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ABSTRACT

Nonnegative Tucker Decomposition (NTD) is one of the most
popular technique for feature extraction and representation
from nonnegative tensor data with preserving internal struc-
ture information. From the perspective of geometry, high-
dimensional data are usually drawn in low-dimensional sub-
manifold of the ambient space. In this paper, we propose a
novel Graph reguralized Nonnegative Tucker Decomposition
(GNTD) method which is able to extract the low-dimensional
parts-based representation and preserve the geometrical in-
formation simultaneously from high-dimensional tensor data.
We also present an effictive algorithm to solve the proposed
GNTD model. Experimental results demonstrate the effec-
tiveness and high efficiency of the proposed GNTD method.

Index Terms— Mannifold learning, nonnegative tensor,
Tucker decomposition, dimensionality reduction, clustering.

1. INTRODUCTION

A tensor can be viewed as a multi-index numerical array,
where the order of a tensor denotes the number of its di-
mension [1]. With the rapid development of data acquisition
technologies, the data are always representated by tensors,
e.g., multichannel electroencephalography (EEG) tensor data,
video volume tensor data, Functional Magnetic Resonance
Imaging (fMRI) tensor data. Very often, tensor data are first
vectorized, and then low rank approximation methods, such
as, singular value decomposition (SVD), principle component
analysis (PCA), nonnegative matrix factorization (NMF) etc.,
are implemented for extracting their low-dimensional repre-
sentation.

However, vectorization of tensor data often destroys in-
ternal structure of data. For this reason, many tensor de-
compoistion methods have been developed to study the low-
dimensional representation in tensor domain. Tucker decom-
position is one of the most widely used methods for high-
order tensor analysis [2]. It is interesing to note that most of
the tensor data in applications are nonnegative because they
are recorded from a variety of physical signals [3]. Thus,
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Nonnegative Tucker Decomposition (NTD) has been a pop-
ular method to analyze the nonnegative tensor data. Partic-
ularly, with nonnegativity constraints, NTD could not only
extract the parts-based reprentation like NMF, but also im-
prove the uniqueness of Tucker decomposition [4]. How-
ever, the underlying manifold structure of tensor data have
not been exploited by existing NTD methods. Previous works
have demonstrated that this geometrical information can sig-
nificantly improve the performance in data representation and
clustering tasks [5] [6] [7] [8].

Recently, several works have been introduced to incopo-
rate the geometrical information into tensor decomposition
[9] [10] [11] [3]. Wang et al. [9] studied a neighborhood
preserving nonnegative tensor factorization method for im-
age representation by incoporating locally linear embed-
ding regularization into Nonnegative Parallel Factor Analy-
sis (NPARAFAC). Wang et al. [10] proposed a Laplacian
Regularized Nonnegative Tensor Decomposition (LRNTD)
method for image clustering and representation by consider-
ing the manifold structure of image space while performing
NPAPAFAC. However, NPAPAFAC is not as efficient as NTD
in data representation because it usually requires more com-
ponent vectors for each mode than NTD [12]. Jiang et al. [11]
developed a Graph-Laplacian Tucker Decomposition (GLTD)
to explore attributes and similarity information without con-
sidering parts-based representation. Li et al. [3] introduced
a Manifold Regularization Nonnegative Tucker Decomposti-
tion (MR-NTD) by incorporating the manifold regularization
into core tensor while performing Population Nonnegative
Tucker Decomposition (PNTD) [4]. However, the number
of entries in core tensor will increase exponentially as tensor
dimension increase, which fails to obtain low-dimensional
representation of tensor data.

Therefore, in order to simultaneously preserve the in-
ternal multilinear structure and geometrical information
while acquiring the low-dimensional parts-based representa-
tion, Graph regularized Nonnegative Tucker Decomposition
(GNTD) is proposed by incoporating the graph regulariza-
tion and nonnegative constraints into Tucker decomposition.
Also, we develop an effective algorithm to solve the proposed
model. Our experimental results demonstrate that the pro-
posed GNTD could significantly improve the performance in
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clustering analysis.
The rest of this paper is organized as follows. In Section

2, we review NMF and NTD briefly. In Section 3, the GNTD
method is proposed. Finally, experiments for clustering tasks
are presented in Section 4, and conclusions are drawn in Sec-
tion 5.

2. NONNEGATIVE MATRIX FACTORIZATION AND
NONNEGATIVE TUCKER DECOMPOSITION

Given Y ∈ RI1×I2×···×IN
+ be an N th-order nonnegative ten-

sor data set containing the collection of (N − 1)th-order ten-
sor data X ∈ RI1×I2×···×IN−1

+ . Nonnegative Tucker Decom-
position (NTD) could be formulated as a nonnegative core
tensor G ∈ Rr1×r2×···×rN

+ multiplies N nonnegative factors
A(n) ∈ RIn×rn

+ , (n = 1, 2, · · · , N) in each modality [12].
The aim of NTD is to find N nonnegative factor matrices and
the nonnegative core tensor by minimizing

min
G,A(n),n∈In

∥∥∥Y− G×n∈IN A(n)
∥∥∥2
F
,

s.t. G ≥ 0,A(n) ≥ 0, n ∈ In,
(1)

where In = {1, 2, · · · , N} is a set of positive integers no
larger than N . Equivalently, NTD could be represented as a
matrix form:

min
G(N),A(N),H

∥∥∥Y(N) −A(N)G(N)H
T
N

∥∥∥2
F
,

s.t. G(N) ≥ 0,A(N) ≥ 0,H ≥ 0,

(2)

where Y(N) ∈ RIN×I1I2···IN−1

+ and G(N) are the mode-N
unfolding matrices of tensor Y and tensor G [13] respec-
tively, and HN = A(N−1) ⊗A(N−2) · · · ⊗A(1), ⊗ denotes
Kronecker product. In mode-N unfolding case, A(N) is the
coefficient matrix corresponding to the basic factor matrix
G(N)H

T
N .

Alternatively, NTD could be viewed as a special case of
NMF. An intuitive difference between (2) and NMF is that the
basic factor matrix in the former will further perform NTD
from mode one to mode (N − 1), which not only yield mul-
tilinear representation but also improve the sparsity of basic
vectors [4].

3. GRAPH REGULARIZED NONNEGATIVE
TUCKER DECOMPOSITION

In the following, we present the way to construct a graph of
tensor data, and then incoporate the graph regularization into
regular NTD. Finally we give an effective algorithm to solve
GNTD problem.

3.1. Graph Construction

Many research works have demonstrated that high-dimensional
data are usually located in low-dimensional submanifold of
the ambient space, and this underlying geometrical infor-
mation of data could be obtained by modeling a neigh-
bor graph [3] [5] [6] [7] [8]. Given a total of IN tensors
Xi ∈ RI1×I2×···×IN−1

+ (i = 1, · · · , IN ) of order (N − 1),
we encode their geometrical information by connecting each
tensor subjcet with its p-nearest neighbors. We construct a
relationship matrix W ∈ RIN×IN to denote their connections
in the graph:

wij =

{
1, if Xi ∈ Np(Xj), and Xj ∈ Np(Xi)

0, otherwise
(3)

whereNp(Xi) represents the set of p samples closest to Xi in
the graph. There are many techniques to measure the distance
between two tensors. To simplfy the problem, we use the
Frobenius Norm Distance in this case.

3.2. GNTD Model

As discussed in the Section 2, NTD could be considered as
a special case of NMF with sparser and multilinear basics
vectors. It is resonable to incoperate the graph regularization
into mode-N low-dimensional representation A(N). There-
fore, GNTD is obtained by minimizing the following objec-
tive function:

min
G,A(n),n∈In

OGNTD =
1

2

∥∥∥Y− G×n∈IN A(n)
∥∥∥2

+
λ

2
Tr(A(N)T LA(N)),

s.t. G ≥ 0,A(n) ≥ 0, n ∈ In.

(4)

where Tr(·) represents the trace of a matrix, λ is a nonnega-
tive parameter for balancing the importance of a graph regu-
larization term and reconstruction error term, L = D−W is
Laplacian matrix and Djj =

∑
k Wjk.

We use the Lagrange multiplier method, and consider the
mode-n unfolding form, and then define the following La-
grange function inherit from (4):

LGNTD =
1

2

∥∥∥∥∥∥Y(n) −A(n)G(n)(
⊗
p 6=n

A(p)T )

∥∥∥∥∥∥
2

+
λ

2
Tr(A(N)T LA(N)) + Tr(ΦnGT

(n)) +

N∑
l=1

Tr(ΨlA
(l)T ),

(5)

where
⊗

p 6=n A(p)T = A(N)T ⊗· · ·⊗A(p+1)T ⊗A(p−1)T ⊗
· · · ⊗A(1)T . Ψl and Φn represent the Lagrange multipliers
matrices of A(l) and G(n), respectively.
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3.3. Optimization Algorithm

To solve (5), we adopt the block coordinate descent frame-
work, i.e., update core tensor or one factor matrix each time
while fixing the others.

3.3.1. Solutions of Factor Matrices A(n), n 6= N

The gradient of LGNTD with respect to A(n), n 6= N is

∂LGNTD

∂A(n)
=A(n)G(n)(

⊗
p 6=n

A(p)T A(p))GT
(n)

−Y(n)(
⊗
p 6=n

A(p))GT
(n) + Ψn.

(6)

By considering the Karush-Kuhn-Tucker (KKT) condition,
we have ∂LGNTD

∂A(n) = 0 and ψn(j,k)a
(n)
(j,k) = 0, where ψn(j,k)

and a(n)(j,k) denote the (j, k)-th entry in Ψn and A(n), thereby
leading to the following equation:A(n)G(n)(

⊗
p 6=n

A(p)T A(p))GT
(n) −Y(n)(

⊗
p 6=n

A(p))GT
(n)


j,k

· a(n)(j,k) = 0.

(7)

Therefore, we obtain the following update rule:

A(n) ← A(n) �
P+(Y(n)(

⊗
p 6=n A(p))GT

(n))

A(n)G(n)(
⊗

p 6=n A(p)T A(p))GT
(n)

, (8)

where P+(ξ) = max(0, ξ), � is the element-wise product.

3.3.2. Solutions of Factor Matrix A(N)

The gradient of LGNTD with respect to A(N) is

∂LGNTD

∂A(N)
= A(N)G(N)(

⊗
p 6=N

A(p)T A(p))GT
(N)

−Y(N)(
⊗
p 6=N

A(p))GT
N + λLA(N) + ΨN .

(9)

Similarly to the solutions of A(n), we consider the KKT con-
dition and obtain the following update rule:

A(N) ← A(N)�
P+(Y(N)(

⊗
p 6=N A(p))GT

(N) + λWA(N))

A(N)G(N)(
⊗

p 6=N A(p)T A(p))GT
(N) + λDA(N)

.
(10)

3.3.3. Solution of Core Tensor G

We consider the vectorization form of (5), and rewrite the ob-
jective function as

CGNTD =
1

2
‖vec(Y)− Fvec(G)‖2 +

N∑
l=1

Tr(ΨnA(l)T )

+ vec(G)T vec(Ω) +
λ

2
Tr(A(N)T LA(N)),

(11)

where F = A(1) ⊗A(2) · · · ⊗A(N) ∈ RI1I2···IN×r1r2···rN
+ ,

vec(Ω) represents the Lagrange multipliers of vec(G). The
gradient of CGNTD with respect to vec(G) is

∂CGNTD

vec(G)
= FTFvec(G)− Fvec(Y) + vec(Ω). (12)

Similarly to the solutions of A(n), we consider the KKT con-
dition, and obtain the following update rule:

vec(G)← vec(G)� P+(Fvec(G))

FTFvec(G)
(13)

4. EXPERIMENTS ANALYSIS

In this section, we compare the performance of GNTD with
that of other methods, on the task of clustering images in two
publicly available real-world data sets.

4.1. Data sets Description

• COIL-100 1: The first data set we used is the Columbia
Object Image Library (COIL-100) data set. COIL-100
consists of 7200 color images of size 128 × 128 for
100 objects, each of which has 72 images taken from
varying poses. In our experiments, each color image
was resized into 64× 64× 3.

• AT&T ORL 2: The AT&T ORL data set consists of 400
grayscale 112× 92 face images of 40 distinct subjects.
Each person has 10 different images under different
time with varying lighting, facial expressions, and fa-
cial details. In our experiment, all of the images in
AT&T ORL were resized into 32× 27.

The images of COIL100 and AT&T ORL form two tensor of
64× 64× 3× 72k and 32× 27× 10k (where k is the number
of clusters).

4.2. Compared Methods

In order to verify the performance of our GNTD method,
we have maken comparisions against the Canonical K-means
clustering (K-means), NMF [2], GNMF [8] and NTD [4].

1Available at www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
2Available at www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Table 1: Clustering performance on COIL-100 data set

k Accuracy(%) Normalized Mutual Information (%)
Kmeans NMF GNMF NTD GNTD Kmeans NMF GNMF NTD GNTD

4 92.0±9.7 89.7±11.9 98.4±5.0 89.9±11.5 99.6±1.2 88.8±11.7 85.6±15.2 98.0±4.4 85.7±15.1 99.3±2.4
6 90.4±8.1 87.3±8.8 96.3±6.8 86.3±9.3 98.0±4.6 88.7±7.9 84.8±9.2 96.7±5.7 84.0±9.4 97.8±4.1
8 87.7±6.9 83.7±5.7 94.4±7.0 85.0±6.5 99.3±1.2 88.8±5.4 86.8±4.8 96.9±3.5 87.1±5.1 99.0±1.8
10 82.5±7.5 80.9±6.8 92.0±6.5 81.3±7.4 95.3±6.6 87.0±6.1 85.2±6.0 96.9±2.5 85.4±6.0 97.5±3.1
12 81.8±8.8 84.4±7.5 88.8±5.0 81.1±6.7 92.8±5.2 87.4±4.9 86.9±4.8 95.2±2.3 85.9±4.7 96.0±2.6
14 78.7±7.7 76.1±7.1 86.0±5.5 77.3±8.0 86.5±5.5 85.3±5.6 83.3±5.8 94.9±2.4 83.4±5.9 94.7±2.3
16 80.3±5.6 80.0±5.5 85.9±6.1 78.2±6.1 90.0±4.8 87.6±3.8 86.5±3.9 94.9±2.1 85.6±4.0 96.2±1.9
18 75.7±7.9 75.0±6.8 85.4±5.0 75.7±6.1 87.4±5.4 85.1±4.9 84.2±4.9 94.4±1.9 84.0±5.4 94.5±2.2
20 75.1±4.7 74.7±5.5 82.7±4.7 74.5±6.2 85.8±4.4 85.0±2.8 83.6±3.9 94.1±1.6 83.0±3.9 94.5±1.6
Avg 82.6 81.3 90.0 81.0 92.7 87.1 85.2 95.8 84.9 96.6

Table 2: Clustering performance on AT&T ORL data set

k Accuracy(%) Normalized Mutual Information (%)
Kmeans NMF GNMF NTD GNTD Kmeans NMF GNMF NTD GNTD

5 89.4±10.6 89.4±11.0 92.9±8.6 89.4±10.6 94.6±7.5 88.3±10.6 89.0±9.1 92.3±6.7 88.3±10.6 93.5±6.7
10 84.6±7.2 82.5±8.8 87.5±8.2 84.8±6.6 88.3±6.3 90.0±4.2 87.2±5.6 91.3±4.0 88.5±3.6 91.5±3.6
15 80.1±6.0 82.5±6.5 84.6±5.1 79.7±7.5 84.7±5.2 88.6±2.3 89.0±4.4 90.4±4.0 87.2±4.3 90.6±3.6
20 75.3±4.9 74.9±4.3 78.9±4.0 75.2±5.2 79.9±5.2 86.8±2.7 86.2±2.6 88.9±2.0 85.9±2.9 88.8±2.9
25 71.0±3.8 71.9±3.9 75.4±3.5 69.7±4.7 76.3±3.5 85.3±2.2 85.6±2.6 87.5±1.5 83.0±2.6 88.0±2.3
30 68.1±3.4 71.4±3.8 75.4±2.5 68.4±4.2 75.7±3.0 84.8±1.6 85.4±1.8 88.3±1.1 83.4±2.6 88.1±1.1
35 67.7±3.4 68.9±2.9 74.2±2.8 68.4±3.7 74.0±2.6 84.7±1.4 85.2±1.7 87.9±1.0 83.3±1.8 88.0±0.9
40 64.7 67.8 73.4 65.5 73.4 83.9 84.2 87.4 82.5 87.9
Avg 75.1 76.2 80.3 75.1 80.9 86.6 86.5 89.3 85.3 89.6

4.3. Experiments Results

4.3.1. Parameter Selections

For GNMF and GNTD, we construct the graph Laplacian us-
ing p-nearest neighbors in which the neighborhood size p is
set to 5. The graph regularization parameter λ is searched
from the grid (0.1, 1, 10, 102, 103, 104, 105). For NTD and
GNTD, the size of core tensor are searched from 1

4In to 3
4In.

4.3.2. Clustering Results

Table 1 and Table 2 demonstrate the clustering results with
respect to the COIL-100 and AT&T ORL data sets. The two
metrics used in our experiments were the accuracy (AC) and
the normalized mutual information metric (NMI), detailed
definition could be found in [14]. Implementation details are
as follows:

1) For each k, we selected a total of k categories from the
data sets randomly.

2) We implemented GNTD and compared methods to the
selected k categories samples, and obtained their low-
dimensional factor matrices.

3) We applied K-means to the factor matrix and repeated 50
times to mitigate the local convergence issue with different
initial points.

We repeat the above three steps 20 times, and recorded the
mean and standard error of performance. It could be observed
that, with geometrical information and internal structure pre-
served, GNTD yield better clustering performance compare
to NTD and GNMF.

5. CONCLUSIONS

In this paper, we propose a novel Graph regularized Nonneg-
ative Tucker Decomposition (GNTD) method for tensor data
representation. GNTD models tensor data in their original
domain, thus their internal structure is preserved. Meanwhile,
GNTD explicitly takes into account the underlying manifold
structure of tensor data. Consequenty, GNTD is able to ex-
tract the parts-based representation and preserve the geomet-
rical information from high-dimensional tensor data. Exper-
imental results on the publicly available real-world data sets
show that GNTD presents more competent representation and
achieves better clustering performance.

6. ACKNOWLEDGEMENTS

This work was partly supported by the National Natural Sci-
ence Foundation of China 61673124.

8616



7. REFERENCES

[1] Andrzej Cichocki, Danilo Mandic, Lieven De Lath-
auwer, Guoxu Zhou, Qibin Zhao, Cesar Caiafa, and
Huy Anh Phan, “Tensor decompositions for signal pro-
cessing applications: From two-way to multiway com-
ponent analysis,” IEEE Signal Processing Magazine,
vol. 32, no. 2, pp. 145–163, 2015.

[2] Guoxu Zhou, Andrzej Cichocki, and Shengli Xie, “Fast
nonnegative matrix/tensor factorization based on low-
rank approximation,” IEEE Transactions on Signal Pro-
cessing, vol. 60, no. 6, pp. 2928–2940, 2012.

[3] Xutao Li, Michael K Ng, Gao Cong, Yunming Ye, and
Qingyao Wu, “Mr-ntd: manifold regularization nonneg-
ative tucker decomposition for tensor data dimension re-
duction and representation,” IEEE transactions on neu-
ral networks and learning systems, vol. 28, no. 8, pp.
1787–1800, 2017.

[4] Guoxu Zhou, Andrzej Cichocki, Qibin Zhao, and
Shengli Xie, “Efficient nonnegative tucker decomposi-
tions: Algorithms and uniqueness,” IEEE Transactions
on Image Processing, vol. 24, no. 12, pp. 4990–5003,
2015.

[5] Mikhail Belkin and Partha Niyogi, “Laplacian eigen-
maps and spectral techniques for embedding and clus-
tering,” in Advances in neural information processing
systems, 2002, pp. 585–591.

[6] Joshua B Tenenbaum, Vin De Silva, and John C Lang-
ford, “A global geometric framework for nonlinear di-
mensionality reduction,” science, vol. 290, no. 5500, pp.
2319–2323, 2000.

[7] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani,
“Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples,” Journal
of machine learning research, vol. 7, no. Nov, pp. 2399–
2434, 2006.

[8] Deng Cai, Xiaofei He, Jiawei Han, and Thomas S
Huang, “Graph regularized nonnegative matrix factor-
ization for data representation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no.
8, pp. 1548–1560, 2011.

[9] Yu-Xiong Wang, Liang-Yan Gui, and Yu-Jin Zhang,
“Neighborhood preserving non-negative tensor factor-
ization for image representation,” in Acoustics, Speech
and Signal Processing (ICASSP), 2012 IEEE Interna-
tional Conference on. IEEE, 2012, pp. 3389–3392.

[10] Can Wang, Xiaofei He, Jiajun Bu, Zhengguang Chen,
Chun Chen, and Ziyu Guan, “Image representation us-

ing laplacian regularized nonnegative tensor factoriza-
tion,” Pattern Recognition, vol. 44, no. 10-11, pp. 2516–
2526, 2011.

[11] Bo Jiang, Chris Ding, Jin Tang, and Bin Luo, “Image
representation and learning with graph-laplacian tucker
tensor decomposition,” IEEE Transactions on Cyber-
netics, 2018.

[12] Yong-Deok Kim and Seungjin Choi, “Nonnegative
tucker decomposition,” in Computer Vision and Pat-
tern Recognition, 2007. CVPR’07. IEEE Conference on.
IEEE, 2007, pp. 1–8.

[13] Tamara G Kolda and Brett W Bader, “Tensor decompo-
sitions and applications,” SIAM review, vol. 51, no. 3,
pp. 455–500, 2009.

[14] Wei Xu, Xin Liu, and Yihong Gong, “Document cluster-
ing based on non-negative matrix factorization,” in Pro-
ceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion
retrieval. ACM, 2003, pp. 267–273.

8617


		2019-03-18T11:18:26-0500
	Preflight Ticket Signature




