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ABSTRACT
This paper presents our work on recognizing the visual focus
of attention during dynamic meeting scenarios. We collected
a new dataset of meetings, in which acting participants were
to follow a predefined script of events, to enforce focus shifts
of the remaining, unaware meeting members. Including the
whole room, all in all, a total of 35 potential focus targets
were annotated, of which some were moved or introduced
spontaneously during the meeting. On this dynamic dataset,
we present a new approach to deduce the visual focus by
means of head orientation as a first clue and show, that our
system recognizes the correct visual target in over 57% of
all frames, compared to 47% when mapping head pose to
the first-best intersecting focus target directly.

Categories and Subject Descriptors
I.4.8 [IMAGE PROCESSING AND COMPUTER VI-
SION]: Scene Analysis

General Terms
Algorithms, Experimentation, Human Factors

1. INTRODUCTION
A main focus of today’s research in human-computer in-

teraction involves establishing human-like input and out-
put modalities like speech recognition, computer vision and
speech synthesis. The development of smart spaces copes
with the issue that the operation of such modalities strongly
depends on context-awareness. Microphones, loudspeakers
and cameras need to be arranged and connected in order
to provide an unobtrusive setup of perception to build user
and situation models. Particular clues for understanding
observed scenarios are the recognition of all involved per-
sons [4] and their positions[6, 8], knowledge about objects in-
troduced and being used as well as about every participant’s
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occupation. To learn about interaction partners, group in-
terest or objects on which someone is working, the looking
direction of that respective person is a primary clue to es-
tablish knowledge about the observed action or target he or
she focuses on. The observation of eye gaze would hereby
allow to directly map the looking direction onto the focused
target. Difficulties in capturing gaze however, due to the
obtrusiveness of head mounted gear or particular camera
setups that prevent free movement, make it hardly possible
to directly use it as a input modality in real life scenar-
ios. Recognizing the visual focus of attention, the target a
person is looking at, without knowing about the true gaze
direction is a fairly new task in human-computer interac-
tion and was introduced in 2002 by Stiefelhagen et al. [10].
By means of a panoramic camera on top of a meeting ta-
ble every participant’s head orientation was captured and
the meeting partner he or she was orientating to was deduc-
tively assigned to be the (visual) focus target. The number
of participants was predefined and fixed, the setup monocu-
lar and no further objects were allowed to be used. Further
work, presented by Ba et al. [1, 2] in this field, continued
with a predefined number of meeting participants, but in-
troduced the meeting table and whiteboard as valid targets.
Dynamics, as walking people, were solely allowed in a small
parallel study with a fixed advertisement being installed on
a window and surveying if pedestrians focus upon it while
passing by [12]. Despite the new context, the trajectories of
the pedestrians were fixed and known in advance, the target
to look at predefined and static. In contrast, the embedding
of perceiving visual focus of attention in above described
smartroom setups demands for coping with undefined sce-
narios such as people entering and leaving the room, new
objects that are introduced during discussions or sudden in-
terrupting sounds that shift people’s focus to regions, that
previously were not modeled or included.

This paper presents our efforts in coping with these dy-
namics and describes our initial system to deduce the visual
focus of attention of a person based on head orientation as
a first clue. We use a setup of multiple camera views in or-
der to achieve unobtrusive captures of meeting participants.
This allows us to robustly estimate viewing frustums, even
when the corresponding person walks around freely in the
room or turns the back of the head towards one or two cam-
eras. From the estimated field of view, we deduce the most
likely focus target by using an adaptive scheme of mapping
head orientation to its most likely gaze angle counterpart,
and hence the target this person is looking at.
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Figure 1: Left: Overview of annotated focus targets within the meeting room. Right: Observed trajectories of
all meeting participants. Rather than only gathering meetings with fixed seating positions, participants were
advised to walk throughout the entire room, to distract the visual focus of the remaining meeting members
and force eventual systems to adapt to new positions.

To have to cope with as many dynamics as possible, we
collected a new dataset upon which our system is evaluated.
The captures consist of 10 meetings, in which all partic-
ipants were to enter the room at the very beginning and
leave the room when the meeting was finally over. Several
times, the captured meetings were interrupted by scripted
events to qualify for spontaneous situations. We describe
this collection in detail, along with its annotations in Sec-
tion 2 where we introduce the complete target space and the
setup of all sensors and participants. The following Section 3
then describes our approach how to model all potential tar-
gets, estimate head orientation over multiple views based
on annotations of peoples’ head bounding boxes and our
implementation to mapping recognized head orientations to
likely focus targets. The finalizing segments 4 and 5 present
our experimental evaluation of the system on the described
dataset and analyze error sources and further enhancements
as well as planned integrations and future work in this field.

2. DATASET
We collected a new dataset to gather dynamic meeting

scenes, with people entering and leaving the room, walk-
ing around or interrupting ongoing discussions. Every video
is about 10 minutes long and we collected 10 videos in to-
tal. During each meeting, variantly two or three participants
were actors and were henceforth involved and taught about
predefined events they were to initiate and follow during the
recordings. The remaining one or two (variantly) meeting
members did not learn about the meeting’s topic or what
was about to happen. All observations of at least those
participants were therefore guaranteed to be spontaneous
and unplanned. The predefined set of events included spon-
taneously joining actors during ongoing discussions, which
forced the remaining participants to move with their chairs
and make room for the new meeting member, suddenly ring-
ing cellphones, hidden inside cupboards, and actors enter-
ing the room looking for them, loud disruptive noises coming
from nearby loudspeakers that one of the actors was sponta-
neously initiating without letting the rest of the participants
know what he or she was doing, the sudden use of printers
and actors pretending paper jams while talking loud about

the printer and forcing the meeting group’s focus towards
him- or herself and actors walking towards the projection
screen and giving a short presentation, including the intro-
duction of an ambiguous object (a camera), that was placed
on a table besides the meeting scene beforehand and now
grabbed and put on the meeting table for everyone to see
it. When acting participants entered the room, they were
instructed to pass by the meeting table along every possible
edge to ensure they interrupt the meeting. Figure 1 shows
some of these observed trajectories and clearly proves, that
movement was observed throughout the whole room. The
meeting table was placed in the center of the room. The
seating positions of all participants varied over the record-
ings to ensure as much variance as possible and avoid static,
locations of all persons. The tagging of all persons happened
along their position around the table’s edges: P00 was al-
ways sitting at the northern edge, P01 at the table’s western
edge, P02 to the south and P03 at the eastern edge of the
table. Person P04 was always chosen to be the interrupt-
ing actor that enters the scene from time to time. Figure 1
depicts an overview of the seating locations and the overall
layout of the room along with its targets.

2.1 Sensor Setup
The dataset’s sensor setup consisted of four fixed cam-

eras in the upper corners of the room, each recording with
a resolution of 640 × 480 pixels and 15 frames per second.
The purpose of these cameras is to obtain an instant coarse
overview of the whole room at all times, for allowing peo-
ple to move and behave as naturally as possible and walk
around and interact with each other without being limited
by a predefined setup or a restricted sensor range. The cam-
era array was extended with a panoramic view from a fisheye
lens camera that was installed on the room’s ceiling (follow-
ing the same specifications). To further capture the com-
plete context of the meetings, audio was recorded by means
of four T-shaped microphone arrays, each installed on every
wall of the room (northern, western, southern and eastern
side) providing basis for audio source localization, and one
table-top microphone for speech recognition and acoustical
event modelling.
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Figure 2: Example scene of one meeting video. Shown are two out of four camera views from the room’s
upper corners and the panoramic view, captured from the ceiling. In this scene, the interrupting actor
passes the meeting table towards the main entrance and thereby walks in between the projection screen and
person P00 sitting in front of the screen, working on his notebook. From the camera views only, it is not
unambiguously clear if the visual focus of person P02, sitting opposite and wearing the motion sensor on her
head, resides on the screen, person P00 or the passing-by actor.

2.2 Annotations
The dataset has been annotated for every participant’s

visual focus target and head bounding box. The latter la-
bels allow for distinguishing between the different persons
and act as stable head locations for head pose estimation
we use later on in this paper to approximate the respec-
tive gaze direction. The visual focus target was defined to
be a corresponding person or object a meeting participant
was looking at. To ensure unprejudiced labels, we employed
different students, who were not technically involved in the
project or research. By only having all camera views avail-
able, the students were to decide for each single frame, at
whom or what every single participant was looking at. No
audio channels were made available for these annotations,
the tool the annotators were using only allowed to switch
back and forth between the different views for this particu-
lar frame. All videos were processed frame-by-frame, man-
ually. We allowed almost every object in the room to be a
potential focus target. This included all doors, desktops, ta-
bles, lamps, whiteboards and projection screens, notebooks,
cameras, air conditioning, cupboards, every person present
in the scene and more. Even a camera, placed on top of a
tripod, which we use in further research projects as a re-
placement for dedicated robot heads and was installed for
secondary evaluations of other systems, was included in the
annotation process. All in all, we gathered a set of over
35 focus targets the annotators had to choose from in each
frame, wherein the positions of all participants and various
objects were dynamic and changed throughout the meetings.
The position and dimensions of each object was measured in
3D. We also varied with the overall number of participants
to ensure differences in the distribution of seating positions
around the table.

2.2.1 Annotator Reliability
The annotations for all participants’ visual foci were made

by two different annotators with the background to com-
pare our system’s overall performance with that of human
decisions and specific differences in their annotations. Over
68420 frames in total were annotated by each annotator in-
dependently.

Concerning annotation agreement, we computed two com-
mon metrics used in analyzing interrator reliability: Cohen’s
unweighted Kappa and the proportion of agreement [5]. Co-
hen’s Kappa describes the amount of concordant annota-
tions out of all annotations that were actually expected to
be non-concordant if both annotators were choosing the tar-
get by pure chance and is defined by the following equation:

κ =
p(a)− p(e)

1− p(e)
(1)

Here, p(a) symbolizes the observed agreement among the
two annotators and p(e) described the agreement to be ex-
pected if both annotators where choosing by chance.

The second metric, proportion of agreement, on the other
hand depicts the amount of frames #Agree two annotators
selected the same specific class concordantly, in proportion
to the overall amount of frames #Overall in which either
annotator selected it:

POA =
#Agree

#Overall
(2)

As can be seen in Figure 3 Cohen’s Kappa shows our an-
notations to be concordant in ∼ 70% of all frames. Most
dominantly, the meeting participants themselves, their note-
books, the main entrance, the projection screen, the printer,
the camera, the cellphone and one cupboard (inside “Cup-
board (SO)” the cellphone was hidden before the meeting,
so that although the cellphone’s noise could be heard, its
source could not be targeted on first sight) are focused by
either participant. The camera resembles the object, that
the presenter grabs and introduces during his or her presen-
tation.

Confusions mostly happened on the whiteboard, the re-
maining doors, further furniture or the ceiling. All dominant
targets have in common, that they were specifically intro-
duced during the meetings: either by being used or talked
about by one participant or by drawing attention them-
selves, making loud or disturbing noises. The secondary tar-
gets all share to be looked at when one participant changed
focus and rotated his or her head towards a new direction
(or moved his or her field of view generally) and hence in-
cluded those targets in the shifted viewing frustum, which
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Figure 3: Overview of all annotated targets in the
room, how often these targets were focused on in
percent by either participant and average annota-
tor reliability for this target over all participants,
depicted with both Cohen’s Kappa and the Propor-
tion of Agreement.

often happens when someone was staring into emptiness. In
these cases it seems, that the two annotators variantly de-
cided between secondary targets and the primary involved
in the meeting and could not achieve concordant selections.
As for the remaining confusions, when specifically looking at
the confusion matrices in detail, the remaining cases where
the annotations do not agree, often show situations where
primary targets nearby are confused, as for example the pre-
senter standing right in front of the projection screen and
the screen itself. A good example can be given with meet-
ing member P02 (who is sitting opposite to the projection
screen at the southern edge of the table): in 10898 frames,
both annotators decided for him or her to focus on person
P00 sitting right in front of P02 (at the table’s northern
side, in front of the projection screen). In 701 frames how-
ever, annotator 2 decided for person P00 to be the target,
while annotator 1 recognized the screen to be focused. In
3928 frames, it was the other way round. Compared to con-
cordant frames, the latter case happened in 36% of the
time and shows that these situations are problematic, even
for humans. These misclassifications happened especially

during both presentations, while the presenter (P00) was
walking around in front of the screen, explaining slides and
bullet points upon it and times when person P00 was sitting
calmly in front of the screen, crossing P02’s looking direc-
tion towards the slides. Since the pupils of all participants
are hardly visible, there is not always the possibility to un-
ambiguously decide between two or more targets. At least
not in only such a frame-by-frame decision task where only
the captures of the corner cameras are available as in our
task. Further information seems to be necessary to prop-
erly distinguish between nearby targets: was the presenter
pointing at one specific item on the slide and forced the audi-
ence’s focus towards it? Is the presenter currently speaking
towards person P02 so that the interaction between the two
clearly shifts P02’s focus onto the presenter? Were any of
the remaining participants discussing items on the projec-
tion screen and P02 was likely to follow the discussion? Or
a well common case in our meeting videos: Was the presen-
ter only passing by the projection screen, while P02 actually
focused upon the projected slides? The latter cases, where
moving targets distract the focus of one person are quite of-
ten, when the interrupting actor enters the room and passes
by the meeting table. Suddenly, a second target, a moving
person behind a sitting one, appears. The only possibil-
ity to decide for the correct one, is to either include previ-
ous context or zoom in on eye gaze directly: In over 1072
frames, the annotators were not concordant when choosing
either the interrupting person P04 (who enters the room
from time to time and passes by the meeting table on his
trajectory) or the person P00. These were clearly the cases,
when the actor was walking behind P00’s seating position or
crossing between P00 giving a presentation and the meeting
table. Figure 2 depicts such an example. Another strong
example can be found with the cupboard, right next to the
main entrance of the room was concordantly chosen to be
focused in approx. 20% of its selected frames. Confusions
were made with persons standing next to it, the floor, or
either the printer or entrance right beside it. The same ob-
servations can be made with all secondary targets from the
table depicted in Figure 3. All these targets have in com-
mon, that they only began to be part of scene, once a person
was passing its respective position or started to cope with it
(as for example the printer, which was part of the scripted
events, in that one acting person began to print papers but
ran out of ink or encountered a paper jam). Then again,
all these targets happened to be difficult to being distin-
guished, which shows that the looking direction alone only
dictates a frustum of objects to be likely focused at within,
but does not allow for a clear separation of this cluster into
individual subparts. For the example of the actor encoun-
tering the paper jam when printing, both the actor and the
printer (as well as the shelf the printer is placed on) merge
into one likely target cluster. Therefore, one question to ask
certainly is, how and when to generalize targets into joint
clusters of interest?

3. ESTIMATING THE VISUAL FOCUS OF
ATTENTION

As stated in section 2.2, we define the visual focus of at-
tention of a person to be the target he or she is visually
looking at and focusing on. For this purpose, the respec-
tive looking direction is most likely determined by tracking
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Figure 4: Camera 1’s view of a recorded meeting
scene during a short presentation, given by person
P00. Person P02, sitting opposite to the presen-
ter, is wearing the magnetic motion sensor to cap-
ture her true head orientation, depicted by the red
(x), green (y) and blue (z) coordinate axes. All axis
aligned bounding boxes of focus targets we annotated,
visible from this view, are highlighted in white.

the person’s eye gaze. However, due to the obtrusiveness
of head mounted gears and restrictions in freedom of move-
ment when using respective camera setups instead, tracking
the person’s head orientation and hence viewing frustum is
often used as an approximation of the actual gaze.

3.1 Estimating Head Orientation
The use of single camera setups for recognizing the head’s

pose was already subject of a lot of research and system
implementations. We, too, use head orientation to deduce
the looking direction from the estimated viewing frustum.
For this, we established a single-view system based on a
Neural Network approach that easily adopts to our smart-
room’s multi-view setup [9]: one single Neural Network is
trained to output a likelihood distribution over a specified
range of head pose angles, relative to the camera’s line of
sight. For horizontal rotations, we trained the network from
−180◦ to +180◦, with 10◦ wide classes and use the cropped
and grayscaled head region along with its edge magnitude
as the network’s input. The network’s estimation in relative
angles allows to apply the same classifier on further, different
views, easily extensible without retraining the whole setup.
We use this advantage to gather the distributions from mul-
tiple views and merge them in a Bayesian filter scheme, to
obtain a joint and more robust estimate based on the in-
formation from different angles and existing redundancy of
overlapping captures. This multi-view integration no longer
depends on (near-)frontal or profile captures but allows all
person to rotate their head freely within the whole room.

Applying tracking of head orientation in multi-sensor in-
stallations is a fairly new topic in establishing human-oriented
input modalities. In 2006, the CLEAR Workshop [11] intro-
duced first international evaluations for this task, and pro-
vides until now the main databases for comparing different,
recently built systems [9, 3, 7]. We evaluated our approach
on the provided dataset and observed results as low as 8◦

for horizontal and 13◦ for vertical pose recognition.

3.2 Deriving Visual Focus
Estimating head orientation keeps track of a person’s field

of view, but does not allow to gather detailed information
about that person’s looking direction within the estimated
viewing frustum. To recognize for a target, that lies within
that field of view, to be looked at, individual head turning
styles and gaze patterns have to be coped with [10].

3.2.1 Target Modeling and Field of View
We describe a focus target with its axis aligned bounding

box in the room’s global coordinate system (see Fig. 4). In
order for a target to be directly looked at, the gaze vector
must intersect with the respective box. A more generic def-
inition would be, that the nearer a target’s box lies towards
the viewing frustum’s center, the more likely that target
would be looked at. We defined this cone to open with 60◦

horizontally and 50◦ vertically. A potential target Fi thus
lies within the viewing frustum, if its axis aligned bounding
box contained at least one point Pi = (x, y, z) on its shell
within that cone. For gaining that representational point Pi,
we computed the nearest point (by its euclidean distance)
on the box, relative to the head orientation vector. Pi either
resembles a true intersection or a point on the box’ edges.
Pi is verified to reside within the viewing cone - targets out-
side the viewing frustum are ignored, their likelihood to be
focused was set to 0.

3.2.2 Mapping Pose to Targets
Our focus model builds on [1], which concludes a linear

correlation between corresponding gaze angles αG towards
targets and observable head turning angles αH when focus-
ing on them:

αH = kα · αG (3)

We analyzed this relation for dynamic and moving per-
sons and objects by computing αH based on the annotations
we made upon our dataset and all targets representational
points Pi described in 3.2.1. A measured mapping coefficient
kα could thus be obtained with

kα =
αH

αG
(4)

and was computed over our dataset. As it showed, the
mean value of kα was found to be 0.72, which we used for a

Figure 5: Example for using a fixed mapping fac-
tor kα as in equation 3: Three static objects are
presented successively. The spotted grey arrow de-
fines the person’s upper body resting orientation,
thus his or her initial head rotation. The observed
head orientation (solid red arrow) shows a smaller
angle than the actual angle towards the focused tar-
get (dashed red arrow). The distance is coped with
eye movement.
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fixed mapping of head rotation to likely focus target. How-
ever, computing the mapping coefficient over the dataset,
we could see, that kα does not stay constant over time, but
rather changes, depending on the scene focus is shifted and
disrupted in. Figure 6 depicts kα’s changes during a 30 sec-
onds long scene.

We computed kα’s values for those participants, that were
wearing the motion sensor and computed the groundtruth
mapping coefficient given the measured head orientation.
Especially during focus changes between two dedicated tar-
gets, head orientation clearly points right between those two
targets and only shifts towards either one, but does not ex-
ceed over the target’s position. Here, a constant mapping
factor would not classify for those two targets correctly, since
the person or object positioned with the lower gaze angle
needed for a much lower coefficient value in order to shift
head pose backwards instead of even further away. In partic-
ular, equation 3 assumes that head orientation always tends
to be lower than the real gaze angle. In our case, for one of
the two targets, gaze is actually lower than head pose, due
to constant switching forward to a target positioned further
away. We therefore define a discrete set of possible coeffi-
cients (kα, kβ) for mapping horizontal and vertical head ro-
tation angles αh and βH , and reweigh them by means of the
most likely focus target Fi’s a-posteriori probability, given a
corresponding mapping:

π(kα,kβ),t = γ · π(kα,kβ),t−1 + (1− γ) · arg max
Fi

p(Fi|Φkα,kβ )

(5)
The mapping coefficient pair (kα, kβ) with highest weight

π(kα,kβ),t is chosen for mapping head pose and finally classi-
fying for the target, that shows maximum a-posteriori prob-
ability.
Since most coefficients might intersect with a target, hence
return a high likelihood for the given transformation, each
target includes an a-priori factor for stating the probability
of actually focusing it or changing focus towards it.

The a-posteriori likelihood is defined by

p(Fi|Φkα,kβ ) =
p(Φkα,kβ |Fi) · P (Fi)

p(Φkα,kβ )
(6)

with Φkα,kβ = (αH
kα

, βH
kβ

) being the adapted head orienta-

tion with the horizontal rotation αH , transformed with the
mapping factor kα and βH being the vertical head rotation
transformed with kβ .

The a-posteriori probability of a target Fi is composed of
different factors that describe possible models of the scene’s
context. By now, we simply include the likelihood of looking
at this target in the last n frames and secondly a change of
pose to the target in the current frame T :

P (Fi) = ϕ(
∂(∠(Φ, Fi)))

∂t
) · 1

n

T−1X
t=T−n

(pt(Fi|(Φt))) (7)

The angular difference ∠(Φ, Fi) describes the distance be-
tween the real head orientation and target Fi’s represen-
tational point Pi. If the head is rotated towards a target
Fi, the angular difference decreases, hence its derivation
∂(∠(Φ,Fi)))

∂t
shows peaks of negative values and implies a more

likely focus change towards that particular target. ϕ was

Mapping / Gaze Measurements Pose Estimates

kα = 1 47 (54) 30 (35)
kα = adapt. 57 (60) 46 (49)

Table 1: Recognition results in percentage for esti-
mating visual focus targets. Depicted are the results
when using either head pose estimates or measured
head orientation angles, both for our adaptive ap-
proach and a direct mapping from looking direction
to first-best target that intersects with the observed
looking vector. The values in brackets depict re-
sults when evaluating only on targets on which both
annotators agreed concordantly.

implemented to be a simple, linear likelihood distribution
over the possible derivation values: the lower the derivation
value, the stronger and faster a person rotates his or her
head towards the target, the more likely the focus changes.

4. EXPERIMENTAL EVALUATION
The dataset we collected included an annotated set of over

35 potential targets throughout the room. During our exper-
imentation, we experienced, that the fine-granulated target-
definition did not match the complexity of mapping head
orientation onto likely targets. For this first evaluations, we
therefore reduced the target space to meeting participants,
meeting table and projection screen only, targets that are
included in current state of the art systems that only copy
with static scenes. This included 86% of all focused objects
for person P02 (against who we are evaluating our system,
due to the available groundtruth measurement of his or her
head orientation and the fixed upper body orientation) and
reduces complexity both for these first evaluations and an-
notations, which are still happening and take a lot of time
to define all object and person positions. Due to missing
upper body annotations for all remaining participants, our
evaluations only included estimating focus for person P02,
wearing the magnetic motion sensor, whose body orienta-
tion was always made sure to show towards the projection
screen because of the fixed setup with the transmitter and
cable.

4.1 Recognizing the Visual Focus
Obviously, the results are still rather low, although the

complexity of the task was drastically reduced. Clearly visi-
ble is, that our adaptive mapping of head pose to the respec-
tive focus target increases the recognition rate in average by
over 10%. The results showed, that especially rapid focus
changes between two targets were difficult to detect: slight
head rotations towards respective targets were observable
in our videos but mostly gaze was used to switch back and
forth between those two - hence, our system did not recog-
nize a focus switch and stayed fixed upon the same target
the whole time.

Secondly, moving targets, for example the already briefly
described person P04, passing by between the meeting table
and the projection screen (depicted in Fig. 2), distracted per-
son P02’s visual focus by quick eye movements only, instead
of letting his or her head rotate to follow that respective
trajectory. The a-priori likelihood described in equation 7
includes the derivation of the difference between head pose
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Figure 6: Left image: Recognition Rate (upper green plot) and mean difference of estimated kα to groundtruth
kα (lower red plot), with respect to increasing adaption factor γ. A value of γ = 1.0 describes that the scores
πkα are not adapted at all. In this case, the constant mapping coefficient kα = 0.72 was used, which showed to
be the measured mean mapping factor over all videos for person P02. Right image: Groundtruth (red plot)
versus estimated (green plot) mapping values kα in a 30sec. long scene.

and a target’s gaze angle. This derivation even shows peaks,
if head orientation stays fixed and the target passes by, since
then, the angular distance decreases down to the point where
head pose and the trajectory intersect. This factor seems to
provide a possible basis for recognizing focus changes, but
does not allow to distinguish between real focus changes and
moving objects or persons. And the third source for false
focus targets is the merging of two targets into one joint
cluster of interest: as described above, a presenter giving
a presentation is hard to distinguish from the screen he or
she is pointing at. Eye gaze follows the pointing gesture,
the respective head remains still, expect when the item the
presenter is pointing at is either far away or seems to be
of interest for a longer time. The slight focus change to-
wards the screen and away from the presenter, or even the
other way round from the screen towards the presenter is
only recognizable if speech and gestures are taken into ac-
count as well for detecting the focus shift that was initiated
and enforced by the presenter himself. The same happens
with other objects as people are occupied with them: a mal-
functioning printer a person is working with, only can be
detected as the primary focus target if either the looking
person’s eye gaze can be observed or the origin of the view-
ing cone is near enough to the target, so that the cone’s
edges only include the target itself (which would mean for
the person to stand directly in front of the printer and not
sit at the table). Since both are hardly the case, this clearly
leaves our system to include corresponding generalizations
to merge both printer and the person working on it into one
joint region of interest and one single target. This is not yet
included in our approach.

4.2 Head Orientation Errors
We compared our head orientation estimates with the

measurements of the attached motion sensor Person P02 was
wearing. In total we experienced a mean error of 8◦ for hor-
izontal and 17◦ for vertical estimates. This clearly shows,
that distinguishing targets in vertical direction is very am-
biguous for our system. Targets involved are mostly the
meeting table, the person sitting opposite and the projec-
tion screen. Often, these three targets are all successively in
one vertical line and can only be distinguished from P02’s
tilting. Scenes, that show extreme tilt estimation errors are,
when P02 is occupied writing on his or her notebook right

in front of the table (hence show a high tilting). For some
participants, also hair falls into their face, further occluding
the camera’s sight onto the (already low) facial details. In
these cases, our system estimates a false tilt angle and hence
detects the visual focus to lie on either the screen or the op-
posite sitting person. Since we instructed all participants to
use their notebook and keep notes, this happens quite often
and thus shows to be the main error source when using esti-
mated head poses. Another problem, we observed over our
dataset, are individual head rotating styles, by which every-
body uses different tilt angles in his or her resting position.
We encountered participants to tilt their head slightly down-
wards when actually focusing straight ahead. Of course, this
leads to the table being recognized as the primary focus tar-
get when the person really is looking at the screen. Further,
head is turned very slowly, often dragging behind the actual
gaze and focus change. Considering equation 7, the rapid
rotation towards a target is then missing and a change is not
detectable.

General questions that are to be answered are in our next
work are, how head orientation correlates to moving targets
and if a fitting user model for this perception can be found
during meetings (do people tend to follow behind the tar-
get’s trajectory or do they rather estimate the trajectory
in advance and adapt to movement changes?) as well as
how several focus targets merge into one single group of in-
terest for particular meeting members or objects instead of
necessarily distinguishing between every single item. Fu-
ture work also includes fast estimation of upper body ori-
entation to easily recognize every meeting member’s resting
position and initial head orientation when looking straight
forward. This cue should also show strong correlation to
group behavior and allow focus target abstractions by sep-
arating persons into groups, analyzing group roles and in-
cluding multi-person focus of attention and region of inter-
ests with respect to individual groups and their interactions.
Further, the looking direction of the remaining participants
might play a strong role in distinguishing between nearby
targets, since their respective focus might be less ambiguous
and thus helps in increasing the likelihood for either target
in ambiguous situations (if more people are actually focusing
on the same target, its likelihood should increase).
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5. CONCLUSION
This paper presents a new data collection of dynamic

meeting scenarios and our effort on recognizing the visual
focus of attention by means of head orientation from the
meeting participants. The dataset contains 10 videos, each
approximately 10 minutes long, providing highly dynamic
scenes, in which people enter and leave the room, give pre-
sentations and introduce new objects into ongoing discus-
sions. A predefined script of events ensured that all videos
contained the same amount of events, a subpart of the meet-
ing participants being actors, were advised to initiate every
event as instructed. The remaining meeting members were
unaware of the happenings to make sure that their reaction
was spontaneous and unplanned. This dataset was anno-
tated for every participant’s visual focus of attention in ev-
ery frame by two different students. All in all, a total of
35 targets (all persons and objects in the room) were al-
lowed to be looked at. The annotations are compared with
two different interrator reliability metrics (Cohen’s Kappa
and Proportion of Agreement) and analyzed for their differ-
ences. We further describe our efforts on estimating head
orientation to recognize the direction in which participants
are looking and the deduction of the most likely person or
object they visually focus on. Due to the complexity of dis-
tinguishing between all 35 targets, for these first evaluations,
we reduced the target space to the primary objects and the
participants in each meeting to be allowed foci (≥ 85% of
all targets). In 57% of all frames, our system recognizes
the correct object or person being looked at, despite the
included dynamics of moving targets and sudden interrup-
tions. Compared to a direct mapping of the participant’s
looking direction onto the first-best intersecting target, our
approach performes 10% better, which shows that head pose
not always directs towards the target a person is focusing
on. Slight eye gaze movements within the viewing cone of-
ten overcome the distance to targets nearby. Current and
ongoing work and research include the analysis of the tar-
gets’ movements, adding a correlation model to moving focus
targets and extending the target space to all annotated ob-
jects in the room. In order to adopt our approach to every
meeting participant, independent of his or her movement,
research on estimating upper body orientation is due to be
done. Since this approach only relied on visual features for
deducing focus, the recorded audio context is subject for
further research, too: speaker diarization, knowledge about
interrupting noises and explicitly introduced objects during
discussions intuitively provide further clues to building an
overall situation model and help enhancing the recognition
of one’s visual focus of attention.
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