
Towards A Minimalist Multimodal Dialogue Framework
Using Recursive MVC Pattern

Li Li
Avaya Labs Research

233 Mt. Airy Road, Basking Ridge
NJ 08807, USA

lli5@avaya.com

Wu Chou
Avaya Labs Research

233 Mt. Airy Road, Basking Ridge
NJ 08807, USA

wuchou@avaya.com

ABSTRACT
This paper presents a formal framework for multimodal dialogue
systems by applying a set of complexity reduction patterns. The
minimalist approach described in this paper combines recursive
application of Model-View-Controller (MVC) design patterns
with layering and interpretation. It leads to a modular, concise,
flexible and dynamic framework building upon a few core
constructs. This framework could expedite the development of
complex multimodal dialogue systems with sound software
development practices and techniques. A XML based prototype
multimodal dialogue system that embodies this framework is
developed and studied. Experimental results indicate that the
proposed framework is effective and well suited for multimodal
interaction in complex business transactions.

Categories and Subject Descriptors
H.5.2 [INFORMATION INTERFACES AND
PRESENTATION]: User Interfaces – Theory and methods,
Prototyping, Evaluation/methodology.

General Terms
Design, Languages, Theory.

Keywords
Multimodal, Dialogue, MVC, XML.

1. INTRODUCTION
There is a growing trend to incorporate rich multimodal
interactions in various user interfaces, including web browser,
mobile device, kiosk, virtual reality, etc [1]. Studies [13] have
shown that multimodal interaction is the most effective interface
between human and machine. However, the effectiveness comes
with a cost because multimodal dialogue systems are much more
complex than unimodal ones. The complexity is rooted in the
variability and uncertainty introduced by different modalities at
both temporal and semantic levels. A user may use speech and
gesture in one dialogue turn, and GUI and pen in the next turn.
Individual user’s ability and environmental conditions may also

change. The compound variations increase exponentially with the
number of modalities. Despite the progresses made in some basic
research topics, most current architectures focus on a particular
set of modalities/directionalities targeted at some particular
application environment. The general frameworks that we
inspected still have the following limitations:

1. Lack a formal specification that defines the behaviors
and interactions of the components; This hinders the
adoption of other useful modern software development
techniques, such as model-driven design, simulation and
model checking, in MMI system development;

2. Lack an articulation of the design patterns that underline
the result architecture; This prevents MMI architectural
researches from taking advantage of widely used design
patterns in software industry;

3. Lack a built-in mechanism to accommodate dynamic
variability in modalities;

Therefore, there is an acute need for an extensible MMI
framework that are based on sound design patterns. Furthermore,
we believe that a general framework will facilitate sharing and
reusing components and technologies in multimodal research
communities. Moreover, a formal framework provides a reference
to compare and evaluate MMI system designs, as well as to
improve the MMI architectures in a consistent and structured way.

This paper is organized as follows. In Section 2, we describe the
framework following an analysis and description of the design
patterns. Section 3 describes a prototype XML based MMI
dialogue system and our experimental studies. The related work is
discussed in Section 4. Findings of this paper are summarized in
Section 5.

2. RECURSIVE MVC FRAMEWORK
Our design of the MMI framework follows a minimalist approach
by using the following complexity reduction patterns: layering,
recursion, MVC decomposition and interpretation. In a nutshell,
we divide the multimodal functions into layers and recursively
apply the MVC decomposition to integrate these functions with
interpretation. This leads to an extensible multimodal dialogue
framework built upon only a few core constructs. The
“minimalist” hence indicates our effort to discover and develop a
minimal set of building blocks for maximal complexity reduction
for MMI architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMI’08, October 20–22, 2008, Chania, Crete, Greece.
Copyright 2008 ACM 978-1-60558-198-9/08/10...$5.00.

117

2.1 Layering
The layering technique has been successfully applied to the design
of many complex communication systems, including the Internet.
Human language processing is believed to consist of layers:
discourse, pragmatics, semantics, syntax, morphology, phonetics
and phonology [4]. For multimodal dialogue systems, the general
consensus is that there are four layers, listed from high to low:
Business process, dialogue, coordination, and physical
presentation [8][20], although the precise partitioning of the
layers may vary by applications. The complexity reduction is
achieved by layer isolation: a layer can only interact with its
adjacent layers. This means that the business process is decoupled
from the coordination layer, and the dialogue concern is separated
from the physical presentation.

Most traditional layered systems are built from a bottom-up
fashion such that the higher layer depends on the lower ones
(downward dependency). However, the dependency direction is
reversed in our framework in that lower level depends on the
higher level (upward dependency). This direction reversal reflects
the fact that multimodal dialogue is essentially a top-down
decision process, and the variability increases towards the lower
layers. The upward dependency thus hides the complexity of
heterogeneous multimodalities and devices from the dialogue and
coordination layers, making these layers more portable to different
applications.

2.2 MVC Decomposition
MVC [5] is a classic design pattern widely used in GUI and Web
applications. Generally speaking, Model defines and maintains the
data, View renders the interactions based on the data, and
Controller coordinates actions and events that affect the Model
and View..

Similar to [10], the concept of view in our framework is not
confined to the graphical user interface. Instead, it means a
composite view that coordinates activities between a set of
primitive views according to spatial, temporal, and semantic
constraints. More formally, a composite view at layer L is defined
by MVC as follows: (, , ())L L L

c p pv M V C V= , where the controller

C represents the coordination between the primitive views Vp, and
the model M records the collected data. The notion of primitive
view is relative: it means the view can be rendered by the next
layer. For example, a VXML script and a HTML page are
primitive views rendered by browsers. A composite view that
renders them in parallel at the same time can be represented as:

1 2(,{ , },{(,1, 2), (2. 1.)})L
cv M v v par begin begin= =

The rendering process is achieved by an abstract function
coordinate(C,a,V) which coordinates activities a for each view in
V according to C. An instance of this abstraction function is a
SMIL engine [14].

2.3 Recursion
Multimodal dialogue systems exhibit recursive MVC patterns in
all layers as illustrated in [10]. In our framework, a composite
view can be decomposed into MVC components, which creates
this abstract recursive relation: MVC = M(MVC)C. This recursion
eventually terminates when the primitive views cannot be

decomposed further. Recursive MVC thus imposes a uniform
hierarchical structure to represent arbitrarily complex multimodal
dialogue systems using the Composite pattern [5].

2.4 Interpretation
A typical example of interpretation [5] is a parser that interprets
sentences in a language based on the grammar for that language.
For consistency, we will call the parser “interpreter” and the
component that generates the sentences “generator”. The
complexity is significantly reduced because one interpreter can
carry out different functions according to the sentences.
Moreover, the functions performed by the interpreter are
dynamically determined by the sentences, which themselves can
be dynamically generated. The notion of “sentence” can expand to
an entire dialogue markup, such as VXML [16], to give “second-
order” expressiveness and flexibility to the framework. The
combination of generator and interpreter not only supports
upward dependency but also can resolve the dependency on the
fly during dialogue process. For example, if we want to compose a
dialogue to collect the credit card number, but do not want to lock
in the modalities at design time, we can use generators to derive
the modalities based on the contextual information.

2.5 Framework Specification
The conceptual framework based on the design principles is
specified recursively as follows (Figure 1).

Layer program consists of interpreter and generator .
Layer representation = (, ,).
Let { | 0 } denote the set of states of .
Let denote the timeout at layer .

(,

L L

L L L

L L L
i

L

L L
p

L I G
L M V C

S s i n I
t L

display I v −

= ≤ ≤

1

1

0 0

1 1 1

1

,) is defined as follows:

(, ,)= ()

(, ,) (, ,)

while

(, ,)

(, ,) (, , ,)

()

()

L

L L L L L

L L L
c

L
n

L L L
c

L L L
c

L

L

t

M V C G v

M v s M v s

s s time t

R display I v t

M v s update C M R s

R result M

return R

−

+ + +

+

⎡
⎢
⎡⎢
⎢⎢
⎢ =⎢
⎢⎢ ≠ ∧ <⎢⎢
⎢⎢ ⎡ =⎢⎢ ⎢⎢⎢ ⎢ =⎣⎢⎢
⎢⎢ =⎢⎢
⎢⎢⎣⎣

1 1

1 1

(, ,) is defined as follows:
(, , ())

(, (, ,),)
()

()

L L L
c

L L L
p p c

L L L L
p p

display I v t
M V C V v

coordinate C R display I v t V
M merge R
return M

+ +

+ +

⎡
⎢⎡ =⎢⎢⎢⎢ =⎢⎢⎢ =⎢⎢⎢⎣⎣

Figure 1: The formal specification of the recursive MVC
framework

In this framework a MMI dialogue system consists of layers of
programs (interpreter and generator). The function of each layer
can be represented by MVC. The interpreter realizes the turn-

118

taking and real-time aspects of dialogue systems by timed state
transitions. The layer L generator derives its MVC from the layer
L-1 view and coordinates the composite views on layer L by
delegating the primitive views to layer L+1. The interpreter
collects results and updates its states, model and views guided by
the controller. Eventually, the display will be grounded to the
physical presentation through their APIs, where the interactions
with the user occur. The overall execution flows of the framework
are illustrated by the following diagram (Figure 2).

Figure 2: Execution flows of the framework

The components of the system can be distributed over the network
or collocated in one process. The framework permits the
interactions between layers to be asynchronous and distributed,
since only views and results are exchanged between layers. The
conceptual framework can also be implemented by different
physical architectures, such as hub and spoke architecture
[18][23].

3. A XML MMI PROTOTYPE SYSTEM
We implemented a XML based MMI prototype system based on
the general framework described in the previous Section. The
prototype is based on several W3C standards with some
extensions. The business process is hosted on a web server. The
dialogue is represented by SCXML [12]. The composite view is
defined by SMIL [14] and EMMA [6] and the presentation layer
includes Google Map API and MS SAPI recognizer (Figure 2 and
Figure 3). The entire dialogue runs within a web browser where
the interpreters (SCXML engine and SMIL engine) and
generators are implemented by Java Applet (Java), ActiveX
control (C++) and JavaScript. The composite views are tokens
used by the generators to generate the MVC XML with table
lookup. The interfaces between layers are based on [10].

The multimodal dialogue system supports simultaneous and
coordinated speech, mouse, textual and map input/output for a
call center agent to dispatch technicians to customer sites in
response to incoming service calls or alerts. The agent is
presented with web browser in which a map shows customer sites

with service requests. In a typical scenario, the agent issues
multimodal commands in the dialogue turns illustrated as follows:

Agent: find technicians within ten miles of this [click
on marker] site.
System: [shows found technicians on map] what
next?
Agent: send these technicians [click on markers] to
this site [click on marker].
System: [shows technicians moving toward the site]
what next?

Figure 3: The business, dialogue and composite view layers

Figure 4: The primitive view and presentation layers

Table 1: initialization time of interpreters

Table 2: execution time of interpreters and generators

To investigate the performance overhead caused by
interpretations, we measured the speed of the XML interpreters
and generators on a PC with 1.6 GHz CPU and 512 MB RAM.
The results of 20 trials are summarized in Table 1 and Table 2.

XM-Flow Player

View (Interface Control XML)
Controller (SMIL)
Model (EMMA)

Adaptors
load, run, done event event

W3C Modality Interface

W3C Modality Interface
Adaptors for physical resources: speech, text,

map, etc

Generator

event event

SCXML Engine
W3C Modality Interface

View (Events)

Controller (SCXML)

Model (data model)

load, run, done event event

XM-Flow Player

load, run, done event event

W3C Modality Interface

Generator

Generator

Business Process

R

R v

L-1

L

L+1

R=display(v)

(M,V,C) update

G

coordinate(…v…)

display(v)

v

S0 Sn R=display(vc)

display(v)

Total
State machine

engine
t1

State engine to
XM-Flow player

t2

XM-Flow
player

t3

XM-Flow player
to state engine

t4
Mean 172.91 55.58 29.52 47.5 40.31
Std 77.9 13.4 28.33 11.65 41.52

Table 2. Time spending on each stage (component) for a state-state
transition (millisecond), N=20

1st time Thereafter
Mean 1956.90 396.40 38.24
Std 142.97 20.14 7.85

Load & Analyze State Chart XML
File

Load &
Analyze XM-

Flow XML File

Table 1. Time spending on loading and analyzing XML
files (millisecond), N=20

load, run, done

119

The studies indicated that the performance of the interpretation is
acceptable and the small average standard deviation indicates that
the system’s response time was quite consistent and predictable.

4. RELATED WORK
There are many research projects on multimodal interaction
architecture: [2], [3], [7], [8], [9], [11], [15], [18], [19], [21],
[22], [23]. But these architectures are mostly focus on a particular
set of modalities in a fixed environment rather than a general
framework. [20] and [1] propose layered general architectures for
multimodal interactions based on a comprehensive list of
multimodal dialogue components. However, the coordination,
dependencies and interactions between the layers are not clearly
defined. Nor do they use recursive MVC patterns to provide a
formal specification. Recent VXML v3.0 [17] moves to a modular
architecture design based on separation of Data, Flow and
Presentation, which has a direct relation to MVC design pattern.
But its current design only provides unimodal (voice) input and
multimodal output.

Our design patterns follows the design goals of MMAI [10] and
our architecture thus shares some key features, such as
reclusiveness, with MMAI. However, our focus and contribution
are towards a formal specification of the MMI architecture
derived from the basic design patterns, instead of the interface and
messages between the components. In particular, we emphasize
the dynamic aspect of the MMI architecture based on
interpretation, which is not articulated in the MMAI proposal.

5. SUMMARY
In this paper, we presented a minimalist framework for
multimodal dialogue systems by applying a set of sound
complexity reduction patterns in MMI system architecture design,
namely, the layering, recursion, MVC, and interpretation. These
techniques are combined to create a formal framework that is
modular, concise, flexible and dynamic. We described a XML
based multimodal dialogue prototype system based on the
proposed framework. Experimental studies indicate that the
proposed approach is effective.

We believe such structured approach will help us gain more
insights into multimodal interactions and advance multimodal
dialogue systems in an extensible and consistent way. Further
studies are on-going to investigate issues in dynamic composition
and synchronization for distributed multimodal dialogue systems.

ACKNOWLEDGMENTS
Authors would like to thank Fei Cao, Quagnzhi Li and Feng Liu
for their contributions to this work.

REFERENCES
[1] Stock, O., Zancanaro, M. (eds.): Multimodal Intelligent

Information Presentation. Series Text, Speech and Language
Technology, Vol 27. Springer, 2005.

[2] Stanciulescu, Q. Limbourg, J. Vanderdonckt, B. Michotte, F.
Montero, 2005. A Transformational Approach for
Multimodal Web User Interfaces based on UsiXML,
Proceedings of ICMI’05, pp. 259-266, October 2005.

[3] Christian Elting, Gregor Mohler, 2002. Modeling Output in
the EMBASSI Multimodal Dialogue System, ICMI
2002:111-116, Fourth IEEE International Conference on
Multimodal Interfaces (ICMI'02), 2002.

[4] Daniel Jurafsky, James H. Martin, 2000. Speech and
Language Processing. Prentice Hall, 2000.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, 1995. Design Patterns. Addison Wesley, 1995.

[6] EMMA: Extensible MultiModal Annotation markup
language, W3C Candidate Recommendation, 11 December
2007.

[7] Jullien Bouchet, Laurence Nigay, 2004. ICARE: a
component-based approach for the design and development
of multimodal interfaces. ICMI 2004: 1325-1328, 2004.

[8] Li Li, Quanzhi Li, Wu Chou, Feng Liu, 2007. R-Flow: An
Extensible XML Based Multimodal Dialogue System
Architecture, Proceedings of 9th IEEE International
Workshop on Multimedia Signal Processing (MMSP 2007),
page 86-89, 2007.

[9] M. Honkala, M. Pohja, 2006. Multimodal Interaction with
XForms, Proceedings of ICWE’06, pp. 201-208, July 2006.

[10] MMAI: Multimodal Architecture and Interfaces, W3C
Working Draft, 14 April 2008.

[11] SALT: SALTForum, http://www.saltforum.org/
[12] SCXML: State Chart XML (SCXML): State Machine

Notation for Control Abstraction 1.0, W3C Working Draft,
16 May 2008.

[13] Sharon Oviatt, 1999. Ten myths of multimodal interaction, in
Communications of ACM, 42(11):74-81, November 1999.

[14] SMIL: Synchronized Multimedia Integration Language
(SMIL 3.0), W3C Candidate Recommendation, 15 January
2008.

[15] Stephane H. Maes, Chummun Ferial, 2001. Multi-Modal
Browser Architecture, presentation (T2-010705) on 3GPP
T2 meeting, September 2001.

[16] VXML v2.1: Voice Extensible Markup Language
(VoiceXML) 2.1, W3C Recommendation, 19 June 2007

[17] VXML v3.0: Sneak Preview: VoiceXML 3.0,
www.w3.org/Voice/2006/voicexml3.pdf

[18] Johnston, M. et al. MATCH: An Architecture for Multimodal
Dialogue Systems, Proceedings of the 40th Annual Meeting
of ACL, Philadelphia, July 2002, pp. 376-383, 2002.

[19] Herzog, G. et al. MULTIPLATFORM Testbed: An
Integration Platform for Multimodal Dialog Systems.
Proceedings of the HLT-NAACL 2003 workshop on Software
engineering and architecture of language technology
systems - Volume 8, Pages: 75 – 82, 2003.

[20] Bunt, Harry, et al. Fusion and Coordination for Multimodal
Interactive Information Presentation. In [1], 2005

[21] Kaiser, E. et al. Mutual Disambiguation of 3D Multimodal
Interaction in Augmented and Virtual Reality, ICMI-PUI
’03, November 5-7, 2003.

[22] Dumas B. et al. Strengths and weaknesses of software
architectures for the rapid creation of tangible and
multimodal interfaces. TEI 2008, February 18-20, 2008.

[23] Cohen, P.R. et al. QuickSet: Multimodal Interaction for
Distributed Applications. Proceedings of ACM Multimedia
1997, pages 31-40, 1997.

[24] Larson, James. et al. (eds). W3C Multimodal Interaction
Framework, W3C NOTE, 06 May 2003.

120

