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ABSTRACT
During face-to-face conversation, people use visual feedback
such as head nods to communicate relevant information and
to synchronize rhythm between participants. In this paper
we describe how contextual information from other partic-
ipants can be used to predict visual feedback and improve
recognition of head gestures in human-human interactions.
For example, in a dyadic interaction, the speaker contextual
cues such as gaze shifts or changes in prosody will influence
listener backchannel feedback (e.g., head nod). To auto-
matically learn how to integrate this contextual information
into the listener gesture recognition framework, this paper
addresses two main challenges: optimal feature representa-
tion using an encoding dictionary and automatic selection
of optimal feature-encoding pairs. Multimodal integration
between context and visual observations is performed using
a discriminative sequential model (Latent-Dynamic Condi-
tional Random Fields) trained on previous interactions. In
our experiments involving 38 storytelling dyads, our context-
based recognizer significantly improved head gesture recog-
nition performance over a vision-only recognizer.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Motion; I.2.7 [Artificial Intelligence]: Natural
Language Processing—Discourse

General Terms
Algorithms

Keywords
Contextual information, visual gesture recognition, human-
human interaction, head nod recognition

1. INTRODUCTION
Face-to-face communication is highly interactive. Even

when only one person speaks at the time, other participants
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exchange information continuously amongst themselves and
with the speaker through gesture, gaze, posture and facial
expressions. Such feedback is an essential and predictable
aspect of natural conversation and its absence can signifi-
cantly disrupt participants ability to communicate [3, 23].
Recognizing these visual gestures is important for under-
standing all the information exchanged during a meeting or
conversation, and can be particularly crucial for identifying
more subtle factors such as the effectiveness of communica-
tion [17], points of confusion, status relationships between
participants [18], or the diagnosis social disorders [16].

This paper argues that it is possible to significantly im-
prove state-of-the art recognition techniques by exploiting
regularities in how people communicate. People do not pro-
vide feedback at random. Rather they react to the current
topic, previous utterances and the speaker’s current verbal
and nonverbal behavior [1]. For example, listeners are far
more likely to nod or shake if the speaker has just asked
them a question, and incorporating such dialogue context
can improve recognition performance during human-robot
interaction [14]. More generally, speakers and listeners co-
produce a range of lexical, prosodic, and nonverbal patterns.
Our goal is to automatically discover these patterns using
only easily observable features of human face-to-face interac-
tion (e.g. prosodic features and eye gaze), and exploit them
to improve recognition accuracy.

In this paper, we show that we can improve the recogni-
tion of conversational gestures by considering the behaviors
of other participants in the conversation. Specifically, we
show that the multimodal context from the current speaker
can improve the visual recognition of listener gestures. We
introduce the idea of encoding dictionary, a technique for
contextual feature representation inspired by the influence
speaker context has on the listener feedback. We perform
automatic selection of relevant contextual features by look-
ing at individual and joint influences of context. The final
contextual integration is done using a discriminative sequen-
tial model. We proof the importance of speaker context on
a head nod recognition task using a large dyadic-storytelling
dataset.

The following section describes previous work in visual
gesture recognition and explains the differences between our
context-based approach and other recognition models. Sec-
tion 3 discusses the contextual information available dur-
ing human-human interactions. Section 4 describes the de-
tails of our context-based recognition framework including
the encoding dictionary and our feature selection algorithm.
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Figure 1: Overview of our context-based gesture recognition framework. To recognize online the visual
gestures of a person (i.e., the listener), we integrate contextual information (e.g., prosodic cues, eye gaze,...)
from other participants (i.e., the speaker) in three steps: (1) the contextual information is encoded using
a template dictionary build based on co-occurrence of context and gestures, (2) select the feature-encoding
pairs based on their individual and joint influences, and (3) integrate the contextual information to the visual
observations using a probabilistic sequential model (e.g., Conditional Random Field).

Section 5 presents the way we collected the data used for
training and evaluating our model as well as the methodol-
ogy used to evaluate the performance of our approach. The
results are discussed in Section 6.

2. PREVIOUS WORK
Our approach to recognize visual feedback is unique in

that it incorporates contextual features of other human par-
ticipants in an interaction beyond the person of interest.
However it relates to and builds upon several approaches
for audio-visual speech and multimodal recognition.

Recognition of head gestures has been demonstrated by
tracking eye position over time. Kapoor and Picard pre-
sented a technique to recognize head nods and head shakes
based on two Hidden Markov Models(HMMs) trained and
tested using 2D coordinates from an eye gaze tracker [10].
Kawato and Ohya suggested a technique for head gesture
recognition using between eye templates [11]. Fujie et al.
also used HMMs to perform head nod recognition [7]. In
their paper, they combined head gesture recognition with
prosodic low-level features computed from Japanese spoken
utterances to determine strongly positive, weak positive and
negative responses to yes/no type utterances.

Several researchers have developed models to predict when
backchannel should happen based mostly on unimodal in-
puts. Ward and Tsukahara [20] propose a unimodal ap-
proach where backchannels are associated with a region of
low pitch lasting 110ms during speech. Models were pro-
duced manually through an analysis of English and Japanese
conversational data. Nishimura et al. [15] present a uni-
modal decision-tree approach for producing backchannels
based on prosodic features. The system analyzes speech in
100ms intervals and generates backchannels as well as other
paralinguistic cues (e.g., turn taking) as a function of pitch
and power contours. Cathcart et al. [5] propose a unimodal
model based on pause duration and trigram part-of-speech
frequency. The model was constructed by identifying, from
the HCRC Map Task Corpus [2], trigrams ending with a
backchannel. In contrast to these gesture generation sys-
tems, our approach uses the contextual information from
the speaker to improve recognition of listener gestures.

Context has been previously used in computer vision to
disambiguate recognition of individual objects given the cur-
rent overall scene category [19]. In contrast to the idea of
fusing multiple modalities from the human participant to
improve recognition (e.g., Kaiser et al. work on multimodal
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interaction in augmented and virtual reality [9] and Yiong et
al. Catchment Feature Model [22]), our approach takes its
contextual information from the other participants. More
closely related, Morency et al. [14] used dialogue state in-
formation to improve recognition accuracy in the context of
a human-robot interaction. However, that application as-
sumed privileged access to the mental state of one of the
participants (i.e., the robot) that is not directly observable
in human-to-human interaction. To our knowledge no pre-
vious work has explored the use of dialogue context from
other human participants for visual recognition of interac-
tion gestures.

3. CONTEXT IN HUMAN INTERACTIONS
Communication is a joint activity and social scientists

have long argued that it cannot be properly recognized and
understood by focusing on participants in isolation but rather
one must see individual behaviors within the context of the
group or dyad [4, 6]. Translating this proscription to the
domain of gesture recognition, this argues that features out-
side of the person-of-interest should correlate with their be-
havior, and representing and exploiting these contextual fea-
tures should improve recognition accuracy. Here, we explore
this idea within the domain of dyadic conversations, specif-
ically we consider whether adding contextual information
about a speaker’s behavior improves the ability to detect
feedback gestures produced by a listener.

As our interest is in producing online (real-time) recog-
nition systems, we focus on contextual features that would
be readily available to a real-time system (i.e, surface be-
haviors rather than the privileged mental state of individual
participants). Prior research into face-to-face conversation
has identified a number of shallow features of a speakers
behavior that correlate with listener feedback:

Prosody Prosody refers to the rhythm, pitch and intonation
of speech. Several studies have demonstrated that listener
feedback is correlated with a speaker’s prosody [15]. For
example, Ward and Tsukahara [20] show that short listener
backchannels (listener utterances like “ok” or “uh-huh” given
during a speaker’s utterance) are associated with a lower-
ing of pitch over some interval. We encode the following
prosodic features, including standard linguistic annotations
and the prosodic features suggested by Ward and Tsukhara
[20]:

• Downslopes in pitch continuing for at least 40ms

• Regions of pitch lower than the 26th percentile contin-
uing for at least 110ms (i.e., lowness)

• Utterances longer than 700ms

• Drop or rise in energy of speech (i.e., energy edge)

• Fast drop or rise in energy of speech (i.e., energy fast
edge)

• Vowel volume (i.e., vowels are usually spoken softer)

• Lengthened words (e.g., “I li::ke it”)

• Emphasized or slowly uttered words (e.g., “ex a c tly”)

• Words spoken with continuing intonation

• Words spoken with falling intonation (e.g., end of an
utterance)

• Words spoken with rising intonation (i.e., question mark)

Pauses Listener feedback often follows speaker pauses or
filled pauses such as“um”(see [5]). To capture these possible
associations, we use the following contextual features:

• Pause in speech (i.e., no speech)

• Filled pause (e.g. “um”)

Gesture display Gestures performed by the speaker are of-
ten correlated with listener feedback [4]. Eye gaze, in partic-
ular, has often been implicated as eliciting listener feedback.
Thus, we encode the following contextual feature:

• Speaker looking at the listener

Lexical Finally, some studies have suggested an association
between lexical features and listener feedback [5]. Although
lexical features are not as easy to recognize in real time as
the previous features, however there has been recent progress
in real-time keyword spotting [8] and we include these for
completeness (note: in our experiments none of the lexical
features were selected):

• All individual words (i.e., unigrams)

4. CONTEXT-BASED RECOGNITION
The goal of our approach is to integrate contextual in-

formation from other human participants when recognizing
visual feedback of a specific participant. During dyad inter-
actions, the context is defined by the speaker verbal and non-
verbal actions. Our approach integrates the speaker context
with the visual observations from the listener to improve
recognition of the listener gestures (see Figure 1). In an
offline phase we learn based on previous recorded interac-
tions which contextual features are important and how they
should be encoded. During online recognition, the contex-
tual features are encoded, selected and then integrated with
the vision-based observations using a probabilistic sequen-
tial model, referred as multimodal integrator which outputs
the final recognition results. Figure 1 shows an overview of
our approach.

Two important challenges in training a probabilistic se-
quential model (e.g., Hidden Markov Model or Conditional
Random Fields) for multimodal integration are (1) how to
encode the contextual information in a format that will fa-
cilitate training of the sequential model and (2) how to se-
lect only the relevant contextual features out of the whole
speaker context. To overcome these problems, we introduce
two new approaches for feature representation and selection:

• Encoding dictionary Our encoding dictionary con-
tains a series of templates designed to model different
relationship between a contextual feature and visual
gestures. The encoding dictionary and its usage are
described in Section 4.1.

• Automatic selection of feature-encoding pairs
We suggest two techniques for automatic feature and

183



encoding selection based on co-occurence statistics and
performances evaluation on a validation dataset. Our
feature selection algorithms are described in Section 4.2.

The following sub-sections describe the encoding, selec-
tion and integration stages depicted in Figure 1. The vision-
based recognition algorithm used in our experiments is de-
scribed in Section 5.3.

4.1 Encoding Dictionary
The goal of the encoding dictionary is to propose a series

of encoding templates that potentially capture the relation-
ship between contextual events and visual gestures. These
templates were designed based on two main observations
from our user study analysis:

• Response delay A delay is sometimes observed be-
tween the listener visual feedback and a specific con-
textual event from the speaker. This can be explained
by the facts that the listener takes time to process the
speaker information or that more than one contextual
cue jointly triggered the listener feedback. For exam-
ple, the listener may not head nod immediately after
the speaker lowered his/her volume and pitch at the
end of a sentence, waiting for the speaker to look back.

• Lingering effect The relationship between speaker
contextual events and listener visual feedback may not
always be constant over time.

It is important to note that a feature can have an individ-
ual influence on feedback and/or a joint influence. An indi-
vidual influence means the input feature directly influences
visual feedback. For example, a long pause can by itself
trigger visual feedback from the listener. A joint influence
means that more than one feature is involved in triggering
the feedback. For example, saying the word “and” followed
by a look back at the listener can trigger listener feedback.
This also means that a feature may need to be encoded more
than one way since it may have a individual influence as well
as one or more joint influences.

Figure 2 shows the 13 encoding templates designed based
on these observations. These encoding templates were se-
lected to represent a wide range of ways that a contextual
feature can influence the visual feedback. These encoding
templates were also selected because they can easily be im-
plemented in real-time since only the start time of the con-
textual feature is needed. Only the binary feature also uses
the end time. In every case, no knowledge of the future is
needed. The three main types of encoding templates are:

• Binary encoding This encoding is designed for con-
textual features which influence on visual feedback is
constrained to the duration of the contextual feature.
For example, it is unlikely that a listener will head nod
if the speaker is not looking. The feature Speaker look-
ing at the listener should then be encoded as binary so
that it acts as a direct filter of listener visual feedback.

• Step function This encoding generalizes binary en-
coding by adding two parameters: width of the en-
coded feature and delay between the start of the fea-
ture and its encoded version. This encoding is use-
ful if the feature influence on feedback is constant but
with a certain delay and duration. For example, a lis-
tener may take more or less time before answering the

-Binary:

-Step (width=1.0, delay = 0.0):

-Ramp (width=0.5, delay=0.0): 

Example of a contextual feature:

Encoding templates:

-Step (width=0.5, delay = 0.0):

-Step (width=1.0, delay = 0.5):

-Step (width=0.5, delay = 0.5):

-Step (width=1.0, delay = 1.0):

-Step (width=1.0, delay = 1.0):

-Ramp (width=1.0, delay=0.0): 

-Ramp (width=2.0, delay=0.0):

-Ramp (width=0.5, delay=1.0): 

-Ramp (width=1.0, delay=1.0): 

-Ramp (width=2.0, delay=1.0): 

Figure 2: Encoding dictionary. This figure shows
the different encoding templates used by our
context-based approach. Each encoding template
was selected to express a different relationship be-
tween contextual features and visual feedback. This
encoding dictionary gives a more powerful set of in-
put features to the sequential probabilistic model
and improves the performance of our context-based
recognizer.

speaker question with visual feedback (e.g., head nod
or head shake) because they are thinking about it. Af-
ter a certain time, a visual answer becomes unlikely
(the person probably answered verbally).

• Ramp function This type of encoding linearly de-
creases for a set period of time (i.e., width parameter).
This encoding is useful if the feature influence on feed-
back is changing over time.

4.2 Automatic Feature Selection
We perform the feature selection based on the same con-

cepts of individual and joint influences described in the pre-
vious section. Individual feature selection is designed to as-
sess the individual performance of each contextual feature
while the joint feature selection looks at how features can
complement each other to improve performance. In our ex-
periments the original set of contextual features contained
1400+ features, including the lexical features (i.e., spoken
words by the speaker). The automatic feature selection is
important to reduce the chances of overfitting by our multi-
modal integrator (described in Section 4.3). Also, perform-
ing the joint feature selection on the original set of features
would be too time consuming. For this reason we first per-
form individual feature selection, as described in the follow-
ing section.

4.2.1 Individual Feature Selection
Individual feature selection is based on (1) the statisti-

cal co-occurrence of contextual features and visual feedback,
and (2) the individual performance of each contextual fea-
ture when trained with any encoding template and evaluated
on a validation set.

The first step of individual selection looks at statistics of
co-occurrence between visual gestures and contextual fea-
tures. The number of co-occurrence is equal to the number
of times a visual feedback instance happened between the
start time of the contextual feature and up to k seconds
after it. In our experiments, k was set to 2 seconds after
analysis of the average co-occurrence histogram for all con-
textual features. After this step the number of features will
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Figure 3: Joint feature selection. This figure illustrates the feature encoding process using our encoding
dictionary as well as two iterations of our joint feature selection algorithm. The goal of joint selection is to
find a subset of features that best complement each other for recognition of listener visual feedback.

be reduced to a more manageable size of 50 contextual fea-
tures.

The second step is to look at the best performance an
individual feature can reach when trained with any of the
encoding templates in our dictionary. For each top-50 fea-
ture a sequential model (see Section 4.3) is trained for each
encoding template and then evaluated. A ranking is made
based on the recognition performance of each individual fea-
ture and a subset of 10 features is selected.

4.2.2 Joint Feature Selection
Given the subset of features that performed best when

trained individually, we now build the complete set of feature
hypothesis to be used by the joint feature selection process.
This set represents each feature encoded with all possible
encoding templates from our dictionary. The goal of joint
selection is to find a subset of features that best complements
each other for recognition of visual feedback. Figure 3 shows
the first two iterations of our algorithm.

The algorithm starts with the complete set of feature hy-
pothesis and an empty set of best features. At each iteration,
the best feature hypothesis is selected and added to the best
feature set. For each feature hypothesis, a sequential model
is trained and evaluated using the feature hypothesis and all
features previously selected in the best feature set. While
the first iteration of this process is similar to the individ-
ual selection, every iteration afterward will select a feature
that best complements the current best features set. Note
that during the joint selection process, the same feature can
be selected more than once with different encodings. The
procedure stops when the validation performance starts de-
creasing.

4.3 Multimodal Integration
The multimodal integration step incorporates the speaker

contextual features with visual observations to improve recog-
nition of listener gestures. The contextual features are se-
lected and encoded as described in Sections 4.1 and 4.2. An
example of this multi-dimensional stream of information is
labeled in Figure 1 as “Best encoded features”.

While our framework supports multi-dimensional streams
of information from the listener vision-based recognizer (e.g.,
outputs from multiple visual gesture classifiers), in our ex-
periment we used a one-dimensional stream: the output
from the vision-based head nod recognizer (see Section 5.3
for details). For each frame grabbed by the camera looking
at the listener (see Figure 1), we get a visual measurement
of how likely a head nod is happening. This suggested a
sampling rate of 30Hz for both the contextual features and
visual observations. For each time sample, the probabil-
ity output from the vision recognizer is concatenated with
the values of each contextual feature at that time. These
concatenated feature vectors are used as input for the prob-
abilistic sequential model.

While our approach generalizes to any sequential model,
in our experiment we used a Latent-Dynamic Conditional
Random Field (LDCRF) as it was shown to outperform
Hidden Markov Models and Conditional Random Field for
context-based gesture recognition during human-computer
interactions [13]. The LDCRF model supports multiple out-
put labels, making it possible to train a multimodal integra-
tor for more than one listener gestures. This is an interesting
avenue for future work.
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5. EXPERIMENTAL SETUP
For training and evaluation of our prediction model, we

used a corpus of 38 human-to-human interactions. This cor-
pus is described in Section 5.1 while Section 5.2 describes
the contextual features used in our experiments. Section 5.3
describes the vision system used for tracking and recognizing
head gestures. Finally Section 5.4 discusses our methodol-
ogy for training the probabilistic model and evaluate it.

5.1 Data Collection
Data is drawn from a study of face-to-face narrative dis-

course (’quasi-monologic’ storytelling). 76 subjects from the
general Los Angeles area participated in this study. They
were recruited using Craigslist.com and were compensated
$20 for one hour of their participation.

Participants in groups of two entered the laboratory and
were told they were participating in a study to evaluate a
communicative technology. Participants completed a pre-
experiment questionnaire eliciting demographic and dispo-
sitional information. Subjects were randomly assigned the
role of speaker and listener. The speaker remained in the
computer room while the listener was led to a separate side
room to wait. The speaker then viewed a short segment
of a video clip taken from the Edge Training Systems, Inc.
Sexual Harassment Awareness video. Two video clips were
selected and were merged into one video: The first, “Cyber-
Stalker” is about a woman at work who receives unwanted
instant messages from a colleague at work, and the second,
“That’s an Order!”, is about a man at work who is con-
fronted by a female business associate, who asks him for a
foot massage in return for her business.

After the speaker finished viewing the video, the listener
was led back into the computer room, where the speaker was
instructed to retell the stories portrayed in the clips to the
listener. The listener was asked to not talk during the story
retelling. Elicited stories were approximately two minutes
in length on average. Participants sat approximately 8 feet
apart. Finally, the experimenter led the speaker to a sepa-
rate side room. The speaker completed a post-questionnaire
assessing their impressions of the interaction while the lis-
tener remained in the room and retold what s/he had been
told by the speaker. Participants were debriefed individually
and dismissed.

We collected synchronized multimodal data from each par-
ticipant including voice and upper-body movements. Both
the speaker and listener wore a lightweight headset with
microphone. Three Panasonic PV-GS180 camcorders were
used to videotape the experiment: one was placed in front
the speaker, one in front of the listener, and one was at-
tached to the ceiling to record both speaker and listener

5.2 Contextual features
From the video and audio recordings, 15 classes of con-

textual features were extracted (see Section 3 for details).
Most prosodic features were extracted automatically. Pitch
and intensity of the speech signal were computed from the
speaker audio recordings using real-time signal processing
software [20]. From this we automatically derived the first
six prosodic features listed in Section 3, including downslope,
lowness, long utterances, energy edge, energy fast edge, and
vowel volume.

Human coders manually annotated the additional prosodic
and the lexical features from the audio recordings. Every

Figure 4: Setup for training and evaluation corpus.
This study of face-to-face narrative discourse (i.e.,
quasi-monologic storytelling) included 76 subjects.
The speaker was instructed to retell the stories por-
trayed in two video clips to the listener.

spoken word was used as a possible contextual feature. All
elicited narratives were transcribed, including pauses, filled
pauses (e.g. “um”), and prolonged words. These transcrip-
tions were double-checked by a second transcriber.

Finally, from the speaker video the eye gaze of the speaker
was annotated on whether he/she was looking at the listener.
After a test on five sessions we decided not to have a sec-
ond annotator go through all the sessions, since annotations
were almost identical (less than 2 or 3 frames difference in
segmentation).

Note that although some of the speaker features were
manually annotated in this corpus, all of these features can
be recognized automatically given the recent advances in
real-time keyword spotting [8], eye gaze estimation [12] and
prosody analysis [20].

5.3 Vision-based Gesture Recognition
For vision-based recognition, we used the Watson soft-

ware [21] which tracks the head position and orientation in
real-time with 6 degrees of freedom using a tracking frame-
work called Adaptive View-Based Appearance Model. The
library also recognizes two head gestures using a support
vector machines (SVMs): head nods and head shakes. In
our experiments we used the SVM classification margin re-
turned by Watson as input for the multimodal integrator
(see Section 4.3).

For ground truth comparison, listener video were anno-
tated for head nods by two coders. These annotations form
the labels we used in our context-based framework for train-
ing and evaluation. The dataset contained a total of 165
head nods.

5.4 Methodology
To train our context-based recognizer we split the 38 ses-

sion into 3 sets, a training set, a validation set and a test
set. This is done by doing a 10-fold testing approach. This
means that 10 sessions are left out for test purposes only
and the other 28 are used for training and validation. This
process is repeated 4 times in order to be able to test our
model on each session. Validation is done by using the hold-
out cross-validation strategy. In this strategy a subset of
10 sessions is left out of the training set. This process is
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Figure 5: ROC curves of head nod recognition com-
paring our context-based approach to a vision-only
approach.

Recognizer Area EER

Context-based 83.2% 76.5%
Vision-only 74.9% 69.4%

Table 1: Quantitative comparison between our
context-based approach and a vision-only approach
(same as Figure 5). The table shows both the area
under the curve and the equal error rate (EER).

repeated 4 times and then the best setting for our model is
selected based on the performance of our model.

The comparative evaluation of our context-based recog-
nizer was performed at the time-sample level (i.e., frame
level). A classification decision is made for each time sample
and the true positive and false positive rates were computed
based on these classifications. The true positive rate is com-
puted by dividing the number of recognized frames by the
total number of ground truth frames. Similarly, the false
positive rate is computed by dividing the number of falsely
recognized frames by the total number of other-gesture

frames.
During validation and testing, our context-based recog-

nition algorithm is applied on the unsegmented sequences
meaning that no pre-segmentation of the gesture start and
end times was done on these sequences. By evaluating the
approach at the time-sample level, we are evaluating both
the recognition performance as well as the segmentation per-
formance. For this reason the expected error should be
lower than an algorithm which only detect gestures (i.e.,
true positive and false positive rates computed at the ges-
ture level [14]).

In our experiments we used Latent-Dynamic Conditional
Random Field as sequential model used for contextual in-
tegration (see Section 4.3). The number of hidden states
per label for the LDCRF model was set 2 states per la-
bel and the regularization term was validated with values
10k, k = −1..3.

6. RESULTS AND DISCUSSION
We designed our three main experiments to evaluate (1)

the overall performance of our context-based recognition
framework, (2) the gain from using joint feature selection
and (3) the gain from using encoding dictionary.

Our first experiment compared the performance of our
context-based recognition framework with a vision-only rec-
ognizer. Figure 5 shows the ROC curve for both approaches.
The ROC curves present the detection performance for both
recognition algorithms when varying the detection thresh-
old. The two quantitative methods used to evaluate ROC
curves are area under the curve and equal error rate. Ta-
ble 1 shows the quantitative evaluation using both error cri-
teria. The use of context improves recognition from 74.9%
to 83.2%. Pairwise two-tailed t-test comparison show a sig-
nificant difference for both error criteria, with p = 0.021 and
p = 0.012 for the area under the curve and the equal error
rate respectively.

As described in Section 4.2, our context-based recognition
framework uses two types of feature selections: individual
feature selection and joint feature selection (see Section 4.2.2
for details). It is very interesting to look at the features and
encoding selected after both processes:

• Vowel volume using ramp encoding with a width 0.5
second and a delay of 0.5 seconds

• Speaker looking at the listener using a binary

• Pause using step encoding with a width 2.0 second and
no delay

• Low pitch using ramp encoding with a width 0.5 second
and no delay

These are the four features-encoding pairs selected after
the joint feature selection process which stopped when vali-
dation performance started decreasing. We can see that only
one feature was selected with binary encoding, suggesting
that the use of the encoding dictionary was important. The
first selected feature Vowel volume used an encoding with
a ramp and a delay of 0.5 seconds, meaning that its influ-
ence on head nods is asynchronous and decreases over time.
The second selected feature is related to the eye gaze of the
speaker, confirming the importance of our multimodal con-
text. The third and fourth features have also been reported
by Ward and Tsukahara [20] as good predictive features for
backchannel feedback. No lexical feature was selected by the
joint selection algorithm. This result means that visual ges-
ture recognition can be improved using only prosodic cues,
pauses and speaker visual display.

The second and third experiments were designed to under-
stand the influence of feature selection and encoding dictio-
nary on the context-based recognition framework. Table 2
compares the recognition performance when using or not
using the joint feature selection after the individual feature
selection. Table 3 compares the recognition performance
when using the complete encoding dictionary to using only
binary encoding. This last comparison was done after the
individual feature selection.

We can see from both Table 2 and 3 that the gain perfor-
mance of our context-based recognition algorithm is directly
related to the joint feature selection and the encoding dictio-
nary. By using the encoding dictionary instead of the usual
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Feature selection Area EER

Joint + Individual 83.2% 76.5%
Individual only 79.1% 72.0%

Table 2: Quantitative evaluation showing the gain in
performance when using both individual and joint
feature selection.

Feature encoding Area EER

Dictionary 79.1% 72.0%
Binary 76.1% 69.9%

Table 3: Quantitative evaluation showing the gain
in performance when using the encoding dictionary
for feature representation.

binary encoding, the performance improves from 76.1% to
79.1%. And by using the joint feature selection, the perfor-
mance improves again from 79.1% to 83.2%.

Our experiments show that by using joint feature selection
and an encoding dictionary, contextual information from
other participant significantly improve the performance of
vision-based gesture recognition.

7. CONCLUSIONS
Our results show that contextual information from other

human participants can improve visual gesture recognition.
We presented a context-based recognition framework that
represents contextual features based on an encoding dictio-
nary and automatically selects the optimal features based
on individual and joint influence. By using simple prosodic,
pauses and visual display contextual features available in
real-time, we were able to improve the performance of the
vision-only head gesture recognizer from 74.9% to 83.4%.
Recognizing these visual gestures is important for under-
standing the full meaning of a meeting or conversation, and
can be particularly crucial for identifying more subtle fac-
tors such as the effectiveness of communication or diagnosis
social disorders. As future work, we plan to experiment with
a richer set of encoding templates including gaussian den-
sity functions, and to apply our context-based approach on
other visual feedback cues such as eye gaze patterns and
body posture shifts.
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