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ABSTRACT
Tensor train decomposition is a powerful representation for
high-order tensors, which has been successfully applied to
various machine learning tasks in recent years. In this pa-
per, we study a more generalized tensor decomposition with
a ring-structured network by employing circular multilinear
products over a sequence of lower-order core tensors. We re-
fer to such tensor decomposition as tensor ring (TR) represen-
tation. Our goal is to introduce learning algorithms including
sequential singular value decompositions and blockwise alter-
nating least squares with adaptive tensor ranks. Experimental
results demonstrate the effectiveness of the TR model and the
learning algorithms. In particular, we show that the structure
information and high-order correlations within a 2D image
can be captured efficiently by employing an appropriate ten-
sorization and TR decomposition.

Index Terms— Tensor decomposition, tensor train de-
composition, tensorization, tensor network

1. INTRODUCTION

Tensor decompositions aim to represent a higher-order (or
multi-dimensional) data as a multilinear product of several
latent factors, which attracted considerable attentions in ma-
chine learning [1, 2, 3, 4, 5] and signal processing [6] in recent
years. For a dth-order tensor of size n× · · · ×n, the standard
tensor decompositions are the canonical polyadic decompo-
sition (CPD) [7] which represents data as a sum of r rank-
one tensors with O(dnr) parameters and Tucker decompo-
sition [8, 9, 10] which represents data as a core tensor and
several factor matrices withO(dnr+ rd) parameters. In gen-
eral, CP decomposition provides a compact representation but
with difficulties in finding the optimal solution, while Tucker
decomposition is stable and flexible but its number of param-
eters scales exponentially to the tensor order.

Recently, tensor networks have emerged as a powerful
tool for analyzing very high-order tensors [11]. A power-
ful tensor network is tensor train / matrix product states
(TT/MPS) representation [12], which requires O(dnr2) pa-
rameters and avoids the curse of dimensionality through a
particular geometry of low-order contracted tensors. TT

representation has been applied to modeling weight param-
eters in deep neural networks and nonlinear kernel learn-
ing [13, 14, 15], achieving a significant compression factor
and scalability. It has also been successfully used for fea-
ture learning and classification [16]. To fully explore the
advantages of tensor algebra, the key step is to efficiently
represent real-world datasets by tensor networks, which has
not been well studied yet. In addition, there are some limita-
tions of TT, for example, i) the constraint on TT-ranks, i.e.,
r1 = rd+1 = 1, leads to the limited representation ability and
flexibility; ii) TT-ranks are bounded by the rank of a particu-
larly unfolded matrix; iii) the permutation of the data tensor
will yield an inconsistent solution, i.e., TT representations
and TT-ranks are sensitive to the order of tensor dimensions.
Hence, finding the optimal permutation remains a challenging
problem.

In this paper, we study a new structure of tensor networks,
which can be considered as a generalization of TT represen-
tations. First of all, we relax the condition over TT-ranks,
i.e., r1 = rd+1 = 1, leading to an enhanced representation
ability. Secondly, the strict ordering of multilinear products
between cores are alleviated. Third, the cores are treated
equally by making the model symmetric. To this end, we
add a new connection between the first and the last core ten-
sors, yielding a circular tensor products of a set of cores (see
Fig. 1). More specifically, we consider that each tensor el-
ement is approximated by performing a trace operation over
the sequential multilinear products of cores. Since the trace
operation ensures a scalar output, r1 = rd+1 = 1 is not nec-
essary. In addition, the cores can be circularly shifted and
treated equally due to the properties of the trace operation.
We call this model tensor ring (TR) decomposition and its
cores tensor ring (TR) representations. Several works on ten-
sor networks [17, 18, 19] have introduced the similar struc-
ture, however, learning algorithms for TR cores are not well
explored. To learn TR representations, we firstly develop a
non-iterative singular value decomposition (SVD) algorithm
that is similar to TT-SVD algorithm [12]. To find the opti-
mal TR-ranks, a block-wise alternating least squares (ALS)
algorithms is presented.

Another interesting property is that we show the intrin-
sic structure or higher-order correlations within a 2D image
can be captured more efficiently than SVD by converting a
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Fig. 1: A graphical representation of tensor ring decomposi-
tion.

2D matrix into a higher-order tensor. For example, given an
image of size I × J , we can apply an appropriate tensoriza-
tion operation (see Sec. 4.1 for details) to obtain a fourth or-
der tensor, each mode of which controls one specific scale of
resolution. To demonstrate this, Fig. 2 illustrates the effects
of noise corruption of specific tensor cores. As we can see,
the first mode corresponds to the small-scale patches, while
the 4th-mode corresponds to large-scale partitions. We will
show in Sec. 4.1 that TR model can represent images more
efficiently than the standard SVD.

2. TENSOR RING DECOMPOSITION

The TR decomposition aims to represent a high-order (or
multi-dimensional) tensor by a sequence of 3rd-order ten-
sors that are multiplied circularly. Specifically, let T be
a dth-order tensor of size n1 × n2 × · · · × nd, denoted
by T ∈ Rn1×···×nd . Then the purpose of TR represen-
tation is to decompose it into a sequence of latent tensors
Zk ∈ Rrk×nk×rk+1 , k = 1, 2, . . . , d, which can be expressed
in an element-wise form given by

T (i1, i2, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd(id)} . (1)

T (i1, i2, . . . , id) denotes the (i1, i2, . . . , id)th element of the
tensor. Zk(ik) denotes the ikth lateral slice matrix of the la-
tent tensor Zk, which is of size rk × rk+1. Note that any two
adjacent latent tensors, Zk and Zk+1, have a common di-
mension rk+1 on their corresponding modes. The last latent
tensor Zd is of size rd × nd × r1, i.e., rd+1 = r1, which en-
sures the product of these matrices is a square matrix. These
prerequisites play key roles in TR decomposition, resulting in
some important numerical properties. For simplicity, the la-
tent tensor Zk can also be called the kth-core (or node). The
minimum size of cores, rk, k = 1, 2, . . . , d, collected and de-
noted by a vector r = [r1, r2, . . . , rd]

T , are called TR-ranks.
From (1), we can observe that T (i1, i2, . . . , id) is equivalent
to the trace of a sequential product of matrices {Zk(ik)}.
Based on (1), we can also express TR decomposition by

T =

r1,...,rd∑
α1,...,αd=1

z1(α1, α2) ◦ z2(α2, α3) ◦ · · · ◦ zd(αd, α1),

where the symbol “◦” denotes the outer product of vectors and
zk(αk, αk+1) ∈ Rnk denotes the (αk, αk+1)th mode-2 fiber
of tensor Zk. By assuming n1 = · · · = nd = n and r1 =
· · · = rd = r, the number of parameters in TR representation
is O(dnr2), which is linear to the tensor order d as in TT
representation.

The TR representation can also be illustrated graphically
by a linear tensor network as shown in Fig. 1. A node repre-
sents a tensor (including a matrix and a vector) whose order
is denoted by the number of edges. The number by an edge
specifies the size of each mode (or dimension). The connec-
tion between two nodes denotes a multilinear product opera-
tor between two tensors on a specific mode. This is also called
tensor contraction, which corresponds to the summation over
the indices of that mode. It should be noted that Zd is con-
nected to Z1 by the summation over the index α1, which is
equivalent to the trace operation. For simplicity, we denote
TR decomposition by T = <(Z1,Z2, . . . ,Zd).

Property 1 (Circular dimensional permutation invariance).
Let T ∈ Rn1×n2×...×nd be a dth-order tensor and its TR de-
composition is given by T = <(Z1,Z2, . . . ,Zd). If we de-
fine
←−T k ∈ Rnk+1×···×nd×n1×···×nk as the circularly shifted

version along the dimensions of T by k, then we have
←−T k =

<(Zk+1, . . . ,Zd,Z1, . . .Zk).

Proof. It is obvious that (1) can be rewritten as

T (i1, i2, . . . , id) = Tr(Z2(i2),Z3(i3), . . . ,Zd(id),Z1(i1))

= · · · = Tr(Zd(id),Z1(i1), . . . ,Zd−1(id−1)).

Therefore, we have
←−T k = <(Zk+1, . . . ,Zd,Z1, . . . ,Zk).

3. LEARNING ALGORITHMS

In this section, we describe learning algorithms for TR de-
composition.

3.1. Sequential SVDs

We propose an algorithm for computing the TR decomposi-
tion using d sequential SVDs, which is termed as TR-SVD.
TR decomposition can be written as

T〈k〉(i1 · · · ik, ik+1 · · · id) = Tr


k∏
j=1

Zj(ij)

d∏
j=k+1

Zj(ij)

 .

(2)

We define subchains by merging multiple linked cores as
Z<k(i1 · · · ik−1) =

∏k−1
j=1 Zj(ij) and Z>k(ik+1 · · · id) =∏d

j=k+1 Zj(ij). Hence, we can obtain T〈k〉 = Z≤k(2)(Z
>k
[2] )T ,

where the subchain Z≤k(2) is of size
∏k
j=1 nj × r1rk+1, and

Z>k[2] is of size
∏d
j=k+1 nj × r1rk+1.
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According to (2), TR decomposition can be performed
from mode-1 by

T〈1〉(i1, i2 · · · id) =
∑
α1,α2

Z≤1(i1, α1α2)Z>1(α1α2, i2 · · · id).

Since the low-rank approximation of T〈1〉 can be obtained by
the truncated SVD, which is T〈1〉 = UΣVT + E1, the first
core Z1(i.e.,Z≤1) of size r1 × n1 × r2 can be obtained by
the proper reshaping and permutation of U. Similarly, the
subchain Z>1 of size r2 ×

∏d
j=2 nj × r1 can be obtained by

the proper reshaping and permutation of ΣVT , which corre-
sponds to the remaining d − 1 dimensions of T . Note that
this algorithm uses a similar strategy to TT-SVD [12], but
the reshaping and permutations are different between them.
Subsequently, we can further reshape the subchain Z>1 as a
matrix Z>1 ∈ Rr2n2×

∏d
j=3 njr1 which can be written as

Z>1(α2i2, i3 · · · idα1) =
∑
α3

Z2(α2i2, α3)Z>2(α3, i3 · · · idα1).

By applying truncated SVD, i.e., Z>1 = UΣVT + E2, we
can obtain the second core Z2 of size r2×n2×r3 by appropri-
ately reshaping U and the subchain Z>2 by proper reshaping
of ΣVT . This procedure can be performed sequentially to
obtain all d cores Zk, k = 1, . . . , d.

As proved in [12], the approximation error by using such
sequential SVDs is given by ‖T −<(Z1,Z2, . . . ,Zd)‖F ≤√∑d−1

k=1 ‖Ek‖2F, where ‖ · ‖F denotes the Frobenius norm.
Hence, given a prescribed relative error εp, the truncation
threshold δ can be set to εp√

d−1‖T ‖F. However, ‖E1‖F
corresponds to two ranks including both r1 and r2, while
‖Ek‖F,∀k > 1 correspond to only one rank rk+1. Therefore,
we modify the truncation threshold as

δk =

{ √
2εp‖T ‖F/

√
d k = 1,

εp‖T ‖F/
√
d k > 1.

(3)

Note that the cores obtained by the TR-SVD algorithm are
left-orthogonal, which is ZTk〈2〉Zk〈2〉 = I for k = 2, . . . , d−1.

3.2. Block-Wise Alternating Least-Squares (ALS)

The ALS algorithm has been widely applied to various ten-
sor decomposition models such as CP and Tucker decompo-
sitions [20, 21]. Given a dth-order tensor T , our goal is to
optimize the error function as

min
Z1,...,Zd

‖T −<(Z1, . . . ,Zd)‖F . (4)

According to the TR definition in (1), we have

T[k](ik, ik+1 · · · idi1 · · · ik−1) =∑
αkαk+1

{
Zk(ik, αkαk+1)Z 6=k(αkαk+1, ik+1 · · · idi1 · · · ik−1)

}
,

where Z 6=k(ik+1 · · · idi1 . . . ik−1) =
∏d

j=k+1 Zj(ij)
∏k−1

j=1 Zj(ij)
denotes the slice matrix of the subchain tensor by merging all cores
except kth core Zk. The objective function in (4) can be optimized
by solving d subproblems alternatively. More specifically, having
fixed all but one core, the problem is reduced to a linear least squares
problem, which is

min
Zk(2)

∥∥∥T[k] − Zk(2)

(
Z 6=k

[2]

)T ∥∥
F
, k = 1, . . . , d.

This optimization procedure is repeated till convergence, which is
called TT-ALS.

Here, we propose a computationally efficient block-wise ALS
(BALS) algorithm by utilizing truncated SVD, which facilitates
the self-adaptation of ranks. The main idea is to perform block-
wise optimization followed by the separation of a block into in-
dividual cores. To achieve this, we consider merging two linked
cores, e.g., Zk,Zk+1, into a block (or subchain) Z(k,k+1) ∈
Rrk×nknk+1×rk+2 . Thus, the subchain Z(k,k+1) can be opti-
mized while leaving all cores except Zk,Zk+1 fixed. Subse-
quently, the subchain Z(k,k+1) can be reshaped into Z̃(k,k+1) ∈
Rrknk×nk+1rk+2 and separated into a left-orthonormal core Zk and
Zk+1 by a truncated SVD: Z̃(k,k+1) = UΣVT = Zk〈2〉Zk+1〈1〉,
where Zk〈2〉 ∈ Rrknk×rk+1 is the 2-unfolding matrix of core
Zk, which can be set to U, while Zk+1〈1〉 ∈ Rrk+1×nk+1rk+2 is
the 1-unfolding matrix of core Zk+1, which can be set to ΣVT .
This procedure then moves on to optimize the next block cores
Z(k+1,k+2), . . . ,Z(d−1,d),Z(d,1) successively in a similar way.
Note that since the TR model is circular, the dth core can also be
merged with the first core yielding the block core Z(d,1).

The key advantage of our BALS algorithm is the rank adaptation
ability which can be achieved simply by separating the block core
into two cores via truncated SVD. The truncated rank rk+1 can be
chosen such that the approximation error is below a certain thresh-
old. One possible choice is to use the same threshold as in the TR-
SVD algorithm, i.e., δk described in (3). However, our empirical
experience showed that this threshold often leads to overfitting and
the truncated rank tends to be higher than the optimal rank. This
is because the updated block Z(k,k+1) during ALS iterations is not
a closed form solution and many iterations are necessary for con-
vergence. To relieve this problem, we choose the truncation thresh-
old based on both the current and the desired approximation errors,
which is δ = max

{
ε‖T ‖F /

√
d, εp‖T ‖F /

√
d
}
.

4. EXPERIMENTAL RESULTS

In this section, we report experimental results.

4.1. Image Representation by Higher-order Tensor Decomposi-
tions

An image is naturally represented by a 2D matrix, on which SVD
can provide the best low-rank approximation. Here, we show the
tensorization of an image yields a higher-order tensor, and TR de-
composition enables us to represent the image more efficiently than
SVD. Given an image (e.g., “Peppers”) denoted by Y of size I × J ,
we can reshape it as I1× I2× . . .× Id×J1×J2× . . .×Jd, where
I =

∏d
k=1 Ik, J =

∏d
k=1 Jk, followed by an appropriate permuta-

tion to I1 × J1 × I2 × J2 . . . × Id × Jd and thus reshape it again

8610



Table 1: Image representation by using tensorization and TR decomposition. The number of parameters is compared for SVD,
TT and TR given the same approximation errors.

Data ε = 0.1 ε = 0.01 ε = 9e− 4 ε = 2e− 15

n = 256, d = 2
SVD TT/TR SVD TT/TR SVD TT/TR SVD TT/TR
9.7e3 9.7e3 7.2e4 7.2e4 1.2e5 1.2e5 1.3e5 1.3e5

Tensorization ε = 0.1 ε = 0.01 ε = 2e− 3 ε = 1e− 14
TT TR TT TR TT TR TT TR

n = 16, d = 4 5.1e3 3.8e3 6.8e4 6.4e4 1.0e5 7.3e4 1.3e5 7.4e4
n = 4, d = 8 4.8e3 4.3e3 7.8e4 7.8e4 1.1e5 9.8e4 1.3e5 1.0e5
n = 2, d = 16 7.4e3 7.4e3 1.0e5 1.0e5 1.5e5 1.5e5 1.7e5 1.7e5

Fig. 2: Effects of noise corrupted tensor cores. From left to
right, each figure shows a reconstructed image under corrup-
tion by adding noise to one specific tensor core.

to I1J1 × I2J2 × . . .× IdJd, which is a dth-order tensor. The first
mode corresponds to small-scale patches of size I1 × J1, while the
dth-mode corresponds to large-scale partitions of the whole image
as Id × Jd. To illustrate how each core tensor corresponds to the
different resolutions, Fig. 2 shows reconstructed images by adding
noise to one specific core tensor. Based on this tensorization oper-
ations, TR decomposition is able to capture the intrinsic structure
information and provides a more compact representation. As shown
in Table 1, for the 2D matrix case, SVD, TT and TR give exactly
the same results. In contrast, for the 4th-order tensorization cases,
TT needs only half the number of parameters (2 times compression
rate) while TR achieves 3 times higher compression rate, given the
same approximation error 0.1. Hence, TR representation can obtain
enhanced presentation ability.

4.2. Tensorizing Neural Networks using TR representation

TT representations have been successfully applied to deep neural
networks [13], which can significantly reduce the number of model
parameters and improve computational efficiency. To investigate
the properties of TR representation, we applied the TR framework
to approximate the weight matrix of a fully-connected layer and
compared it with TT representation. We run the experiment on the
MNIST dataset [22]. The same setting of the neural network (two
fully-connected layers with ReLU activation functions) as that in
[13] was applied for comparison. The input layer is tensorized to
a 4th-order tensor of size 4 × 8 × 8 × 4, the weight matrix of size
1024× 625 is represented by a TR format of size 4× 8× 8× 4×
5× 5× 5× 5. Through deriving the gradients over each core tensor,
all computations can be performed on small core tensors instead of
the dense weight matrix, yielding significant improvements of com-
putational efficiency. The experimental results are shown in Fig. 3.
We observe that the TR-layer provides much better flexibility than
the TT-layer, leading to much lower training and testing errors under
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Fig. 3: The classification performances of tensorizing neural
networks by using TR representation.

the same compression level (i.e., TT/TR ranks). In addition, TR can
achieve a much better compression rate under the same level of the
test error. When r1 = · · · = r4 = 2, the compression rate of the
dense weight matrix is up to 1300 times.

We tested the tensorizing neural networks with the same archi-
tecture on the SVHN dataset1. By setting all the TT-ranks in the
network to 4, we achieved the test error of 0.13 with compression
rate of 444 times, while we can achieve the same test error by setting
all the TR-ranks to 3 with compression rate of 592 times. Hence, the
TR representation can obtain a significantly higher compression rate
under the same level of the test error.

5. CONCLUSION

We have proposed a novel tensor decomposition model, which pro-
vides an efficient representation for a very high-order tensor by a se-
quence of low-dimensional cores. The number of parameters in our
model scales only linearly to the tensor order. To optimize the latent
cores, we have presented several different algorithms: TR-SVD is a
non-recursive algorithm that is stable and efficient, while TR-BALS
can learn a more compact representation with adaptive TR-ranks.
The experimental results verified the effectiveness of our proposed
algorithms.
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