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ABSTRACT

Imagine a robot is shown new concepts visually together with spoken
tags, e.g. “milk”, “eggs”, “butter”. After seeing one paired audio-
visual example per class, it is shown a new set of unseen instances
of these objects, and asked to pick the “milk”. Without receiving
any hard labels, could it learn to match the new continuous speech
input to the correct visual instance? Although unimodal one-shot
learning has been studied, where one labelled example in a single
modality is given per class, this example motivates multimodal one-
shot learning. Our main contribution is to formally define this task,
and to propose several baseline and advanced models. We use a
dataset of paired spoken and visual digits to specifically investigate
recent advances in Siamese convolutional neural networks. Our best
Siamese model achieves twice the accuracy of a nearest neighbour
model using pixel-distance over images and dynamic time warping
over speech in 11-way cross-modal matching.

Index Terms— Multimodal modelling, one-shot learning, cross-
modal matching, low-resource speech processing, word acquisition.

1. INTRODUCTION

Humans possess the remarkable ability to learn new words and object
categories from only one or a few examples. For example, a child
hearing the word “lego” for the first time in the context of receiving
a new toy, can quickly learn to associate the spoken word “lego” to
the new (visual) concept lego. Current state-of-the-art speech and
vision processing algorithms require thousands of labelled examples
to complete a similar task. This has lead to research in one-shot
learning [1–3], where the task is acquisition of novel concepts from
only one or a few labelled examples.

One-shot learning studies have focused on problems where novel
concepts in a single modality are observed along with class labels.
This is different from the example above: the child directly associates
the spoken word “lego” to the visual signal of lego without any
class labels, and can generalise this single example to other visual
or spoken instances of lego. This motivates multimodal one-shot
learning, a new task we formalise in this paper. Consider an agent
such as a household robot that is shown a single visual example of
milk, eggs, butter and a mug, novel objects each paired with a spoken
description. During subsequent use, a speech query is given and the
agent needs to identify which visual object the query refers to. This
setting is relevant in modelling infant language acquisition, where
models can be used to test particular cognitive hypotheses [4]; low-
resource speech processing, where new concepts could be taught in
an arbitrary language [5]; and robotics, where novel concepts must be
acquired online from co-occurring multimodal sensory inputs [6–10].

Here we specifically consider multimodal one-shot learning on
a dataset of isolated spoken digits paired with images. A model is
shown a set of speech-image pairs, one for each of the 11 digit classes.

We refer to this set, which is acquired before the model is applied, as
the support set. During testing, the model is shown a new instance
of a spoken digit and a new set of test images, called the matching
set. It then needs to predict which test image in the matching set
corresponds to the spoken input query. We tackle this problem by
extending existing unimodal one-shot models to the multimodal case.

To do cross-modal test-time matching, we propose a framework
relying on unimodal comparisons through the support set. Given an
input speech query, we find the closest speech segment in the support
set. We then take its paired support image, and find its closest image
in the matching set. This image is predicted as the match. Metrics for
speech-speech and image-image comparisons need to be defined, and
this is where we take advantage of the large body of work in unimodal
one-shot learning to investigate several options. One approach is to
use labelled background training data not containing any of the classes
under consideration. Using such speech and image background data,
we specifically investigate Siamese neural networks [11, 12] as a way
to explicitly train unimodal distance metrics. We also incorporate
recently proposed advances [3, 13–18] for such networks.

We compare novel Siamese convolutional neural network (CNN)
architectures to traditional direct feature matching models. We show
that a single CNN with a triplet loss [13, 14] and online semi-hard
mining [17] is more efficient and results in higher accuracies than the
offline variant which uses shared weight networks, both approaches
outperforming the direct feature matching baseline. Our main contri-
bution is the formal definition of multimodal one-shot learning. We
also develop a one-shot cross-modal matching dataset that may be
used to benchmark other approaches. As an intermediate evaluation
in our work, we also consider unimodal one-shot speech classifica-
tion. Apart from [19], our paper is to our knowledge the only work
that considers one-shot unimodal learning of spoken language. We
present several new models and baselines not considered in [19].

2. RELATED WORK

Most one-shot learning studies have been primarily interested in
image classification. Apart from Siamese models [3], which we
focus on here, other metric learning based approaches have been
proposed [20–22] which build on advances in attention and memory
mechanisms for neural networks. Along with the more recent meta-
learning approaches [23–25], these have each produced improvements
in one-shot image classification. However, only small improvements
have been made over Siamese networks: Finn et al. [24] achieved
state-of-the-art results with only 1.4% increase in accuracy over
Siamese networks for a 5-way one-shot learning task.

A limited number of studies have considered other domains, such
as robotics [6, 26], video [27], and gesture recognition [8, 28]. Lake
et al. [19] investigated one-shot speech learning using a generative
hierarchical hidden Markov model to recognise novel words from
learned primitives. This Bayesian model is based on prior work [29]
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Fig. 1. (a) Unimodal one-shot speech learning and classification and (b) multimodal one-shot learning and matching of speech and images.

in vision and has displayed strong results, although on visual tasks the
Siamese model seems superior [3]. Our work is also related to learn-
ing multimodal representations from paired images and unlabelled
speech [30–34]. We extend this research to the one-shot domain.

3. MULTIMODAL ONE-SHOT LEARNING

The goal of unimodal one-shot learning is to build a model that can
acquire new concepts after observing only a single labelled example
from each class. This model must then successfully generalise to
new instances of those concepts in tasks such as classification or
regression. Formally, a model is shown a support set S, containing
one labelled example for each of L classes. From this set, it must
learn a classifier CS for unseen queries x̂. This is illustrated in
Figure 1(a) for five-way one-shot speech classification. In this case
the support set S contains spoken utterances along with hard textual
labels. The model uses this information to classify the spoken test
query “two” as the concept label two. Note that the test-time query
does not occur in the support set itself—it is an unseen instance of a
class occurring in the support set.

We now modify this scheme to fit multimodal one-shot learn-
ing. Instead of a labelled unimodal support set, we are now given
features in multiple modalities with the only supervisory signal be-
ing that these features co-occur. In our case we consider speech
and images as the two modalities, although this may be applied to
any source of paired multi-sensory information. Formally, in an
L-way one-shot problem we are given a multimodal support set

S = {(x(i)
a ,x

(i)
v )}Li=1, where each spoken caption x

(i)
a ∈ A (audio

space) is paired with an image x
(i)
v ∈ V (vision space). During test-

time, the modal is presented with a test query in one modality, and
asked to determine the matching item in a test (or matching) set in the
other modality. This is similar to the information retrieval task used
by [32] to evaluate a multimodal network. Formally, we match query
x̂a in one modality (speech) to a matching set Mv = {(x̂v)}Ni=1 in
the other modality (images) according to some metric DS(x̂a, x̂v)
learned from the support set S. Neither the query x̂a or the items in
the match set Mv occur exactly in the support set S . We refer to this
task as one-shot cross-modal matching. It is illustrated in Figure 1(b),
where the spoken query “two” is most similar to the image of a two
in the matching set according to the model trained on the support set.

One-shot learning can be generalised to K-shot learning, where,
in the unimodal case, a model is shown a support set containing L
novel classes and K examples per class. In multimodal L-way K-

shot learning, the support set S = {(x(i)
a ,x

(i)
v )}L×K

i=1 consists of K
speech-image example pairs for each of the L classes. This would
occur, for instance, when a user teaches a robot speech-image corre-
spondences by presenting it with multiple paired examples per class.

4. MULTIMODAL ONE-SHOT MODELLING

We now turn to the general framework we use to perform multimodal
one-shot learning. Assume we have a method or model that can
measure similarity within a modality. One-shot cross-modal matching
is then accomplished by first comparing a query to all the items
in the support set in the query modality (e.g. speech). The most
similar (speech-image) support-set pair is retrieved. Finally, the
retrieved support-set instance is used to determine the closest item in
the matching set, based on comparisons in the matching-set modality
(e.g. images). This approach thus defines a metric DS as a mapping
A → V which can match speech to images by unimodal comparisons
through the multimodal support set S. As a concrete example, in
Figure 1(b) the speech query in (b)-ii is compared to all the support
set speech segments in (b)-i, and the closest speech item determined.
The corresponding support-set image of this item is then taken and
compared to all the images in the matching set Mv in (b)-ii. The
closest image is predicted as the match.

Several different methods or models can be used to determine
within-modality similarity: we compare directly using the raw image
pixels and extracted speech features (§4.1) to feature embeddings
learned by neural network functions (§4.2 and §4.3).

4.1. Direct feature matching

Our first approach consists of directly using image pixels and acoustic
speech features. We specifically use cosine similarity between image
pixels and dynamic time warping (DTW) [35] to measure similar-
ity between speech segments. This is essentially our direct nearest
neighbour baseline, as used in unimodal one-shot studies [3, 19, 20].

4.2. Neural network classifiers

Another method, also used in unimodal one-shot learning, is to train
a supervised model on a large background dataset. This background
dataset should not contain instances of the target one-shot classes.
The idea is that features learned by such a model would still be useful
for determining similarity on classes which it has not seen [20]. I.e.,
it follows the transfer learning principle: first train a classifier on a
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large labelled dataset, and then apply the learned representations to
new tasks which are related but have too few training instances [36].

Here we specifically train both a feedforward (FFNN) and a con-
volutional neural network (CNN) classifier. We train such networks
separately for both the spoken and visual modalities. We then take
representations from the final hidden layer (before the softmax out-
put) and apply these as the learned feature embeddings for nearest
neighbour matching using cosine similarity.

4.3. Siamese neural networks

Networks can also be trained on background data to directly measure
similarity between inputs instead of predicting a class label. Siamese
neural networks have been used for this task [11, 12]. Two identical
neural network functions with shared parameters (hence “Siamese”)
are trained to map input features to a target embedding space where
the “semantic” relationship between input pairs may be captured
based on proximity: inputs of the same type should ideally be mapped
to similar embeddings, while inputs that are unrelated should be far
apart. Early approaches [3, 11, 12] took in pairs of training examples
and either maximised or minimised a distance based on whether
the inputs were of same or different types. Recent studies [13–17]
have argued that the relative rather than absolute distance between
embeddings are meaningful, and we also follow this approach here.

Concretely, let xa and xp be inputs of the same class, while xa

and xn are of different classes. The intuition is that we want to push
the so-called anchor example xa and positive example xp together
such that the distance between them is smaller (by some specified mar-
gin) than the distance between the anchor xa and negative example
xn. Models using this approach are sometimes referred to as triplet
models, since there are three tied networks for inputs (xa,xp,xn).
We apply this approach where we learn embedding function f(·) as
the final fully-connected layer of a CNN. We train models with a
hinge loss for triplet pairs [13–15, 17], defined as:

l(xa,xp,xn) = max{0,m+D(xa,xp)−D(xa,xn)} (1)

where D(x1,x2) = ||f(x1)−f(x2)||22 is the squared Euclidean dis-
tance and m is the margin between the pairs (xa,xp) and (xa,xn).

One problem with this approach is that the number of triplet pairs
grows cubically with the dataset, and it may become infeasible to
fit all possible triplets in memory. We follow the online semi-hard
mining scheme [17], where all possible anchor-positive pairs in a
mini-batch are used. For each positive pair, the most difficult negative
example xn satisfying D(xa,xp) < D(xa,xn) is then used, except
if there is no such negative example in which case the one with
the largest distance is used. According to [17], although it might
seem natural to simply choose the hardest negative example in the
mini-batch, this constraint is required for stability.

We also incorporate another recent advance, specifically to im-
prove efficience: we simplify the three shared-parameter networks
with a single neural network that embeds a mini-batch of examples
and then samples triplet pairs online from these embeddings. This is
done with an efficient implementation of pairwise distances, similar
to [37]. We build this single network model with semi-hard triplet
mining, and refer to it as Siamese CNN (online). We also compare to
using three shared-parameter networks with the same CNN architec-
ture, where we generate triplets offline at each training step from the
current mini-batch. We refer to this model as Siamese CNN (offline)
in our experiments. Similar to our neural network classifier base-
lines above, these models are trained on triplets from a large disjoint
labelled dataset which do not contain the target one-shot classes.

5. EXPERIMENTS

5.1. Experimental setup

We perform multimodal one-shot learning on a simple benchmark
dataset: learning from examples of spoken digits paired with hand-
written digit images. For speech we use the TIDigits corpus which
contains spoken digit sequences from 326 different speakers [38],
and for images we use the MNIST handwritten digits dataset which
contains 28×28 grayscale images [39]. We use utterances from men,
women, and children, and split digit sequences into isolated digits
using forced alignments. Speech is parametrised as Mel-frequency
cepstral coefficients with first and second order derivatives. We centre
zero-pad or crop speech segments to 120 frames. Image pixels are
normalised to the range [0, 1]. Each isolated spoken digit is then
paired with an image of the same type. Unlike previous work which
used the same dataset combination for learning multimodal repre-
sentations [32, 33], we treat utterances labelled “oh” and “zero” as
separate classes, resulting in 11 class labels.

Neural network models are trained on large labelled background
datasets to obtain feature representations which may be applied to
the one-shot problem on classes not occurring in the background
data. We use the speech corpus of [40] and the Omniglot handwritten
character dataset [41] as background data for the within-modality
speech and vision models, respectively. Utterances in the audio
corpus are split into isolated words using forced alignments, and
features are extracted using the same process as for TIDigits. We
ensure that none of the target digit classes occur in this audio data.
Images in the Omniglot dataset are downsampled to 28×28 and pixel
values are normalised and inverted in order to match MNIST. Again,
none of the Omniglot classes overlap with digit classes.

Models are implemented in TensorFlow and trained using the
Adam optimiser [42] with a learning rate of 10−3 which is step
decayed by 0.96 at each new epoch. A batch size of 200 is used for the
neural network classifiers (§4.2). For the Siamese models (§4.3) we
follow an alternate approach where mini-batches are formed using the
batch all strategy proposed in [18]. Specifically, we randomly sample
p classes and k examples per class to produce balanced batches of
pk examples each. This results in pk(pk − k)(k − 1) valid triplet
combinations, maximising the number of triplets within a mini-batch.
Our Siamese CNN (online) variant is capable of large pk combinations
due to the efficient single network implementation and online triplet
sampling scheme. We choose p = 128 and k = 8 (total of 7 282 688
triplets per mini-batch). For Siamese CNN (offline), trained in the
standard way where three networks are explicitly tied [14, 16, 17], we
use p = 32 and k = 2, giving 3 968 triplets per mini-batch which
is the largest batch we could fit on a single NVidia Titan Xp GPU.
Models are trained for a maximum of 100 epochs using early stopping
based on one-shot validation error on the background data.

We also tune all models using unimodal one-shot learning on
the validation sets of the background data. This gave the following
architecture for speech CNNs: 39×9 convolution with 128 filters;
ReLU; 1×3 max pooling; 1×10 convolution with 128 filters; ReLU;
1×28 max pooling over remaining units; 2048-unit fully-connected;
ReLU. Vision CNNs have the architecture: 3×3 convolution with
32 filters; ReLU; 2×2 max pooling; 3×3 convolution with 64 filters;
ReLU; 2×2 max pooling; 3×3 convolution with 128 filters; ReLU;
2048-unit fully-connected; ReLU; 1024-unit fully-connected. The
speech and vision FFNNs have the same structure: 3 fully-connected
layers with 512 units each. For the classifier networks (§4.2), the
speech networks have an additional 5534-unit softmax output layer
(the number of word types in the background data), while vision
networks have a 964-unit softmax (background image classes).
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Table 1. 11-way one-shot and five-shot speech classification results
on isolated spoken digits.

Model Train 11-way Accuracy
time one-shot five-shot

DTW – 67.99% ± 0.29 91.30% ± 0.20
FFNN Classifier 13.1m 71.39% ± 0.81 89.49% ± 0.45
CNN Classifier 60.6m 82.07% ± 0.92 93.58% ± 0.98

Siamese CNN (offline) 70.5m 89.40% ± 0.54 95.12% ± 0.37
Siamese CNN (online) 15.0m 92.85% ± 0.38 97.65% ± 0.22

We evaluate our models on the one-shot tasks according to the
accuracy averaged over 400 test episodes. Each episode randomly
samples a support set of isolated spoken digits paired with images
for each of the L =11 classes (the digits “oh” to “nine” and “zero”).
For testing, a matching set is sampled, containing 10 digit images
not in the support set. Finally, a random query is sampled, also
not in the support set. The query then needs to be matched to the
correct item in the matching set. The matching set only contains 10
items since there are 10 unique handwritten digit classes. Within an
episode, 10 different query instances are also sampled while keeping
the support and matching sets fixed. Results are averaged over 10
models trained with different seeds and we report average accuracies
with 95% confidence intervals.

5.2. One-shot speech classification

We first consider unimodal one-shot speech classification, which has
so far only been considered in [19]. Table 1 shows one-shot and
five-shot (see end of §3) speech classification results. Average train-
ing time is also shown; all models trained within a few seconds of
the average. Siamese models outperform the direct feature matching
baseline using DTW, as well as the neural network classifiers. The
Siamese CNN (online) model achieves best overall performance, out-
performing the Siamese CNN (offline) variant, while training almost
five times faster. The single network with online semi-hard mining
is thus more efficient and accurate than the three shared-network
approach. None of these Siamese models were considered in [19].

5.3. One-shot cross-modal matching of speech to images

We now turn to multimodal one-shot learning. Table 2 shows results
for one- and five-shot cross-modal matching of speech to images.
Here the Siamese models are again stronger overall compared to
direct feature matching or transferring features from neural network
classifiers. The Siamese CNN (online) model achieves our best results,
with double the accuracy of direct feature matching using pixel-
distance over images and DTW over speech. The Siamese CNN
(offline) model follows closely, but is again slower to train.

While the Siamese models achieve promising results compared
to the baselines here, our best one-shot multimodal accuracy is lower
than the accuracy in unimodal one-shot speech classification (Table 1).
Our best unimodal one-shot vision model achieves an accuracy of
74% (comparing favourably to the best result of 72% reported in [20]).
The multimodal one-shot results here are therefore worse than both
the individual unimodal matching results. This is due to compounding
errors in our retrieval framework (§4): errors in comparisons with the
support set affects comparisons in the subsequent matching step. This
suggests investigating an end-to-end architecture which can directly
compare test queries in one modality to the matching set items in the
other modality, without doing explicit comparisons to the support set.

Table 2. 11-way one- and five-shot cross-modal matching of spoken
and visual digits.

Model 11-way Accuracy
one-shot five-shot

DTW + Pixels 34.92% ± 0.42 44.46% ± 0.69
FFNN Classifier 36.49% ± 0.41 44.29% ± 0.56
CNN Classifier 56.47% ± 0.76 63.97% ± 0.91

Siamese CNN (offline) 67.41% ± 0.56 70.92% ± 0.36
Siamese CNN (online) 70.12% ± 0.68 73.53% ± 0.52

Table 3. Speaker invariance tests for 11-way one-shot cross-modal
speech-image digit matching. All support set items are from the same
speaker as the query, except for the item actually matching the query.

Model 11-way Accuracy
one-shot

DTW + Pixels 28.00% ± 1.86
FFNN Classifier 34.95% ± 2.28
CNN Classifier 53.71% ± 2.20

Siamese CNN (offline) 66.70% ± 0.92
Siamese CNN (online) 69.73% ± 1.04

5.4. Invariance to speakers

In all the experiments above we chose spoken queries such that the
speaker uttering the query does not appear in the support set. This is
representative of an extreme case where one user teaches an agent
and another then uses the system. An even more extreme case could
occur: the matching item in the support set could be the only item
not coming from the query speaker. This is problematic since the
same word uttered by different speakers might be acoustically more
different than different words uttered by the same speaker. We test
this worst-case setting: we sample a support set where all spoken
digits are from the same speaker as the query, except for the one
instance matching the query word which is produced by a different
speaker. Cross-modal matching results for this case are shown in
Table 3. All of the models experience a drop in accuracy compared
to the results in Table 2 (first column). This decrease is smallest
for the Siamese models, with the DTW + Pixels approach dropping
most. This indicates that the neural models learn features from the
background data which are more independent of speaker and can
generalise to other speakers, whereas DTW over speech is affected
more by speaker mismatch.

6. CONCLUSION

We introduced and formalised multimodal one-shot learning, specif-
ically for learning from spoken and visual representations of digits.
Observing just one paired example from each class, a model is asked
to pick the correct digit image for an unseen spoken query. We pro-
posed and evaluated several baseline and more advanced models.
Although our Siamese convolutional approach outperforms a raw-
feature nearest neighbour model, the performance in the cross-modal
case is still worse than in unimodal one-shot learning. We argued
that this is due to a compounding of errors in our framework, which
relies on successive unimodal comparisons. In future work, we will
therefore explore a method that can directly match one modality to
another, particularly looking into recent meta-learning approaches.

We thank NVIDIA for sponsoring a Titan Xp GPU for this work.
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