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ABSTRACT

Humans are capable of processing speech by making use of
multiple sensory modalities. For example, the environment
where a conversation takes place generally provides semantic
and/or acoustic context that helps us to resolve ambiguities or
to recall named entities. Motivated by this, there have been
many works studying the integration of visual information
into the speech recognition pipeline. Specifically, in our pre-
vious work, we propose a multistep visual adaptive training
approach which improves the accuracy of an audio-based Au-
tomatic Speech Recognition (ASR) system. This approach,
however, is not end-to-end as it requires fine-tuning the whole
model with an adaptation layer. In this paper, we propose
novel end-to-end multimodal ASR systems and compare them
to the adaptive approach by using a range of visual representa-
tions obtained from state-of-the-art convolutional neural net-
works. We show that adaptive training is effective for S2S
models leading to an absolute improvement of 1.4% in word
error rate. As for the end-to-end systems, although they per-
form better than baseline, the improvements are slightly less
than adaptive training, 0.8 absolute WER reduction in single-
best models. Using ensemble decoding, end-to-end models
reach a WER of 15% which is the lowest score among all
systems.

Index Terms— Multimodal ASR, Deep learning

1. INTRODUCTION

Multimodal sensory integration is an important aspect of in-
formation processing and reasoning in human beings. Al-
though deep neural networks (DNN) are more and more re-
placing the previous state-of-the-art approaches [1] in many
fields of AI including machine translation, speech recogni-
tion and vision-related tasks; a structured way of fusioning
multiple modalities still remains challenging.

In the context of automatic speech recognition (ASR),
the presence of a synchronized video stream of the narra-
tor enables lipreading [2] a technique to reduce the effect
of ambient noise. This approach can be defined as a local
grounding since the grounding happens between phonemes
and visemes which are their visual counterparts. On the other
hand, global grounding can always happen even the recog-

Fig. 1. An example ground-truth transcript which contains a
rare visual word: “and that’s how you tune a ukulele”.

nizer does not have access to the aforementioned synchro-
nized video stream, i.e. when the video consistently provides
object, action and scene level cues correlated with the speech
content as may be the case with instructional videos. Here,
visual cues from the recording environment (indoor vs out-
door) or the interaction between salient objects (people, in-
struments, vehicles, tools and equipments) can be exploited
by the recognizer in various ways to learn a better acoustic
and/or language model [3, 4, 5]. Figure 1 shows such an ex-
ample where an ASR system without access to visual modal-
ity can produce an homophonic utterance like eucalylie in-
stead of the rarely occurring correct word ukulele.

In this paper, we first apply an adaptive training scheme
[3, 4, 5] for sequence-to-sequence (S2S) speech recognition
and then propose two novel multimodal grounding methods
for S2S ASR inspired from previous work in image caption-
ing [6] and multimodal neural machine translation (MMT)
[7, 8]. We compare both approaches through the use of visual
features extracted from pre-trained models trained for object,
scene and action recognition tasks [9, 10, 11]. We conduct
all the experiments on How2 [12], a 300 hours collection of
instructional videos. The main contributions of the paper can
be summarized as follows: (1) a systematic evaluation reveals
that the adaptive training is also effective for S2S models: we
observe 1.4% absolute WER improvement with action-level
features. (2) Although the proposed end-to-end multimodal
systems improve upon the baseline ASR by around 0.5-0.8%
absolute WER on average and for single-best respectively,
they can not surpass the adaptive systems. (3) However, with
ensemble-decoding these systems reach 15% WER leaving
both the baseline and the adaptive systems behind.
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2. MULTIMODAL ASR ARCHITECTURES

In the following, X={x0, . . . , xT−1} represents an input se-
quence of T speech features. The one-hot and continuous
representation of a token is denoted by ȳ ∈ {0, 1}V and y
respectively where V is the vocabulary size. For multimodal
models, f is a visual feature vector associated to an utterance.

Our baseline model is a sequence-to-sequence architec-
ture with attention [13]. The encoder is composed of 6 bidi-
rectional LSTM layers [14], each followed by a tanh pro-
jection layer. The middle two LSTM layers apply a tempo-
ral subsampling [15] by skipping every other input, reduc-
ing the length of the sequence X from T to T/4. All LSTM
and projection layers have 320 hidden units. The forward-
pass of the encoder produces the source encodings E of shape
(T/4)× 320 on top of which attention will be applied within
the decoder. The hidden and cell states of all LSTM layers are
initialized with 0. The decoder is a 2-layer stacked GRU [16],
where the first GRU receives the previous hidden state of the
second GRU for all t > 0. GRU layers, attention layer and
embeddings have 320 hidden units. We share the input and
output embeddings to reduce the number of parameters [17].
At timestep t=0, the hidden state hD1

0 of GRU1 is initialized
with the average source encoding e computed as follows:

e = 1
T/4

∑
t

Et , hD1
0 = tanh (Wh e) (1)

A feed-forward attention mechanism [13] is used between the
two GRU layers to compute the context vector zt. GRU2 re-
ceives zt as input and computes its next hidden state hD2

t . The
output ot of the decoder which is used to estimate the proba-
bility distribution is a non-linear transformation of hD2

t :

hD1
t = GRU1(yt−1, h

D1
t−1) (2)

zt = AT(E, hD1
t ) (3)

hD2
t = GRU2(zt, h

D1
t ) (4)

ot = Wp tanh(Wo h
D2
t + bo) + bp (5)

P (ȳt = j) = softmax(ot)j (6)

2.1. Visual Adaptive Training

Visual Adaptive Training (VAT) aims to fine-tune a pre-
trained ASR model using visual modality. The pre-trained
model may or may not be fully converged, the latter being the
previously followed approach [5]. In this work, however, we
preferred to use a converged ASR model. VAT adds a new
linear layer to the ASR architecture to project the visual fea-
ture vector f into the speech feature space (equation 7). The
output of this layer, which is considered to be an utterance-
specific shift vector, is then added to the speech features and
the network is jointly optimized until convergence:

s = Wvf + bv (7)
xt = xt + s t ∈ {0, . . . , T − 1} (8)
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Fig. 2. Proposed architectures: VAT stands for visual adaptive
training while edinit and visual-bos are end-to-end models.

2.2. Tied Initialization for Encoder & Decoder

Initializing the encoder and the decoder is an approach previ-
ously explored in multimodal machine translation [7, 8]. In
order to ground the speech encoder with visual context, we
first introduce two non-linear layers to learn an initial hidden
and cell state globally for all LSTM layers Ek in the encoder:

hEk
0 = tanh (Whf + bh) k ∈ {1, . . . , 6} (9)

cEk
0 = tanh (Wcf + bc) (10)

The same idea can also be applied to initialize the GRU1 in
the decoder by replacing the equation 1 with the following:

hD1
0 = tanh (Wdf + bd) (11)

Finally we explore a third variant where we fuse the two ap-
proaches by sharing the linear layers in equations 9 and 11
i.e. by setting Wd=Wh. In the following, these models will
be referred to as einit, dinit and edinit respectively.

2.3. Visual Beginning-of-Sentence

Traditionally, neural decoders receive a special beginning of
sentence <bos> vector as input at timestep t=0 in order to
initiate decoding. Depending on the implementation, this vec-
tor can be either constant or learned during training, the latter
being the approach taken in this work. The disadvantage of
both methods is the fact that during inference, the decoder al-
ways receives the same embedding at t=0 regardless of what
has been observed in the input of the network. Here we pro-
pose to modulate the decoder by replacing the static <bos>
with a visually-informed one:

yi0 = Wvf
i + bv (12)

3. DATASET & FEATURES

We conduct all experiments on the How2 dataset of instruc-
tional videos [12]. The official train, val and test splits con-
sist of 185K, 2022 and 2305 sentences equivalent to 298, 3
and 4 hours of audio-visual stream respectively. We early-
stop the training on val while model selection is performed on
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the test set. For preprocessing, we first lowercase and remove
punctuations from the English transcripts and then train a Sen-
tencePiece model [18] to construct a subword vocabulary of
5000 tokens. We use Kaldi [19] to extract 40-dimensional fil-
ter bank features from 16kHz raw speech signal using a time
window of 25ms and an overlap of 10ms. 3-dimensional pitch
features are further concatenated to form the final feature vec-
tors. A per-video mean and variance normalization is applied.

In the How2 dataset, a video is divided into smaller
sentence-level clips and a clip is itself a sequence of con-
secutive frames. We first extract one frame per second from
each clip, resize it and take a center crop of shape 224x224.
We then explore two methods for producing a single feature
vector for each clip belonging to a given video: (1) a per-clip
representation by averaging feature vectors of frames of a
clip and (2), a per-video representation which averages the
feature vectors of all frames of a video. The latter ignores
the variability among the clips of the same video by consis-
tently representing its associated clips with the same feature.
As for the types of features, we mainly explore three CNNs
pre-trained on different visual tasks:

• Object-level. A ResNet-152 [9] trained on ImageNet
[20] which consists of 1000 categories ranging from
animals, flowers to devices and foods and so on.

• Action-level. A 3D ResNeXt-101 [11] trained on Ki-
netics dataset [21] which covers 400 categories such as
eating, cooking, knitting and playing instruments.

• Scene-level. A ResNet-50 trained on Places365 [10]
for scene recognition with 365 categories including but
not limited to garden, valley,studio, theater and office.

For object and scene-level features, we extract 2048D average
pooled (avgpool) convolutional features from the penultimate
layer of the CNN as well as posterior class probabilities (prob)
which are 1000D and 365D respectively. For the action-level
CNN, we only experiment with 2048D per-video features.

4. RESULTS

In all of the following experiments, we use ADAM [22] op-
timizer with a learning rate of 0.0004. The gradients are
clipped to have unit norm. A dropout of 0.4 is applied on
the final encoder and decoder outputs. The training is early
stopped if validation WER does not improve for ten epochs.
The learning rate is halved if WER does not improve for two
epochs. We report average and ensemble scores of three in-
dependent runs. We decode hypotheses using a beam size of
10. The experiments are conducted using nmtpytorch1 [23].

Visual Adaptive Training. We report the results in Table 1.
First, we clearly see that avgpool features consistently outper-
form class probability features. Similarly, a per-video repre-

1https://github.com/lium-lst/nmtpytorch

CNN Avg. WER
avgpool prob

per-clip object 18.3 18.9
scene 18.2 19.0

per-video object 18.2 18.7
scene 18.1 18.8
action 18.0 -

Baseline 19.4
Restart 19.1

Table 1. Results for adaptive training experiments.

sentation for all clips of a given video seems to give a slight
boost compared to per-clip granularity. In overall, adaptive
training using avgpool features reduces the WER by up to 1.4
absolute points depending on the feature type and granular-
ity. A secondary baseline restart which continues training the
pre-trained ASR model without any adaptation layer is pro-
vided to show that the improvements obtained are not merely
a side-effect of training the system for more time. However,
we discover that when the adaptation layer is discarded during
test time, the system still obtains around 18.0% WER. This
may indicate that the effect of visual adaptation is indirect in
the sense that it is actually making the ASR more robust.

End-to-End Variants. For the initialization experiments,
we observe that an exclusive initialization of either encoders
or the decoder is not improving the results while the tied
initialization obtains 0.8 and 0.5 absolute reduction in WER
in terms of single-best and average results (Table 2). With
ensembling, the edinit variant reaches the best WER (15.0%)
among the models. The second approach visual-bos also per-
forms similarly to the tied initialization. For both approaches,
action-level features give slightly better performance.

Qualitative Examples. Returning back to the initial exam-
ple (Figure 1), we checked how successful the systems are
when transcribing the word ukulele. We observe that edinit
systems with action and object features could transcribe it
once (out of ten occurrences in the test set) while the baseline
system could not. However, this should be taken with a grain
of salt as the token occurs only three times in the training set.

5. RELATED WORK

During the last decade, the speech processing community
proposed several acoustic model (AM) and language model
(LM) based adaptation approaches using characteristics
such as speaker or topic information [24, 25]. Miao et al.
[24] proposes speaker-dependent training while Chen et al.
[25] adapts a Recurrent Neural Network Language Model
(RNNLM) using topic information. Although similar, our ap-
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System Feature Min WER Avg WER Ens WER

baseline - 19.2 19.4 15.6

dinit action 19.2 19.4 15.5
einit action 18.8 19.2 15.6

edinit scene 18.8 19.2 15.4
edinit object 18.5 18.9 15.2
edinit action 18.4 18.9 15.0

visual-bos object 19.0 19.1 15.5
visual-bos scene 18.7 19.0 15.2
visual-bos action 18.5 18.9 15.1

Table 2. Comparison of end-to-end systems: all features are
2048D avgpool per-video. Ens stands for ensemble decoding.

proach differs from these as the auxiliary information source
is visual instead of being linguistic or acoustic.

Closely related to our work, Miao et al. [3] propose a
visual adaptation strategy for AM in the context of hybrid
HMM-DNN systems: they exploit the correlation between an
utterance and the video content by using a feature vector ex-
tracted from a video frame. Similarly, Sun et al. [26], Gupta
et al. [4], and Moriya et al. [27] explores the visual adaptation
on language modeling side. Since we are dealing with end-to-
end, sequence-to-sequence (S2S) architectures, we propose a
global grounding instead of separate AM and LM adaptation
in contrast to the aforementioned works. This also allows us
to analyse and compare a plethora of adaptation and end-to-
end training capabilities (section 4).

More related to our work, Palaskar et al. [5] evaluates the
visual adaptive training [3] within the framework of Connec-
tionist Temporal Classification (CTC) based ASR and also
proposes an end-to-end scheme with feature concatenation
for S2S models. Our work can be considered as an extension
of [5] since we analyse the behaviour of adaptive training in
S2S models for the first time. In addition, we propose novel
end-to-end multimodal approaches namely the tied initializa-
tion of encoders and the decoder (section 2.2) inspired from
previous work in multimodal machine translation [7, 8] and
the visually informed decoding (section 2.3) similar to previ-
ous work in image captioning [6]. This latter is also explored
in the context of RNNLM adaptation and rescoring by Moriya
et al. [27]. Finally, we present a detailed analysis on the effect
of different visual features on multimodal ASR performance.

6. CONCLUSIONS

In this paper, we first explored previously proposed visual
adaptive training for S2S ASR models and then experimented
with two novel end-to-end multimodal systems. Our experi-
ments showed that visual adaptive training is effective for S2S
models as well, reaching up to 1.4% absolute WER improve-
ment for action-level features. However, we discovered that
the adaptive system still preserves its performance even when
the adaptation layer is discarded after training. We leave the

analysis of this phenomenon to future work. Although end-to-
end models perform better than the baseline, the difference is
smaller compared to adaptive training, 0.8 absolute WER re-
duction in terms of single-best models. But when ensembling
is used during decoding, the end-to-end models obtain the
best WER (around 15%) among all models. With regard to the
visual feature types, we show that average-pooled CNN fea-
tures perform better than posterior probability features. We
also observe that action-level features are consistently better
than other features although the difference is not very large.
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