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ABSTRACT

Weighted Finite State Transducers (WFSTs) are versatile graphical
automata that can model a great number of problems, ranging from
automatic speech recognition to DNA sequencing. Traditional com-
puter science algorithms are employed when working with these au-
tomata in order to optimize their size, but also the run time of de-
coding algorithms. However, these algorithms are not unified un-
der a common framework that would allow for their treatment as a
whole. Moreover, the inherent geometrical representation of WF-
STs, coupled with the topology-preserving algorithms that operate
on them make the structures ideal for tropical analysis. The benefits
of such analysis have a twofold nature; first, matrix operations offer
a connection to nonlinear vector space and spectral theory, and, sec-
ond, tropical algebra offers a connection to tropical geometry. In this
work we model some of the most frequently used algorithms in WF-
STs by using tropical algebra; this provides a theoretical unification
and allows us to also analyze aspects of their tropical geometry.

Index Terms— Weighted Finite State Transducers, tropical al-
gebra, tropical geometry

1. INTRODUCTION

Weighted Finite State Transducers (WFSTs) are graphical automata
which find application in many fields ranging from language and
speech processing to computational biology. There exists a multi-
tude of algorithms that operate on WFSTs [1]–[3]. The most promi-
nent and most studied is the Viterbi algorithm [4]–[6], which stems
from the field of telecommunications, and its variants. However,
such algorithms are usually computationally expensive, which is un-
desirable for practical applications. Besides algorithms that simply
utilize a WFST, there are more intrusive algorithms that alter its
parametrization in an effort to optimize subsequent decoding, while
maintaining the inherent structure, such as the weight pushing [1]–
[3] and the epsilon removal [1]–[3] algorithms, stemming from com-
puter science. Some of these algorithms aim to directly reduce the
number of states and arcs in WFSTs, and thus immediately affecting
the time requirements of the decoding. Others try to indirectly affect
the execution speed, by reweighting the arcs between states so that
pruning algorithms examine fewer paths.

These algorithms admit modeling through tropical algebra and
tropical geometry [1]–[3], [7], [8], however no efforts have been
made to thoroughly explore their tropical aspects beyond the expres-
sion of scalar arithmetic with operations from the tropical semiring.
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For detailed background on the tropical semiring and max-plus al-
gebra we refer the reader to [9]–[16]. In this paper we model the
algorithms using tropical algebra and related min-plus matrix opera-
tions, resulting in novel expressions in closed matrix form. We also
explain aspects of the geometry of certain algorithms, namely the
Viterbi pruning.

References [1]–[3] are some of the most influential of the field,
studying the WFST structures and proposing the corresponding al-
gorithms. Minimax algebra and its application to scheduling was
introduced in [11]. Max-plus algebra and its applications to control
theory and optimization have been studied in [12]–[14], [17]. Some
recent related works from our group include a study of systems on
weighted lattices as a unification of max-plus algebra and its gener-
alizations [16]; modeling nonlinear perceptrons with max-plus alge-
bra and tropical geometry [18]; modeling the Viterbi algorithm and
its pruning variant in min-plus algebra [19]; and generalization of
tropical geometry using weighted lattices [20].

In this paper we provide a theoretical unification of WFSTs algo-
rithms by modeling them using tropical algebra, which also allows
for their further analysis using tools from minimax matrix theory
[11]. We first model the weight pushing algorithm, a non-intrusive
algorithm that aims to speed up pruning by propagating the weights
to earlier states of the WFST. Then we model the epsilon removal al-
gorithm, which alters the structure of the WFST in order to remove
unnecessary states and transitions, thus reducing its size and imme-
diately affecting decoding. We present previous results regarding the
modeling of the Viterbi algorithm and its pruning variant. Finally,
we further explore the properties of certain metrics defined through
the Viterbi pruning and elaborate on their motivation. Our modeling
aspires to offer a connection with, and unification via, the nonlinear
vector space theory of weighted lattices [16] and aspires to allow for
spectral analysis of these algorithms. In addition, we provide links
with tropical geometry, similar to the efforts in [18], [19].

In Section 2 we present elements of tropical algebra that will be
useful in our analysis. Section 3 contains the modeling of the various
algorithms in tropical algebra; the weight pushing, epsilon removal,
and Viterbi algorithms. Finally, in Section 4 we revisit the geometry
of the Viterbi pruning and we better explain the motivation for and
the properties of metrics defined in previous work [19].

2. BACKGROUND

Tropical algebra is similar to linear algebra. Like linear algebra stud-
ies systems of linear equations and their properties, tropical alge-
bra studies systems of nonlinear equations (min-plus equations) and
their properties. The main pair of operations is the pair (min,+),
and we will use ∧ to denote the minimum. The vectors and matrices
of tropical algebra exist on the extended real multidimensional space
defined by Rmin = R∪{+∞}. In this paper, we follow the notation
of [16] for the operations on weighted lattices. Let A,B ∈ Rn×m

min .
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Their min-plus product, denoted by �, is given by:

(A � B)ij =

m∧
k=1

Aik +Bkj (1)

We will also make extensive use of two important matrices:

• the weak transitive closure Γ(·) of a matrix A, defined as:

Γ(A) = A ∧A2 ∧ . . . ∧An ∧ . . . (2)

• the strong transitive closure ∆(·) of a matrix A, defined as:

∆(A) = I ∧A ∧A2 ∧ . . . ∧An ∧ . . . (3)

We can see that ∆(A) = I∧Γ(A). These two matrices provide
solutions to tropical eigenvector problems:

• the weak transitive closure Γ(A) provides solutions to the
min-plus eigenvector-eigenvalue problem A � x = λ+ x.

• ∆(A) provides solutions to the generalized min-plus eigenvector-
eigenvalue problem A � x ≥ λ+ x.

Tropical geometry [21]–[23] aims to generalize the ideas of Eu-
clidean geometry to the tropical setting. This proves useful in many
cases because tropical curves are piecewise linear, which offers im-
mediate bounds for the solution space of problems, but also offers
ties to linear programming [24]–[26] and its algorithms. Similar to
its Euclidean counterpart, a tropical line is given by

y = α+ x ∧ β = min(α+ x, β) (4)

We can also define tropical halfspaces and polytopes as:

Definition 1. An affine tropical halfspace, parametrized by a,b ∈
Rn+1

min , is a subset of Rn
min defined by:

T (a,b) := {x : min
i

(ai + xi) ∧ an+1 ≥ min
i

(bi + xi) ∧ bn+1}

Definition 2. A bounded intersection of a finite number of tropical
halfspaces is will be called a tropical polytope.

We will also use the epsilon closure from automata theory [27]:

Definition 3. The epsilon closure of a state q is the set of all the
states reachable by q with epsilon transitions.

3. MODELING

3.1. Weight pushing

The weight pushing algorithm is an essential algorithm for prac-
tical application of the WFST framework. The algorithm aims to
propagate the weights to earlier states of the structure, so that low-
probability paths are recognized earlier in the decoding sequence,
and thus have a higher chance of being pruned by pruning algo-
rithms. An irrevocable requirement is that the underlying structure
of the WFST must remain the same: the algorithm might alter the
weights, but the set of accepted paths and their total weights must
stand unaffected. An example highlighting the weight pushing op-
eration appears in Fig. 1. An improbable path that has, at an early
stage, a low cost will consume computational resources, where that
could have been avoided by pushing the overall weight in earlier
transitions. The algorithm can be divided into two parts; the calcu-
lation of each state’s potential (the weight amount that can be prop-
agated to earlier states), and the update of the WFST’s weights. A
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(a) WFST before the weight pushing operation.
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(b) WFST after the weight pushing operation.

Fig. 1: WFST transducing a sequence of lowercase Greek letters to
capital letters. The structure of the network allows for weights to be
pushed to earlier transitions without altering the ranking and cost of
the accepted paths (double circles denote final states).

single iteration of the traditional algorithm for calculating the poten-
tial can be written in the form:

vi+1 = vi ∧A � vi (5)

where vi is the potential vector for the i-th iteration, with v0 =
ρρρ, where ρρρ is the emission vector. By recursively substituting the
values, we get that the final value of the potential vector is:

v∞ = ρρρ∧A�ρρρ∧A2 �ρρρ∧ . . .∧An �ρρρ∧ . . . = ∆(A)�ρρρ (6)

Claim 1. The calculation of v∞ = ∆(A) � ρρρ in Eq. (6) is finite
and ∆(A) = I ∧A ∧ . . . ∧An−1.

The claim is proven by the fact that we have assumed that there
aren’t any cycles of negative length in the WFST, and such the short-
est paths between every pair of states are finite. Having computed
the potential vectors, we define four diagonal matrices that will be
useful for updating the parameters of the WFST:

• The matrix ΛΛΛ of the input weights, whose diagonal is the input
weight vector λλλ.

• The matrix V+ of the potentials, whose diagonal is the po-
tential vector v∞.

• The matrix V− of the negative potentials, whose diagonal is
the negative potential vector −v∞.

• The matrix P of the emission weights, whose diagonal is the
emission weight vector ρρρ.

Having defined these matrices, the updated parameters of the
WFST are as follows:

λλλ′ = ΛΛΛ� v∞, ρρρ′ = P� (−v∞) , A′ = V− �A�V+ (7)
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(a) WFST before the epsilon removal operation.
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(b) WFST after the epsilon removal operation.

Fig. 2: Epsilon transitions increase the total number of states and
transitions of the WFST, reducing its efficiency. Removing states
and replacing transitions, while maintaining the same accepted paths
and costs, improves the run time of decoding algorithms.

Equation (7) models the weight pushing algorithm in tropical alge-
bra. To highlight its function consider the five states of Fig. 1:

A =


∞ 1 2 ∞ ∞
∞ ∞ ∞ 42 ∞
∞ ∞ ∞ ∞ 3
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

 ,λλλ =


0
∞
∞
∞
∞

 , ρρρ =


∞
∞
∞
2
∞

 (8)

Following the computations of Eq. (7) the updated matrices become:

A′ =


∞ 40 0 ∞ ∞
∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 0
∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

 ,λλλ′ =


5
∞
∞
∞
∞

 , ρρρ′ =


∞
∞
∞
0
∞

 (9)

3.2. Epsilon removal

Epsilon removal is an algorithm that aims to reduce the number of
states and transitions in the WFST, while maintaining its underly-
ing structure, in order to reduce the running time of the Viterbi al-
gorithm. To accomplish that, an effort is made to reduce epsilon
transitions (meaning transitions with no input and output symbols).

The traditional algorithm for epsilon removal can be illustrated
in Fig. 2. In essence, the algorithm computes, for each state p its ep-
silon closure, and then adds transitions from the state p to each state
reachable from states in the epsilon closure. To model the traditional
epsilon removal algorithm in tropical algebra we need to define two
matrices:

• ΣI , which is the input symbol matrix and (ΣI)ij contains the
input symbol for the transition of the state i to state j.

• ΣO , which is the output symbol matrix and (ΣO)ij contains
the output symbol for the transition of the state i to state j.

Two remarks before we proceed to the modeling:

• We only consider as epsilon transitions ones where both the
input and the output symbols are ε. This is a very common
assumption, and a synchronization algorithm is executed in
order to better match input and output ε.

• We assume that there can only be a single transition between
two states, regardless of whether there exist transitions with
different symbols or weights. While this might seem restric-
tive, in practice it isn’t and can be circumvented.

We need to define another two matrices which make up the tran-
sition matrix A in order to model epsilon removal:

Eij =

{
αij , if (ΣI)ij = (ΣO)ij = ε

∞, otherwise
, (10)

(Aε)ij =

{
αij , if (ΣI)ij = (ΣO)ij 6= ε

∞, otherwise
(11)

Essentially, we decompose matrix A using the matrices of
Eq. (10). We can see that A = Aε ∧E.

Claim 2. Let E be the matrix defined in Eq. (10). Then, the matrix

Γ(E) = E ∧E2 ∧ . . . ∧En ∧ . . . (12)

is finite, equal to Γ(E) = E ∧ E2 ∧ . . . ∧ En−1, and expresses the
epsilon closure for all the states of the WFST.

The claim is proven by the fact that an inherent assumption in
WFSTs is that there aren’t any cycles of negative weight (and thus
the shortest distances are finite). In such a case, there aren’t also any
cycles of negative weight in the WFST of the epsilon transitions.
Having computed epsilon closure of each state, the updated tran-
sition matrix and emission vector are simply the tropical addition
between the previous values and the values from the epsilon closure.
The new transition matrix A′ takes the form:

A′ = Aε ∧ (Γ(E) � Aε) = ∆(E) � Aε (13)

whereas the new emission vector ρρρ′ takes the form:

ρρρ′ = ρρρ ∧ (Γ(E) � ρρρ) = ∆(E) � ρρρ (14)

Equations (13) and (14) model the epsilon removal algoirthm
under the unified framework. We refer the reader to Fig. 2 for a
visual explanation on how the algorithm removes redundant states
without altering the accepted paths.

3.3. Viterbi Algorithm and Pruning

From a sequence of input symbols the Viterbi algorithm tries to es-
timate the sequence of states that has the highest probability. For-
mally, the Viterbi algorithm can be written in the following max-
product form:

qi(t) =

(
max

j
wjiqj(t− 1)

)
· bi(σt) (15)

where wji is the probability of transitioning from state j to state i,
bi(σt) denotes the observation probability of the symbol σt at state
i, and, finally, qi(t) is the maximum probability for that current state,
calculated along the path from the previous states. In [19] we pos-
tulated that the Viterbi algorithm can be written in a closed matrix
form in tropical algebra as:

x(t) = P(σt) � AT � x(t− 1) (16)

where x(t) = − log q(t), A = − log W, and P(σt) is a diagonal
matrix whose diagonal is the vector p(σt) = − log b(σt).

The Viterbi pruning is a variant of the Viterbi algorithm that sac-
rifices the optimality of decoding in an effort to significantly speed
up the process. Usually, pruning is based on one of the following
criteria, or their combination:
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Fig. 3: At each step along the trellis, the state vector x(t) and the
leniency vector ηηη of Eq. (19) define a polytope. The three values of
the vector r are shown with colors (see Eq. (20)).

• users determine a leniency parameter θ, and at each step only
the paths that are at most θ from the optimal path survive.

• users determine a beam width κ, and at each step only the
κ-best paths survive the pruning.

In [19] we modeled the Viterbi pruning in tropical algebra us-
ing Cuninghame-Green’s inverse [11]. Therein it is proven that the
negative elements of

y = X#(t) �′ ηηη (17)

indicate the indices to be pruned, where �′ denotes the max-plus
matrix multiplication. The matrix X(t) is a diagonal matrix whose
diagonal is the state vector x(t), and X#(t) := −XT (t). Also,
ηηη = θ + 1

2

(
xT (t) � x(t)

)
+ 0, where θ is the leniency parameter

and 0 is a vector that consists of 0.
Let us consider a vector of variables z and bound it using
• the Viterbi update law of Eq. (15)

z ≥ b, b = P(σt) � AT � x(t− 1) (18)

• the pruning vector of Eq. (17)

z ≤ ηηη, ηηη = θ +
1

2

(
bT � b

)
+ 0 (19)

The combination of Eqs. (18) and (19) defines a tropical polytope
for each step of the Viterbi algorithm. For each iteration two metrics
are defined based on that polytope:
• a normalised volume metric ν:

ν = − 1

|supp(z)|
∑

i∈supp(z)

log ri
log (max r)

(20)

• a normalised entropy metric ε:

ε = − 1

|supp(z)|
∑

i∈supp(z)

−zi(t) · e−zi(t) (21)

where ri = η − zi. Essentially, ri is the degree to which each
dimension satisfies the Viterbi constraints.

In Fig. 3 we highlight the components of the vector r in order to
give a geometric explanation for the motivation of ν. We can see that
ri correspond to the individual lengths of the polytope, solidifying
our characterisation of ν as a generalized volume.

4. ASPECTS OF GEOMETRY

We devote this section to the analysis of the Eqs. (20) and (21),
and the motivation behind their definition. At every iteration of the
Viterbi pruning consider the state vector x(t) along with the leniency
vector ηηη of Eq. (19). In unison, these vectors define a tropical poly-
tope for each iteration of the algorithm. The indices of the state
vector that satisfy the constraints imposed by the leniency vector act
as the sides of this polytope, and the difference between the value
of the leniency vector and the state vector constitute the vector r
of Eq. (20). Figure 3 visualizes the polytope of each iteration and
highlights the vector r. Discussing the metrics further:
1) Consider the normalized volume of Eq. (20). The metric ν can of-
fer a quantitative estimate of the solution space that the Viterbi prun-
ing admits. Indeed, since the different ri in Eq. (20) are normalized,
this metric can provide a measure of how many paths the current
choice of the leniency parameter θ allows to survive. Furthering that
remark, we can monitor how ν evolves throughout iterations, and
adapt the value of the leniency parameter θ in order to maintain a
desired level of ν.
2) Consider the normalized entropy of Eq. (21). The metric ε can of-
fer a qualitative estimate of the solution space that the Viterbi prun-
ing admits. In information theory, entropy expresses the current de-
gree of surprise incurred by the observation of a sample. In essence,
if the sample abides by the existing modeling of the system, then it
will have low entropy, as its value is in an expected range. However,
if the sample has a significantly different value than those expected
by the system’s modeling, then the sample will have very high en-
tropy, indicating that there may be an error in the modeling of the
distribution.

By utilizing the above metrics we aim to reason about the solu-
tion space of the Viterbi pruning in two ways; a quantitative analysis
of the relative size of the solution space, and a qualitative analysis
of the likelihood of the paths of the solution space. Having such
measures, we can examine how the solution space evolves over the
execution of the Viterbi algorithm. Even more, we can introduce
them to the design of the algorithm, so that the leniency parameter θ
gets adapted to the needs of each iteration.

5. CONCLUSION

In this work we modeled algorithms that operate on WFSTs using
tropical algebra and matrix operations on weighted lattices, unify-
ing them under a common framework. First, we modeled the weight
pushing algorithm by expressing the potential calculation as an in-
strumental matrix of tropical algebra. We then proceeded to model
the epsilon removal algorithm by exploiting the min-superposition
of tropical algebra and expressing the epsilon closure as another im-
portant matrix in tropical algebra. Finally, we analyzed some geo-
metrical aspects of the Viterbi pruning, elaborating on metrics that
were defined on previous work. In future work we aim to explore
the connection of these tropical matrix-based algorithms with the
nonlinear vector spaces of weighted lattices and nonlinear spectral
theory.
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