, 1].

In this paper, we focus on techniques that enable multi-
modal interaction in the context of local search applications
on mobile devices supporting speech, pen, and touch in-
put. Multimodal interfaces are most effective if, in addition
to supporting input in one modality or another, they allow
users to combine multiple modalities in a single turn of in-
teraction. For example, allowing a user to issue a command
using both speech and pen modalities simultaneously. This
kind of multimodal interaction requires integration and un-
derstanding of information distributed in the two modalities.

We have been investigating methods that achieve such
multimodal integration and understanding over the past sev-
eral years [17, 18]. In recent work, we have emphasized the
issue of robust multimodal understanding to support practi-
cal applications [4]. The primary focus in that work, how-
ever, has been to provide robustness to speech recognition
errors. In this paper, we focus on techniques to provide
robustness to gesture recognition errors and highlight an
extension of these techniques to gesture aggregation, where
multiple pen gestures are interpreted as a single conceptual
gesture for the purposes of multimodal integration and un-
derstanding.

The outline of the paper is as follows. Section 2, illus-
trates the use of multimodal interfaces for local search with
examples from our prototype system. Section 3 summarizes
the approach taken for multimodal language processing and
Section 4 describes edit-based techniques for robust speech
processing. Section 5 explores the application of these tech-
niques to robust pen gesture processing and extensions of
these techniques for gesture aggregation. Section 6 presents
an experimental evaluation of the effectiveness of edit-based
techniques for pen gesture processing and Section 7 con-
cludes the paper.

225



2. MULTIMODAL INTERFACES FOR
LOCAL SEARCH

In the modern world, whether traveling or going about
their daily business, users need to access a complex and con-
stantly changing body of information regarding restaurants,
shopping, cinema and theater schedules, transportation op-
tions and timetables. This information is most valuable if
it can be delivered while mobile, since users’ plans change
while they are mobile and the information itself is highly
dynamic (e.g. train and flight timetables change, shows get
cancelled, and restaurants get booked up).

In this paper, we will illustrate and evaluate our approach
to multimodal information access using data and examples
from the MATCH (Multimodal Access To City Help) sys-
tem, a city guide and navigation system that enables mobile
users to access restaurant and subway information for urban
centers such as New York City and Washington, D.C. [19,
5]. However, the techniques described apply to a broad
range of mobile information access and management appli-
cations beyond this particular task domain, such as apart-
ment finding [15], setting up and interacting with map-based
distributed simulations [10] or searching for hotels [8].

In MATCH, the user interacts with a graphical interface
displaying restaurant listings and a dynamic map showing
locations and street information. The inputs can be speech,
drawings on the display with a stylus, or synchronous mul-
timodal combinations of the two modes. The user can ask
for the review, cuisine, phone number, address, or other in-
formation about restaurants and for subway directions to
locations. The system responds by generating multimodal
presentations synchronizing graphical callouts and anima-
tion, with synthetic speech output.

For example, a user can request to see restaurants us-
ing the spoken command show cheap italian restaurants in
chelsea. The system will then zoom to the appropriate map
location and show the locations of restaurants on the map.
Alternatively, the user could give the same command mul-
timodally by circling an area on the map and saying show
cheap italian restaurants in this neighborhood. If the imme-
diate environment is too noisy or public, the same command
can be given completely using a pen stylus as in Figure 1(a),
by circling an area and writing cheap and italian.

Similarly, if the user says phone numbers for these two
restaurants and circles two restaurants as in Figure 1(b) [A],
the system will draw a callout with the restaurant name and
number and say, for example Time Cafe can be reached at
212-533-7000, for each restaurant in turn (Figure 1(b) [B]).
If the immediate environment is too noisy or public, the
same command can be given completely in pen by circling
the restaurants and writing phone (Figure 1(c)).

3. MULTIMODAL PROCESSING
In our system, multimodal integration and understanding

is performed by a single component (MMFST) which takes
as input a word lattice from speech recognition and/or a
gesture lattice which is a combination of results from hand-
writing recognition and gesture recognition (Figure 2). This
component uses a cascade of finite state operations [17, 19]
to align and integrate the content in the word and gesture
lattices and produces as output a meaning lattice which is
passed on to a multimodal dialog manager for further pro-
cessing.

Figure 2: Multimodal understanding component

In the example above where the user says phone for these
two restaurants while circling two restaurants (Figure 1(a)
[A]), assume the speech recognizer returns the word lattice
in Figure 3 (Speech). The gesture recognition component
also returns a lattice (Figure 3, Gesture) indicating that
the user’s ink is either a selection of two restaurants or a
geographical area. The multimodal integration and under-
standing component (MMFST) combines these two input
lattices into a lattice representing their combined meaning,
Figure 3 (Meaning). This is passed to a multimodal dialog
manager and from there back to the user interface where
it results in the display in Figure 1(a) [B] and coordinated
TTS output.

Speech:    

Gesture:

phone<type><info><cmd> </type>

SEM(r12,r15)
rest

<obj>

Meaning: 
<rest>

SEM(points...)

2

sel

locareaG

phone

ten

restaurantstwothesefor

</info> </cmd></rest>r12,r15 </obj>

Figure 3: Multimodal example

The alignment of speech and gesture and relation to their
combined meaning is captured in a single declarative multi-
modal grammar representation [17, 18]. The non-terminals
of the multimodal grammar are atomic symbols but each
terminal contains three components W :G:M corresponding
to the n input streams and one output stream, where W is
for the spoken language input stream, G is for the gesture
input stream, and M is for the combined meaning output
stream. The epsilon symbol (ε) is used to indicate when one
of these streams is empty within a given terminal. In ad-
dition to the gesture symbols (G area loc ...), G contains a
symbol SEM used as a placeholder for specific content. Fig-
ure 4 contains a small fragment of the multimodal grammar
used for MATCH, which includes coverage for commands
such as that in Figure 3.

226



(a) (b) (c)

Figure 1: (a): Unimodal pen command (b): Two area gestures (c): Phone command in pen

The multimodal grammar can be compiled into a finite-
state device operating over two input streams (speech and
gesture) and one output stream (meaning). The symbols on
the transition arcs of the FSA correspond to the terminals of
the multimodal grammar. For the sake of illustration here
and in the following examples we will only show the portion
of the three tape finite-state device which corresponds to the
DEICNP rule in the grammar in Figure 4. The correspond-
ing finite-state device is shown in Figure 5. This three tape
machine is then factored into two transducers: R:G → W
and T :(G ×W ) → M . R:G → W (e.g. Figure 6) aligns the
speech and gesture streams through a composition with the
speech and gesture input lattices (G o (G:W o W)). The re-
sult of this operation is then factored onto a single tape and
composed with T :(G×W ) → M (e.g. Figure 7) resulting in
a transducer G W:M. Essentially the three tape transducer
is simulated by increasing the alphabet size by adding com-
posite multimodal symbols that include both gesture and
speech information. A lattice of possible meanings is de-
rived by projecting on the output of G W:M. For detailed
description of this approach see [18] and [5].

4. ROBUST SPEECH PROCESSING USING
EDIT MACHINES

Like other grammar-based approaches, multimodal lan-
guage processing based on declarative grammars can be brit-
tle with respect to unexpected or errorful inputs. On the
speech side, the brittleness of using a grammar as a language
model for recognition can be alleviated by instead building
statistical language models (SLMs) that capture the distri-
bution of the user’s interactions in an application domain.
However, to be effective SLMs need to be trained on large
amounts of spoken interactions collected in that domain –
a tedious task in itself, in speech-only systems but an often
insurmountable task in multimodal systems. The problem
we face is how to make multimodal systems more robust to
disfluent or unexpected spoken language in applications for
which little or no training data is available. In [4, 5], we
show how this challenge can be addressed using a number
of techniques including sampling data from the multimodal
grammar, and adaptation of data from different domains in
order to build SLMs for the speech recognizer (ASR).

The second source of brittleness in a grammar-based mul-
timodal/unimodal interactive system is in the assignment
of meaning to the multimodal output. In our grammar-
based multimodal system, the grammar serves as the speech-
gesture alignment model and assigns a meaning representa-
tion to the multimodal input. Failure to parse a multimodal
input implies that the speech and gesture inputs could not
be fused together and consequently could not be assigned a

S → ε:ε:<cmd> CMD ε:ε:</cmd>
CMD → ε:ε:<show> SHOW ε:ε:</show>
CMD → ε:ε:<info> INFO ε:ε:</info>
SHOW → show:ε:ε ε:ε:<rest> ε:ε:<cuis>

CUISINE ε:ε:</cuis> restaurants:ε:ε
( ε:ε:<loc> LOCPP ε:ε:</loc> )
ε:ε:</rest>

INFO → ε:ε:<type> TYPE ε:ε:<type>
for:ε:ε ε:ε:<obj> DEICNP ε:ε:</obj>

CUISINE → italian:ε:italian | chinese:ε:chinese |
new:ε:ε american:ε:new american ...

LOCPP → in:ε:ε LOCNP
LOCPP → here:G:ε ε:area:ε ε:loc:ε ε:SEM:SEM
LOCNP → ε:ε:<zone> ZONE ε:ε:</zone>
ZONE → chelsea:ε:chelsea | soho:ε:soho |

tribeca:ε:tribeca ...
TYPE → phone:ε:ε numbers:ε:phone |

review:ε:review | address:ε:address
DEICNP → DDETSG ε:area:ε

ε:sel:ε ε:1:ε HEADSG
DEICNP → DDETPL ε:area:ε

ε:sel:ε NUMPL HEADPL
DDETPL → these:G:ε | those:G:ε
DDETSG → this:G:ε | that:G:ε
HEADSG → restaurant:rest:<rest> ε:SEM:SEM

ε:ε:</rest>
HEADPL → restaurants:rest:<rest> ε:SEM:SEM

ε:ε:</rest>
NUMPL → two:2:ε | three:3:ε ... ten:10:ε

Figure 4: Multimodal grammar fragment

meaning representation. This can result from unexpected or
errorful strings in either the speech or gesture of input or un-
expected alignments of speech and gesture. For more robust
multimodal understanding, more flexible mechanisms must
be employed in the integration and the meaning assignment
phases. Robustness in such cases is achieved by either (a)
modifying the parser to accommodate for unparsable sub-
strings in the input [12, 2, 24] or (b) modifying the meaning
representation it can be learnt as a classification task using
robust machine learning techniques as is done in large scale
human-machine dialog systems (e.g. [14]).

In [4, 5] we describe a technique that overcomes unex-
pected inputs or errors in the speech input stream with the
finite-state multimodal language processing framework and
does not require training data. The basic idea is that if the
ASR output cannot be assigned a meaning then to transform
it into the closest sentence that can be assigned a meaning
by the grammar. The transformation is achieved using edit

227



0

2
that:G:eps

this:G:eps

1

these:G:eps

those:G:eps

4eps:area:eps

3eps:area:eps 5eps:sel:eps

6eps:sel:eps

7

three:3:eps

ten:10:eps

two:2:eps

8
eps:1:eps

9
restaurants:rest:<rest>

restaurant:rest:<rest>

10eps:SEM:SEM 11eps:eps:</rest>

Figure 5: Multimodal three-tape FSA

0

2
G:that

G:this

1

G:these

G:those

4area:eps

3area:eps 5sel:eps

6sel:eps

7

3:three

10:ten

2:two

8
1:eps

9rest:restaurants

rest:restaurant

10SEM:eps 11eps:eps

Figure 6: Gesture/speech alignment transducer

0

2
G_that:eps

G_this:eps

1

G_these:eps

G_those:eps

4area_eps:eps

3area_eps:eps 5sel_eps:eps

6sel_eps:eps

7

3_three:eps

10_ten:eps

2_two:eps

8
1_eps:eps

9
rest_restaurants:<rest>

rest_restaurant:<rest>

10SEM_eps:SEM 11eps:</rest>

Figure 7: Gesture/speech to meaning transducer

operations such as substitution, deletion and insertion of
words. The possible edits on the ASR output are encoded
as an edit finite-state transducer (FST) with substitution,
insertion, deletion and identity arcs and incorporated into
the sequence of finite-state operations. These operations
could be either word-based or phone-based and are associ-
ated with a cost. The word-edit transducer (λW

edit) coerces
the set of strings (S) encoded in the lattice resulting from
ASR (λS) to the closest strings in the speech component of
the multimodal grammar (λW ) that can be assigned an in-
terpretation. We are interested in the string with the least
cost sequence of edits (argmin) that can be assigned an in-
terpretation by the grammar. This can be achieved by com-
position (◦) of transducers followed by a search for the least
cost path through a weighted transducer as shown below.

s∗ = argmin
s∈S

λS ◦ λW
edit ◦ λW (1)

As an example in this domain the ASR output find me
cheap restaurants thai restaurants in the the upper east side
might be mapped to find me cheap thai restaurants in the
upper east side. The edit machine described in [4] is es-
sentially a finite-state implementation of the algorithm to
compute the Levenshtein distance. It allows for unlimited
insertion, deletion, and substitution of any word for another
(Figure 8). The costs of insertion, deletion, and substitu-
tion are set as equal, except for members of classes such as
price (expensive), cuisine (turkish) etc., which are assigned
a higher cost for deletion and substitution. Membership
of these high cost classes of words is determined automati-
cally from the underlying application database. [5] presents
some variants to this basic edit FST that are computation-
ally more attractive for use on ASR lattices. One such vari-
ant limits the number of edits allowed on an ASR output
to a predefined number based on the application domain. A
second variant has more fine tuning of costs based on the
application database.

wjiw : /scost

iw : /0wi
i

w
:ε

/d
co

st

i
w:

ε
/icost

Figure 8: Basic edit machine

5. ROBUST GESTURE PROCESSING
For applications such as the local search task described

here recognition of pen gestures generally has lower error
rate than speech recognition given smaller vocabulary size
and less sensitivity to extraneous noise1. Even so, gesture
misrecognitions and incompleteness of the multimodal gram-
mar in specifying speech and gesture alignments contribute
to the number of utterances not being assigned a meaning.
In this section we explore techniques for overcoming unex-
pected or errorful gesture input streams.

The edit-based technique used on speech utterances proved
to be effective in improving the robustness of multimodal un-
derstanding. However, unlike a speech utterance, which is
represented simply as a sequence of words, gesture strings
are represented using a structured representation which cap-
tures various different properties of the gesture. The basic
form of this representation is: G FORM MEANING (NUM-
BER TYPE) SEM. FORM indicates the physical form of
the gesture, and has values such as area, point, line, and
arrow. MEANING provides a rough characterization of the
specific meaning of that form; for example, an area can be

1Note however that in applications involving freehand
sketching [1] or 3D gesture input using computer vision ges-
ture recognition is considerably more complex and may be
as or more prone to errors than speech.

228



2:1

2:2

1:1

:

:

area:line

area:area Σ:Σ

Σ:ε

:
/substc

sel:loc

sel:sel

loc:loc

coord:coords

1 2 3 40

loc:sel/substcarea:point

/delc

line:line

/delc

point:point coord:coord

/substcpoint:area

:

G

Σ:Σ

Σ:ε

Figure 9: A finite-state transducer for editing ges-
tures

Figure 10: Multiple ways to select three restaurants

either a loc (location) or a sel (selection), indicating the dif-
ference between gestures which delimit a spatial location on
the screen and gestures which select specific displayed icons.
NUMBER and TYPE are only found with sel. They indi-
cate the number of entities selected (1,2,3, many) and the
specific type of entity (e.g. rest (restaurant) or thtr (the-
atre)). Since the gesture is represented as a lattice rather
than a single sequence of symbols, imprecise gestures where
it is not clear which of several entities are selected can be
represented as multiple different paths through the lattice.
Likelihood of each possible selection is captured using rel-
ative costs on each path, based on factors such as distance
from the gesture to the selected item.

Editing a gesture representation implies allowing for re-
placements within the value set. We initially adopt a simple
approach that allows for substitution and deletion of values
for each attribute, in addition to the deletion of any gesture.
We did not allow for general insertion of gestures since it is
not clear which content to attribute to a newly inserted ges-
ture. One of the problems is that if you have, for example,
a selection of two items and you want to increase it to three
selected items it is not clear a priori which entity to add as
the third item.

As in the case of speech, the edit operations for gesture
editing can be encoded as a finite-state transducer (Fig-
ure 9). In this gesture edit transducer delc represents the
delection cost and substc the substitution cost. The costs
used in the gesture edit transducer can be learned from data
or hand crafted based on knowledge of the application. In
our initial implementation and evaluation the assigned costs
are equal. In ongoing work we are exploring the use of other
features of the gesture and context to set costs for edit oper-
ations. For example, substituting a line with a point should
be sensitive to the number of points that make up the line,
with lines consisting of very few points having a lower cost
for substitution with a point. Note also that the combina-
tion with speech plays an important role in which edits are

applied since the speech input will only align with certain
paths in the gesture lattice.

Table 1 is an illustrative example of the role of gesture
editing in overcoming errors. In this case the user has drawn
an area which has been misrecognized as a line. Also, af-
ter the area, there was a spurious pen tap which has been
recognized as a point gesture. The gesture edit transducer
allows for substitution of line with area and for deletion of
the spurious point gesture (among other possible edits). In
this case the speech is chinese restaurants here which the
multimodal grammar aligns with an area gesture and so an
edit path is chosen where the line is substituted with area
and the point deleted.

Speech chinese restaurants here
Gesture G line loc SEM G point loc SEM
Possible gesture
after editing G area loc SEM

Table 1: Gesture editing

5.1 Insertion of Gestures through Aggregation
One kind of gesture editing that supports insertion is ges-

ture aggregation, introduced in [19] and expanded on here.
Gesture aggregation allows for insertion of paths in the ges-
ture lattice which correspond to combinations of existing
temporally adjacent gestures. These insertions are possi-
ble because they have a well defined meaning based on the
values of the combining gestures. These insertions allow
for alignment and integration of deictic expressions with se-
quences of gestures which are not specified in the multi-
modal grammar. This overcomes problems identified in [16]
regarding multimodal understanding and integration of deic-
tic numeral expressions such as these three restaurants. The
problem is that for a particular spoken phrase there are a
multitude of different lexical choices of gesture and combi-
nations of gestures that can be used to select the specified
plurality of entities (e.g. three) and all of these need to be in-
tegrated with the spoken phrase. For example, as illustrated
in Figure 10, the user might circle all three restaurants with
a single pen stroke, circle each in turn, or circle a group of
two and group of one. The split into a group of two and a
group of one is most likely if some natural feature intervenes
(a road or river) or if there is some other entity inbetween
which the user does not wish to select.

In our implementation, gesture aggregation serves as a
bottom-up pre-processing phase on the gesture input lat-
tice. A gesture aggregation algorithm traverses the gesture
input lattice and adds new sequences of arcs which represent
combinations of adjacent gestures of identical type. The op-
eration of the gesture aggregation algorithm is described in
pseudo-code in Algorithm 1 below. The function plurality()
retrieves the number of entities in a selection gesture, for ex-
ample, for a selection of two entities g1, plurality(g1) = 2.
The function type() yields the type of the gesture, for ex-
ample rest for a restaurant selection gesture. The function
specific content() yields the specific IDs.

Essentially what this algorithm does is perform closure
on the gesture lattice of a function which combines adjacent
gestures of identical type. For each pair of adjacent gestures
in the lattice which are of identical type, a new gesture is
added to lattice. This new gesture starts at start state of
the first gesture and ends at the end state of the second
gesture. Its plurality is equal to the sum of the pluralities

229



of the combining gestures. The specific content for the new
gesture (lists of identifiers of selected objects) results from
appending the specific contents of the two combining ges-
tures. This operation feeds itself so that sequences of more
than two gestures of identical type can be combined.

Algorithm 1 Gesture aggregation

P ⇐ the list of all paths through the gesture lattice GL
while P �= ∅ do

p ⇐ pop(P )
G ⇐the list of gestures in path p
i ⇐ 1
while i < length(G) do

if g[i] and g[i + 1] are both selection gestures then
if type(g[i]) == type(g[i + 1]) then

plurality ⇐ plurality(g[i]) + plurality(g[i + 1])
start ⇐ start state(g[i])
end ⇐ end state(g[i + 1])
type ⇐ type(g[i])
specific ⇐ append(specific content(g[i]),

specific content(g[i + 1])
g′ ⇐ G area sel plurality type specific
Add g′ to GL starting at state start and ending
at state end
p′ ⇐ the path p but with the arcs from start to
end replaced with g′

push p′ onto P
i ⇐ i + 1

end if
end if

end while
end while

For the example of three selection gestures on single restau-
rants as in Figure 10(2), the gesture lattice before aggrega-
tion is as in Figure 11(a). After aggregation the gesture
lattice is as in Figure 11(b). Three new sequences of arcs
have been added. The first from state 3 to state 8 results
from the combination of the first two gestures. The second
from state 14 to state 24 from the combination of the last
two gestures, and the third from state 3 to state 24 from the
combination of all three gestures. The resulting lattice after
the gesture aggregation algorithm has applied is shown in
Figure 11(b). Note that minimization has been applied to
collapse identical paths.

A spoken expression such as these three restaurants is
aligned with the gesture symbol sequence G area sel 3 rest
SEM in the multimodal grammar. This will be able to com-
bine not just with a single gesture containing three restau-
rants but also with our example gesture lattice, since aggre-
gation adds the path: G area sel 3 rest [id1,id2,id3].

We term this kind of aggregation type specific aggrega-
tion. The aggregation process can be extended to support
type non-specific aggregation to support cases where users
refer to sets of objects of mixed types and select them using
multiple gestures. For example in the case where the user
says tell me about these two and circles a restaurant and then
a theatre, non-type specific aggregation applies to combine
the two gestures into an aggregate of mixed type G area sel
2 mix [(id1,id2)] and this is able to combine with these two.
For applications with a richer ontology with multiple levels
of hierarchy, the type non-specific aggregation should assign
the aggregate to the lowest common subtype of the set of en-

0
1

G
2

area
3

sel
4

1
5

rest
6

[id1]
7

G
8

area
9

sel
10

1
11

rest
12

[id2]
13

G
20

area
15

sel
16

1
17

rest
18

[id3]

0
1

G
2

area
3

sel

4

2

5
1

6

3

7
rest

10
rest

18
rest

8

[id1,id2]

11
[id1]

24

[id1,id2,id3]

9
G

17
area

21
sel

12
G

13
area

14
sel

15
1

19
2

16
rest

20
rest

[id2]
22

1

[id2,id3]

23
rest

[id3]

(a) (b)

Figure 11: Aggregated lattice

tities being aggregated. In order to differentiate the original
sequence of gestures that the user made from the aggregate,
paths added through aggregation can be assigned additional
cost.

6. DATA AND EXPERIMENTS
To evaluate the approach, a corpus of multimodal data

was collected in a laboratory setting from a gender balanced
set of sixteen first time users. The subjects were AT&T
personnel with no prior knowledge of the system and no ex-
perience building spoken or multimodal systems. A total of

230



833 user interactions (218 multimodal / 491 speech-only /
124 pen-only) resulting from six sample task scenarios were
collected and annotated. The subjects completed a series of
six sample task scenarios of varying complexity. These in-
volved finding restaurants of various types and getting their
names, numbers, addresses, or reviews, and getting subway
directions between locations. Users were not prompted to
use particular modalities or commands and so the choice of
modality reflects a natural distribution of this task domain.
Their inputs were then annotated for speech, gesture, and
meaning using a multimodal log annotation tool [13].

For evaluation of our approach we focus on concept ac-
curacy. We developed an approach, similar to [9, 6], in
which the meaning representation, in our case XML, is trans-
formed into a sorted flat list of attribute-value pairs indi-
cating the core contentful concepts of each command. The
attribute-value meaning representation normalizes over mul-
tiple different XML representations which correspond to the
same underlying meaning. For example, phone and address
and address and phone receive different XML representa-
tions but the same attribute-value representation. For the
example phone number of this restaurant, the XML repre-
sentation and corresponding sorted attribute value represen-
tation (A/V) are as in Table 2. Concept Sentence Accuracy
measures the number of user inputs for which the system got
the meaning completely right (This metric is called Sentence
Understanding in Ciaramella [9]).

XML <cmd><info><type>phone</type><obj>
<rest>[r12,r15]</rest></obj></info></cmd>

A/V cmd : info type : phone object : selection

Table 2: Attribute value representation

We conducted two experiments evaluating the effective-
ness of the gesture edit machine on this corpus. We first
examined the impact of gesture editing on accuracy specifi-
cally within the subset of the data which is multimodal. In
order to factor out the impact of speech errors, in this first
experiment, we leave out examples where the speech refer-
ence string is out of grammar and use the transcribed string
along with the gesture lattice from the gesture recognizer
as inputs to the multimodal integration and understanding
system. This dataset consisted of 174 multimodal utter-
ances that were covered by the speech grammar. For 55.4%
of the utterances, we obtained the identical attribute-value
meaning representation as the human transcribed meaning
representation. Applying the gesture edit transducer on the
gesture recognition lattices, and then integrating the result
with the transcribed speech utterance, produced a signif-
icant improvement in the accuracy of the attribute-value
meaning representation. For 68.9% of the 174 multimodal
utterances, we obtained the identical attribute-value mean-
ing representation as the human transcribed meaning rep-
resentation, a 22.5% relative improvement in the robustness
of the system that can be directly attributed to robustness
in gesture integration and understanding.

In our next experiment, we examined the impact of ges-
ture editing on the performance of the system as a whole,
where both the speech and gesture edits are allowed and we
operate on the recognized speech rather than the transcrip-
tion. In Equation 2, we formulate the process of editing
the speech and gesture lattices. The speech lattice (λS) en-

codes the set of strings S from the speech recognizer which is
edited using the word-edit machine (λW

edit). The gesture lat-
tice (λG) encodes the set of gestures G from the gesture rec-
ognizer which is edited with the gesture-edit machine (λG

edit).
The edited lattices are aligned using the R:G → W trans-
ducer introduced in Section 2. We then search for the least
cost path (with minimum number of edits) (argmin) that
pairs the edited speech string with the edited gesture string.

(g∗, s∗) = argmin
(g,s)∈G×S

(λG ◦ λG
edit) ◦ R ◦ (λS ◦ λW

edit) (2)

In Table 3, we summarize the overall accuracy improve-
ments from applying both speech and gesture editing tech-
niques. On the 709 speech-only and multimodal utterances,
the grammar-based multimodal integration and understand-
ing model achieves a concept accuracy of 38.9% using the 1-
best ASR and gesture recognizer output. This low accuracy
is to be expected given that a large proportion of the user’s
utterances are not encoded in the multimodal grammar. On
editing the ASR 1-best output using the edit machine shown
in Figure 8 and integrating with unedited gesture lattice, we
obtain a concept accuracy of 51.5%. Using the speech edit
machine that incorporates knowledge about the application
database, the concept accuracy improves to 63.2%. And fi-
nally, incorporating gesture edits in conjunction with speech
edits improves the concept accuracy to 64.5%. While there is
a significant improvement in concept accuracy attributable
to gesture editing, the impact of gesture editing is smaller
than that seen from speech editing However, this is some-
what to be expected since far more of the data is speech only
than multimodal and in this domain there are considerably
more recognition errors and out of grammar utterances in
the speech stream than the gesture stream.

There are a number of other methods for achieving robust-
ness to speech and gesture recognition errors as mentioned
in Section 4. Most of these techniques are not declara-
tive in nature and the application knowledge is tightly inte-
grated into the program for achieving robustness. We found
that encoding the edit operations in a declarative manner
as a finite-state transducer allowed us to naturally extend
these techniques to apply on speech and gesture lattices.
This approach is particularly attractive for multimodal lan-
guage processing since lattice representation of recognition
hypotheses from each of the input modes is the most efficient
way to exploit mutual compensation across these modes. In
future work, we would like to explore learning from data
how to balance gesture editing and speech editing based on
the relative reliabilities of the two modalities.

Approach Concept Sentence Accuracy
Grammar-based 38.9%
Speech-edit 51.5%
Tuned-speech-edit 63.2%
Tuned-speech+Gesture-edit 64.5%

Table 3: Concept accuracy using speech and gesture
recognition output

7. CONCLUSIONS
Multimodal interfaces have tremendous potential to in-

crease the usability and utility of mobile information services
such as local search. To reach this potential, robust meth-

231



ods for multimodal integration and understanding are re-
quired that can be authored without access to large amounts
of training data before deployment. We have shown here
how techniques initially developed for overcoming errors and
unexpected strings in the speech input, can be applied to
gesture processing, resulting in overall improvement in the
robustness and effectiveness of finite-state mechanisms for
multimodal understanding and integration.

8. ACKNOWLEDGMENTS
We thank Patrick Ehlen, Helen Hastie, Candace Kamm,

Preetam Maloor, Amanda Stent, Gunaranjan Vasireddy, Mar-
ilyn Walker, and Steve Whittaker for their contributions to
the MATCH system. Thanks also to the anonymous review-
ers for their helpful comments.

9. REFERENCES
[1] A. Adler and R. Davis. Speech and sketching for

multimodal design. In Proceedings of 9th International
Conference on Intelligent User Interfaces, pages
214–216. ACM Press, 2004.

[2] J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. Towards conversational
human-computer interaction. AI Magazine,
22(4):27–38, December 2001.

[3] E. André. Natural language in
multimedia/multimodal systems. In R. Mitkov, editor,
Handbook of Computational Linguistics, pages
650–669. Oxford University Press, 2002.

[4] S. Bangalore and M. Johnston. Balancing data-driven
and rule-based approaches in the context of a
multimodal conversational system. In Proceedings of
North American Association for Computational
Linguistics/Human Language Technology, pages
33–40, Boston, USA, 2004.

[5] S. Bangalore and M. Johnston. Robust understanding
in multimodal interfaces. Accepted for publication in
Computational Linguistics, 2008.

[6] M. Boros, W. Eckert, F. Gallwitz, G. Gŏrz,
G. Hanrieder, and H. Niemann. Towards
understanding spontaneous speech: word accuracy vs.
concept accuracy. In Proceedings of International
Conference on Spoken Language Processing, pages
41–44, Philadelphia, USA, 1996.

[7] J. Cassell. Embodied conversational agents:
Representation and intelligence in user interface. In AI
Magazine, volume 22, pages 67–83, 2001.

[8] A. Cheyer and L. Julia. Multimodal Maps: An
Agent-Based Approach. Lecture Notes in Computer
Science, 1374:103–113, 1998.

[9] A. Ciaramella. A Prototype Performance Evaluation
Report. Technical Report WP8000-D3, Project Esprit
2218 SUNDIAL, 1993.

[10] P. Cohen, M. Johnston, D. McGee, S. L. Oviatt,
J. Pittman, I. Smith, L. Chen, and J. Clow.
Multimodal interaction for distributed interactive
simulation. In M. Maybury and W. Wahlster, editors,
Readings in Intelligent Interfaces, pages 562–571.
Morgan Kaufmann Publishers, 1998.

[11] P. R. Cohen, M. Johnston, D. McGee, S. L. Oviatt,
J. Clow, and I. Smith. The efficiency of multimodal

interaction: a case study. In Proceedings of
International Conference on Spoken Language
Processing, pages 249–252, Sydney, Australia, 1998.

[12] J. Dowding, J. Gawron, D. Appelt, J. Bear, L. Cherny,
R. Moore, and D. Moran. GEMINI: A natural
language system for spoken-language understanding.
In Proceedings of Association for Computational
Linguistics, pages 54–61, Columbus, OH, USA, 1993.

[13] P. Ehlen, M. Johnston, and G. Vasireddy. Collecting
mobile multimodal data for MATCH. In Proceedings
of International Conference on Spoken Language
Processing, pages 2557–2560, Denver, CO, USA, 2002.

[14] A. L. Gorin, G. Riccardi, and J. H. Wright. How May
I Help You? Speech Communication, 23(1-2):113–127,
1997.

[15] J. Gustafson, L. Bell, J. Beskow, J. Boye, R. Carlson,
J. Edlund, B. Granstrm, D. House, and M. Wirén.
Adapt - a multimodal conversational dialogue system
in an apartment domain. In International Conference
on Spoken Language Processing, pages 134–137,
Beijing, China, 2000.

[16] M. Johnston. Deixis and conjunction in multimodal
systems. In Proceedings of International Conference
on Computational Linguistics (COLING), pages
362–368, Saarbrücken, Germany, 2000.

[17] M. Johnston and S. Bangalore. Finite-state
multimodal parsing and understanding. In Proceedings
of International Conference on Computational
Linguistics (COLING), pages 369–375, Saarbrücken,
Germany, 2000.

[18] M. Johnston and S. Bangalore. Finite-state
multimodal integration and understanding. Journal of
Natural Language Engineering, 11(2):159–187, 2005.

[19] M. Johnston, S. Bangalore, G. Vasireddy, A. Stent,
P. Ehlen, M. Walker, S. Whittaker, and P. Maloor.
MATCH: An architecture for multimodal dialog
systems. In Proceedings of Association of
Computational Linguistics, pages 376–383,
Philadelphia, PA, USA, 2002.

[20] J. A. Landay and B. A. Myers. Sketching interfaces:
Toward more human interface design. IEEE
Computer, 34(3):56–64, March 2001.

[21] S. Oviatt. Multimodal interactive maps: Designing for
human performance. Human-Computer Interaction,
12(1):93–129, 1997.

[22] S. Oviatt. Mutual disambiguation of recognition errors
in a multimodal architecture. In Proceedings of the
Conference on Human Factors in Computing Systems:
CHI’99, pages 576–583, Pittsburgh, PA, USA, 1999.
ACM Press.

[23] W. Wahlster. SmartKom: Fusion and fission of speech,
gestures, and facial expressions. In Proceedings of the
1st International Workshop on Man-Machine
Symbiotic Systems, pages 213–225, Kyoto, Japan,
2002.

[24] W. Ward. Understanding spontaneous speech: the
Phoenix system. In Proceedings of International
Conference on Acoustics, Speech, and Signal
Processing, pages 365–367, Washington, D.C., USA,
1991.

232



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


