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ABSTRACT

An increasing number of datasets contain multiple views, such as
video, sound and automatic captions. A basic challenge in repre-
sentation learning is how to leverage multiple views to learn better
representations. This is further complicated by the existence of a
latent alignment between views, such as between speech and its
transcription, and by the multitude of choices for the learning ob-
jective. We explore an advanced, correlation-based representation
learning method on a 4-way parallel, multimodal dataset, and assess
the quality of the learned representations on retrieval-based tasks.
We show that the proposed approach produces rich representa-
tions that capture most of the information shared across views. Our
best models for speech and textual modalities achieve retrieval rates
from 70.7% to 96.9% on open-domain, user-generated instructional
videos. This shows it is possible to learn reliable representations
across disparate, unaligned and noisy modalities, and encourages
using the proposed approach on larger datasets.

Index Terms— Multiview Learning, Representation Learn-
ing, Canonical Correlation Analysis

1. INTRODUCTION

Many large datasets include multiple modalities [1], leading to an
exploration of methods that exploit the multimodal structure of
the data. Further, collecting large datasets with multiple views
is relatively easier than collecting large datasets with high quality
annotations [2]. Multiple views help learn better representations for
each view separately [3], or a shared representation across multiple
views [4], and multiview learning has also been shown to be useful
in low-resource settings [5]. However, the fusion of information
from disparate modalities remains a challenging problem [6].

In this paper, we build multiview models on a newly released
multimodal dataset, the How2 corpus [7], which contains user-
generated instructional videos for a variety of tasks such as cook-
ing, playing or dancing. While previous multiview models have
exploited the natural alignment between views, such as speech and
articulatory features [8], here we have to overcome challenges re-
sulting from latently aligned views. For instance, there exists an
alignment between words in an English sentence, and the words

∗Equal contribution

in its Portuguese translation. Figure 1 shows an overview of our
learning algorithm with 4 different input views, detailed in Section
3.

Given these multiple parallel modalities, we address the follow-
ing: how much information is shared across modalities? How can
we learn a representation that captures information from all modal-
ities? We measure this using intrinsic evaluations. In the remainder
of this paper, we describe related work, then the proposed methods
and our experimental setup, and finally present our results.
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macaco parado no eixo 
traseiro, vá em frente e 
libere a pressão hidráulica... 
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Fig. 1: Learning from multiple modalities using DGCCA.

2. RELATED WORK

In audio-visual speech recognition, [9, 10] explore strategies to
learn and fuse audio and visual representations in a neural net,
including concatenating both modalities, bilinear products between
representations, and weighted addition of modalities. Within a
scene classification task, [11] use one neural network per modality.
The weights of the last layers of each network are tied, and the
distributions of representations are encouraged to be more similar
across views. On most of the datasets considered, this improved
the cross modal retrieval score. Using a parallel corpus for many
languages, [12] train language-specific RNN encoders and decoders
on machine translation tasks, obtaining high cross-lingual retrieval
scores on an out of domain corpus. Using a supervised end-to-end
speech recognition model, [13] learn acoustic word embeddings
and how to segment speech into words.

Representations can also be learned independently of a specific
task, for instance with a hinge loss, where a neural network is trained
to distinguish matched from mismatched pairs across or within
modalities [14]. Using this method, [15] learn representations for
speech and images on a spoken caption dataset. Their method

8628978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



implicitly learns an alignment between speech segments and image
regions, which the authors show correspond to word-like units. In
a similar setting, [16] use triplet sampling and binary classification
to learn feature extractors for audio and video data, and evaluate
them on sound classification and image classification. [17] learn
representations for speech and text separately in an unsupervised
way, then learn a mapping between both spaces that keeps both
distributions undistinguishable for an adversarial net.

Deep networks can learn representations by reconstructing one
or two modalities, from one or two modalities [3]. Better features
for a single modality can be learned if multiple modalities are avail-
able at training time. A correlation-based loss is used in [5] to learn
representations for text and images on large unaligned corpora,
which are then successfully used in a low-resource, supervised im-
age captioning task. Reconstruction-based and correlation-based
learning can be complementary, as described in [18], which exam-
ines both losses on an audio-visual speech recognition dataset. In
[19], RNNs trained in a variety of supervised tasks are augmented
with reconstruction losses, across- and within-modality, as well as
a correlation-based loss.

3. METHODS

In the following, we describe the sequence-to-sequence models we
used to extract features for speech, text and video data. We then
describe the correlation-based methods we used to learn represen-
tations.

3.1. Input representations

We use token-level representations from Machine Translation
(MT) and Automatic Speech Recognition (ASR) systems to build
sentence- or utterance-level representations. All the models we
consider are attention-based, sequence to sequence models [20] that
were trained in a supervised way on the How2 dataset. The encoder,
a stacked bi-directional RNN, reads a sequence of feature vectors
x1, ..., xT and produces a sequence of hidden states h1, ..., hT ′

(T ′ ≤ T because of possible sub-sampling). The decoder, an RNN
with attention mechanism, produces context vectors c1, ..., cS . We
use the average of the hi (resp. ci) as the representation for the
input sequence (resp. output sequence), as depicted in Figure 2.
The RNNs for ASR (resp. MT) are LSTMs [21] (resp. GRUs
[22]). For the acoustic representations to be at the same level
of granularity as the word representations from MT, we use the
Acoustic2Word model [13] as our ASR model, and obtain acoustic
embeddings hi at word level.

For the video modality, we condense the information present
in each utterance into a single vector as follows. We first use a
ResNet [23] to map each frame of the video to a multi-class pos-
terior, based on the 1000 ImageNet classes. We then compute the
average of those posteriors. As the video frames are sampled with a
hard temporal threshold, it may contain noisy artifacts. We average
over all the frames to capture the most persistent predictions and
reduce the variability due to noise. We experimented with repre-
sentations from action networks [24] trained on an action dataset
[25], and obtained similar results as with ResNet features.

RNN encoder

RNN decoder 
with attention

input 
sequence 
embedding

output 
sequence 
embedding 

mean

input sequence
x1, ..., xT

context vectors
c1, ..., cS

hidden states
h1, ..., hT pool

mean
pool

Fig. 2: Extracting sequence embeddings from trained se-
quence to sequence models.

3.2. Linear CCA

To measure how much information is shared by pairs of represen-
tations, we use Canonical Correlation Analysis (CCA) [26]. We
assume that we are given two views of the same data point: for
instance, for a given utterance, the audio recording and the tran-
scription. These two views are represented by random variables X
and Y (dx- and dy-dimensional respectively). Linear CCA seeks
two linear transformations U ∈ Rdx×k and V ∈ Rdy×k such
that the components of UTX and VTY are maximally correlated.
Formally, we want to maximize E

X,Y
[tr (UTXY T V)] subject to

E
X
[UTXXT U] = E

Y
[VTY Y T V] = Ik.

For dataset {xi, yi}Ni=1, we define CXY the empirical cross-
covariance matrix between X and Y , and CXX and CY Y the
empirical auto-covariance matrices of X and Y , respectively.
U and V are given by the k left and right singular vectors of
C−1/2XX CXY C−1/2Y Y with the largest singular values.

CCA is a better objective than predicting one view with the
other when no single regression provides a fully adequate solution.
For instance, it is very hard to generate speech from text. Instead,
it is easier to predict the dependent variate which has the largest
multiple correlation.

3.3. Extensions of CCA

Deep CCA (DCCA) [27] is a natural extension of linear CCA,
where one seeks to maximally correlate UT f(X) and VT g(Y ).
f and g are non-linear feature extractors, which can be learned via
gradient descent on the CCA objective. It is also natural to extend
CCA to multiple views [28].

Instead of 2 views, we have J views X1, ..., XJ attached
to each data point, stored in matrices Xj ∈ Rdj×N . One finds
linear transformations {Uj ∈ Rdj×k}Jj=1, that minimize the
mutual reconstruction error under constraints, in a way equiv-
alent to maximizing correlation. This framework can be ex-
tended to non-linear feature extractors [29] with the objective:

minimize
J∑

j=1

||G − UT
j fj(Xj)||22 subject to GGT = Ik, with
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respect to parameters {G, {fj ,Uj}j}. Here, fj(Xj) ∈ Rhj×N

is the output of j-th feature extractor, and G ∈ Rk×N can be
viewed as the learned representations for the dataset. Effectively,
each pair of feature extractor fj and linear transformation Uj tries
to reconstruct the learned representation G. The constraints on G
prevent the feature extractors from collapsing the features. We refer
to this method as deep generalized CCA (DGCCA). A linear variant
of DGCCA where the fj’s are identity maps has been applied to
acoustic feature learning [30] and learning word embeddings [31].

4. EXPERIMENTS

We applied the methods described above to a 4-way parallel corpus,
and evaluated the learned representations using a retrieval task.

4.1. Dataset

We apply the described methods to the How2 dataset [7], which
we use as a 4-way parallel corpus: video, speech, transcription in
English, translation in Portuguese. The dataset contains 13,500
videos, or 300 hours of speech, and is split into 185,187 training,
2022 development (dev), and 2361 test utterances.

It is yet unclear how much temporal coherence there is between
the video modality and the language (text and speech) content, as
objects mentioned early in the video may only appear much later
on screen, or only for a very brief time.

Whenever we mention an MT task, it consists of translating
English (en) text to Portuguese (pt) text; an ASR task consists of
transcribing English speech to English text; a Speech Translation
(ST) task consists of mapping English speech to Portuguese text.

4.2. Evaluation

To measure the richness of the learned representations, we use them
in a retrieval task: given a source sequence in view 1, and a set of
reference sequences in view 2, find the n sequences in the reference
set that are closest to the source sequence. Since we have parallel
corpora, we can check whether the correct sequence is present
within those n sequences. We report this as Recall@10 (n = 10
throughout this paper), with scores ranging from 0 to 100. Finding
the closest sequences consists of projecting the reference set as
well as the source sequence into the shared space, then computing
distances between source and references, and retrieving the closest
points. The Recall@10 of picking at random from the reference set
is 0.5% for the dev set and 0.4% for the test set.

5. RESULTS AND DISCUSSIONS

In the following, we will use k to indicate the dimensionality of the
shared representation. Typically, k should be at most the smallest
dimensionality of all views involved. We set k to half the smallest
dimensionality as a balance between keeping as much information
as possible while dropping uninformative components. Throughout
all our experiments, we add the identity matrix scaled by 10−16 to
the view-specific co-variance matrices.

In all experiments involving DCCA and DGCCA, we use 2-
layer feedforward neural networks as feature extractors (f, g, fj in

Section 3.3), the first layer with the same size as the input, and the
second of size k. The training proceeds in epochs, which consist
of a full pass over the training set with batch size 5500. After each
epoch, we compute the retrieval scores between all possible pairs of
different views on the dev set, and aggregate the scores by picking
the highest of those scores. Our final model is the one with the
highest aggregate score. For the experiments involving the video
modality, we used a weight decay of 10−5.

5.1. Bimodal Experiments

We start by applying linear CCA and deep CCA to pairs of views,
at the utterance level. Text, speech and video sequences are repre-
sented with 800-, 320- and 1000-dimensional vectors respectively.
As measured by the retrieval rates shown in Table 1, the represen-
tations learned for text (en and pt) and speech capture almost all
of the information present in both views, in a space with half the
dimensionality. The original text (en) and text (pt) representations
having the same dimensionality, we scored the retrieval of a Por-
tuguese sentence given an English sentence, which yielded a score
of 0.38%. For other pairs of modalities, there is no obvious way of
computing pairwise distances in the original space. The retrieval
scores involving the video modalitiy are very low, and we discuss
those in Section 5.3.

Table 1: Recall@10 for retrieving reference modality given
source modality (”source - reference”). Swapping source and
reference change retrieval scores by less than 1% absolute.

Linear CCA Deep CCA

dev test dev test k
text (en) - text (pt) 82.5 81.4 95.1 94.6 400
speech - text (en) 98.3 96.9 92.1 90.1 160
video - text (en) 0.9 0.8 2.32 1.6 400
video - speech 0.8 0.6 1.93 1.8 160

To tie the results in Table 1 to known metrics, we take the first
retrieval result and score it as though it were the output of an ASR
or MT system. Given a speech utterance from the test set that we
want to transcribe, or a source sentence we wish to translate, we
pick the closest sentence from a reference set using our learned
DCCA model. We then score this pick using the relevant metric,
WER for ASR and BLEU for MT. The score strongly depends on
the contents of the reference set: if the reference set contains no
appropriate sentence to transcribe (resp. translate) the source, the
WER (resp. BLEU) will be high (resp. low). We thus test on two
reference sets: 1) the training set, 2) the union of the training and
test set. In setting 1, the reference set does not contain the correct
answers, whereas it does in setting 2. When using only the test set
as a reference set, the score is almost perfect, and we only report
the more challenging settings, in columns WER and BLEU (MT)
of Table 2. The results on the train set are quite poor given that the
train set may not contain appropriate sentences for the test set. We
estimate this by finding, for each sentence in the test set, the closest
sentence (in terms of edit distance) from the train set. This yields a
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BLEU of 10.6, and a WER of 63.0%. When using the union of test
and train as a reference set, our model is still able to mostly pick out
the correct sentences, achieving on par or better performance than
a baseline sequence-to-sequence model. This is consistent with our
retrieval scores, as the retrieval for text and text was slightly higher
than speech and text.

Table 2: Scoring top-1 retrieval result from DGCCA models
with ASR, MT and ST metrics. Models used (from left to
right) were trained using speech and text (en); text (en) and
text (pt); speech, text (en), text (pt) and video. Source sen-
tences for the retrieval are from the test set.

Reference Set WER BLEU (MT) BLEU (ST)
train 134% 5.2 0.2
train + test 27.4% 80.7 19.8
Baseline S2S 24.3% 57.3 27.9

5.2. n-modal experiments

In subsequent experiments, we used DGCCA to learn representa-
tions with more than 2 views. We learned representations with
English text, speech and video, with k = 160, and report retrieval
results in Table 3. As compared to Table 1, the retrieval scores
between speech and text (en) decrease, as the model has to accom-
modate a third view. Keeping hyperparameters fixed and adding a
fourth view, Portuguese text, we obtain the results in Table 4. Rel-
ative to Table 1, the text - text retrieval score increases, while the
speech - text (en) score decreases, and the scores involving video
decrease slightly. This could be explained by the fact that text - text
retrieval is an easier task than those involving speech and video,
so that the model trades off a higher loss in the video and speech
domain for a lower loss in the text domain. To remedy this, one
could add weights wj to each reconstruction loss in Section 3.3, or
tune the architectures of the fj . As in Section 5.1, we evaluate our
speech - text (pt) retrieval with an ST task. The results are shown
in column BLEU (ST) of Table 2, and are again consistent with the
retrieval scores.

Table 3: Recall@10 for retrieving column modality given
source row modality, for a DGCCA model trained on 3 views
as described in Section 5.2. Results from the bottom left tri-
angle can be compared to those in Table 1.

text (en) speech video
text (en) dev - 92.1 1.7

test - 89.8 1.8
speech dev 92.1 - 1.9

test 89.1 - 1.2
video dev 1.4 1.9 -

test 1.7 1.2 -

5.3. Discussion

As shown by our Recall@10 retrieval results, the CCA objective
induces a shared space capturing most of the information shared

Table 4: Recall@10 for retrieving column modality given
source row modality, for a DGCCA model trained on 4 views
as described in 5.2. Results from the bottom left triangle can
be compared to those in Table 1.

Text (pt) Text (en) Speech Video
Text (pt) dev - 98.8 73.5 2.1

test - 98.3 71.0 1.1
Text (en) dev 98.8 - 88.2 1.4

test 98.4 - 85.4 0.9
Speech dev 73.0 88.1 - 1.1

test 70.7 85.4 - 1.0
Video dev 2.1 1.1 1.0 -

test 1.1 1.1 0.9 -

across the original spaces. Scoring the top-1 retrieved data point
with common MT, ASR and ST metrics is consistent with this
finding. Moreover, this shared space is learned on top of high-level,
unrelated representations: the training of the ASR and MT systems
is entirely independent.

Our results involving video are not in agreement with that hy-
pothesis, and we see two possible explanations. First, there is a
temporal mismatch between the video modality and the language
content, as described in Section 4.1. Second, it is possible that
the ResNet posteriors are either extremely noisy, or simply fail to
identify certain relevant objects because of a domain mismatch, as
discussed in Section 3.1. Previous work in the context of ASR
shows that using the penultimate instead of the last layer of the
ResNet makes little difference [9].

6. CONCLUSION

In this paper, we cast the How2 dataset to a multiview, multi-
modal representation learning problem. We explore an advanced,
correlation-based learning technique, for two or more views, and
evaluate the learned representations using cross-view retrieval tasks.
Our results show that the geometry of the embedding space captures
the information necessary to relate data points of various modali-
ties, with a dimensionality much smaller than that of the original
spaces.

Overall, our retrieval results indicate that downstream tasks
may benefit from integrating these learned representations. This
must be implemented very carefully and is left for future work.
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