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ABSTRACT

In recent studies, tensor ring (TR) decomposition has
shown to be effective in data compression and representation.
However, the existing TR-based completion methods only
exploit the global low-rank property of the visual data. When
applying them to remote sensing (RS) image processing, the
spatial information in the RS image is ignored. In this paper,
we introduce the TR decomposition to RS image processing
and propose a tensor completion method for RS image recon-
struction. We incorporate the total-variation regularization
into the TR completion model to exploit the low-rank prop-
erty and spatial continuity of the RS image simultaneously.
The proposed algorithm is solved by the augmented Lagrange
multiplier method and has shown the superior performance
in hyperspectral image reconstruction and multi-temporal RS
image cloud removal against the state-of-the-art algorithms.

Index Terms— remote sensing, reconstruction, tensor
ring, total-variation, cloud removal.

1. INTRODUCTION

As a tool to investigate and understand our planet, remote
sensing instruments have attracted much attention in the re-
search field. Due to the poor weather conditions and sen-
sor failure, RS images often suffer from information missing,
such as clouds and dead pixels [1], which significantly influ-
ence the subsequent application such as recognition, classifi-
cation, and detection. Therefore, it is essential to predict and
reconstruct the missing information of RS images.

Up to now, many RS image reconstruction methods have
been proposed, and can be classified into four categories ac-
cording to the different types of complementary information:
1) spatial-based method (e.g. total variation (TV) [2], sparse
and non-local regularization), 2) spectral-based method [3, 4],
3) temporal-based method [5, 6] and 4) hybrid method. The
first three categories only utilize one or two kinds of prior in-
formation and are suitable for some specific cases. In order
to improve the performance, it is necessary to develop hybrid
methods to integrate spatial, spectral, and temporal informa-
tion simultaneously [1]. Low-rank tensor completion (LRTC)

is one of the smartest ways to integrate all the prior informa-
tion together, which has been successfully introduced to RS
image reconstruction tasks [7, 8]. By unfolding the tensor
to matrices along different dimensions and minimizing the
sum of all the matrices’ ranks (i.e. Tucker rank minimiza-
tion), the prior information of spatial, spectral and temporal
information is explored simultaneously. However, the Tucker
rank based LRTC methods have two drawbacks. Firstly, the
Tucker rank minimization is based on an unbalanced matrix
unfolding scheme (one mode versus the rest) and may not be
able to describe the global information of the tensor [9, 10].
Secondly, it is far from enough to regularize the spatial prior
as low-rank, because the low-rank property along the spatial
dimension is not so strong in many situations [11, 12, 13].

Recently, matrix product state/tensor-train (MPS/TT) has
drawn much attention due to its computational efficiency and
high compression properties [14]. The main concept of TT
is to decompose a high-order tensor into a set of three-order
tensors. More importantly, TT rank is composed of the matri-
ces’ ranks which are formed by a well balanced matricization
scheme and has the capacity to exploit the global correlation
of the tensor entries [9]. However, in real applications, TT
decomposition still faces several problems [15, 16]. One of
them is that the TT model requires rank-1 constraints to the
border decomposition factors, resulting in limited flexibility.
To remedy this limitation, Zhao et al. [15] proposed the ten-
sor ring (TR) decomposition model, which is more flexible
than TT and can be regarded as the linear combination of a
group of TT decompositions. TR decomposition overcomes
the rank-1 constraints for the border factors, in which the fac-
tors can be circularly shifted and treated equivalently under
trace operation.

The TR-based algorithms obtain the state-of-the-art per-
formance in data compression [17] and tensor completion
[16, 18]. However, most studies centralize on the mathemat-
ical analysis and algorithm development, and few works are
focused on real applications. In this paper, we apply the TR
decomposition to RS image completion problems and test the
efficiency of TR completion compared to other tensor com-
pletion methods. Furthermore, total variation (TV) has been
proved to be useful in the spatial smoothness exploration of
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RS image [2, 19, 20]. Inspired by this, we embed the TV
into our TR completion model to capture the global low-rank
property and spatial smoothness of RS images simultane-
ously. The main ideas and contributions of this paper can
be summarized as follows: 1) We propose a total-variation-
regularized tensor ring completion (TVTRC) method for RS
image reconstruction. The TR decomposition is applied to
explore the low-rank information of the tensor. Meanwhile,
TV is adopted to explore the spatial smoothness of the RS
images. 2) The augmented Lagrangian method (ALM) al-
gorithm is employed to solve the TVLRC model. Several
experiments on hyperspectral image reconstruction and time-
series image cloud removal are conducted to demonstrate the
advantage of the proposed method.

2. APPROACH

2.1. Notations and Problem Formulation

We mainly adopt the notations from [21] in this paper. Ten-
sors of order N ≥ 3 are denoted by calligraphic letters,
e.g., X ∈ RI1×I2×···×IN . Scalars are denoted by nor-
mal lowercase letters or uppercase letters, e.g., x,X ∈ R.
Vectors are denoted by boldface lowercase letters, e.g.,
x ∈ RI . Matrices are denoted by boldface capital let-
ters, e.g., X ∈ RI×J . We employ two types of tensor
unfolding (matricization) operations in this paper. The first
mode-n unfolding [21] of tensor X ∈ RI1×I2×···×IN is
denoted by X(n) ∈ RIn×I1···In−1In+1···IN and the second
which is often used in TR operations [15] is denoted by
X<n> ∈ RIn×In+1···INI1···In−1 . Furthermore, matrix folding
(tensorization) operation which transforms a matrix into a
higher-order tensor is defined as foldn(·), i.e., for a tensor X ,
we have foldn(X(n)) = X . In addition, the inner product of
two tensors X , Y with the same size RI1×I2×···×IN is de-
fined as 〈X ,Y〉 =

∑
i1

∑
i2
· · ·
∑

iN
xi1i2...iN yi1i2...iN , and

the Frobenius norm of X is defined by ‖X‖F =
√
〈X ,X 〉.

For the RS image reconstruction task, we adopt Y stand-
ing for the incomplete observed image with the set of indices
of observed entries which is denoted as Ω. We aim to find the
complete RS image X under the condition XΩ = YΩ.

2.2. Tensor Ring Decomposition

TR decomposition represents a tensor of high-order by cir-
cular multilinear products over a sequence of three-order
core tensors, i.e., TR factors. For n = 1, . . . , N , the
TR factors are denoted by G(n) ∈ RRn×In×Rn+1 where
{R1, R2, . . . , RN+1} denotes the TR-rank which controls
the model complexity of TR decomposition. Trace opera-
tions are applied in TR decomposition and this makes all of
the TR factors are of size order-three, thus the rank constraint
of TR decomposition is relaxed to R1 = RN+1. In this case,
TR decomposition can be considered as a linear combina-

tion of TT decomposition, so it is a more generalized model
than TT decomposition. The relation of TR factors and the
generated tensor is formulated by (1):

X<n> = G
(n)
(2) (G

(6=n)
<2> )T , (1)

where G(6=n) ∈ RRn+1×
∏N

i=1,i 6=n Ii×Rn is a subchain tensor
by merging all but the n-th core tensor, see details in [22].

2.3. Proposed TVTRC

We firstly develop the tensor completion model on the ba-
sis of TR decomposition, and subsequently incorporate the
TV regularization into the TR completion to explore the spa-
tial, spectral and temporal information of RS image simulta-
neously. The TR completion can be formulated as follows

min
X ,G
‖X − Φ(G)‖2F , s.t. XΩ = YΩ, (2)

where G := {G(1), . . . ,G(N)}, Φ is the operater to transform
the TR factors into the approximated tensor. The TR-rank is
reflected by the size of G(n) ∈ RRn×In×Rn+1 and allocated
in advance.

When model (2) is adopted to the reconstruction of RS
image, only the low-rank property of the image would be ex-
plored. As pointed out in [11], the low-rank property of the
spatial mode of the RS image is weak, and not enough to de-
scribe the spatial information. From another aspect, the ad-
jacent pixels have a strong correlation, indicating the spatial
piecewise smoothness structure. Inspired by this fact, we em-
bed the TV regularization into the TR completion model to
combine the low-rank property and spatial smoothness struc-
ture together. The proposed TVLRC model is formulated as:

min
X ,G

λ‖X‖TV + ‖X − Φ(G)‖2F , s.t., XΩ = YΩ, (3)

where ‖X‖TV =
∑I3,...,IN

i3,...,iN
‖Dx(X (:, :, i3, ..., iN ))‖1 +

‖Dy(X (:, :, i3, ..., iN ))‖1 standing for the spatial TV along
all spectral and temporal dimensions, and D = [Dx, Dy]
represent the first-order discrete differences from horizontal
and vertical perspective, ‖ · ‖1 is the 1-norm regularization.
Parameter λ is the weight of TV regularization and set as
10−2 in the paper.

2.4. Optimization

In this part, we apply the ALM algorithm to solve the model
(3). We first introduce an auxiliary variable U and obtain the
following optimization model

min
X ,G,U

λ‖U‖1 + ‖X − Φ(G)‖2F + 〈Λ,U −DX 〉

+
µ

2
‖U −DX‖2F , s.t. XΩ = YΩ.

(4)
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Here, Λ stands for the Lagrange multiplier and µ is the
penalty parameter.

For the update of variables, we firstly fix X and U , and
update G. For n = 1, . . . , N , the optimization is:

G(n) = fold2(X<n>(G
(6=n)
<2> )T,†), (5)

where † is the Pseudo-inverse of the matrix.
Secondly, fix G and U , and update X . The fast Fourier

transform (FFT) is adopted to solve the subproblem

X = F−1

[
F(Φ(G) +DT (µU + Λ)/2)

1 + (F(µDx/2))2 + (F(µDy/2))2

]
. (6)

We set XΩ = YΩ to keep the observed values unchanged.
Thirdly, fix G and X , and update U . It is equivalent to solve

min
U

λ‖U‖1 +
µ

2
‖U −X + Λ/µ‖2F , (7)

which can be solved by soft-thresholding (shrinkage) opera-
tor [19].

Finally, the Lagrange multiplier Λ is updated by

Λ = Λ + µ(U −X ), (8)

where µ is updated by the strategy in [20].

3. EXPERIMENTS AND DISCUSSION

3.1. Data description

RS datasets were adopted in our experiments. The first one
was the Washington DC (WDC) Mall dataset from HYDICE
sensor [23]. We select a sub-image of size 256 × 256 × 30
from the original image for the simulated reconstruction ex-
periments with random missing. In the experiments, the sim-
ulated random missing percentage of the WDC image was
from 50%, 70% to 90%. The second dataset was the one-
year time-series Sentinel-2 images from the Tokyo area1. The
time-series image tensor is of size 400× 400× 4× 15, which
means spatial size 400×400, spectral bands number 4 and 15
time nodes. The dataset is clean and free from the clouds. We
added the simulated clouds to conduct the simulated cloud
removal experiments. The third dataset was also the one-
year time-series Sentinel-2 image from Tokyo area with size
400×400×4×15. The dataset is corrupted by the real clouds
and adopted for the real cloud removal experiment.

For TRALS and the proposed TVTRC, the rank was set
as [15, 15, 10] for the hyperspectral image reconstruction and
[15, 15, 3, 5] for the time-series cloud removal.

Several existed methods were selected for compari-
son, including adaptive weighted LRTC (AWTC) [8], ten-
sor completion using TV and low-rank matrix factorization
(TVMF) [24], TT completion with Stochastic Gradient De-
scent (TTSGD) [25], and TR completion with Alternating

1download website:https://scihub.copernicus.eu/dhus/

Least Square (TRALS) [16]. For the real could removal
experimental results, Fmask [26] was adopted to detect the
cloud and cloud shadow location.

For the simulated data experiments, we adopted the peak
signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) to evaluate the results. For hyperspectral and time-
series images, we calculated the values of PNSR and SSIM
of each band and then average them [20].

Table 1. Quantitative evaluation of simulated data experi-
ments for hyperspectral image reconstruction with random
missing of 50%, 70%, and 90% and time-series image cloud
removal.

Missing index AWTC TVMF TTSGD TRALS TVTRC

50% PSNR(dB) 50.41 37.93 38.15 52.56 52.96
SSIM 0.998 0.950 0.965 0.998 0.999

70% PSNR(dB) 45.91 31.85 34.82 49.78 50.36
SSIM 0.993 0.875 0.929 0.997 0.997

90% PSNR(dB) 27.63 29.19 28.01 35.63 36.40
SSIM 0.781 0.776 0.721 0.934 0.951

cloud PSNR(dB) 45.36 42.38 43.61 43.12 45.05
Removal SSIM 0.945 0.896 0.940 0.912 0.950

3.2. Simulated data experiments

The quantitative evaluation results with simulated data for the
hyperspectral image random missing reconstruction and the
time-series image cloud removal are presented in Table 1.
From the table, it can be easily observed that the proposed
TVLRC achieved the highest PSNR and SSIM values in the
hyperspectral image random missing reconstruction. When
the missing percentage is low, TVTRC obtained a bit higher
accuracy than those of AWTC and TRALS. However, when
the missing percentage increases, the performance of TVTRC
is much better than that of the other two methods. The color
images, extracted from the hyperspectral image, before and
after reconstruction presented in Fig. 1 also confirm the ad-
vantage of the proposed method in the highly missing sit-
uation. From another aspect, TTSGD and TVMF achieved
better results in the highly missing situation, meanwhile per-
formed worse in the low missing case. In the simulated cloud
removal experiments, AWTC achieved the highest PSNR val-
ues. Meanwhile, the proposed TVTRC obtained the highest
SSIM value. From the visual results presented in the second
row of Fig. 1, the proposed method presents the best recon-
structed details compared to other comparison methods.

3.3. Real data experiment

Fig. 2 presents one time node color images of real data ex-
periments before and after reconstruction. Fig. 2(a) stands for
the real image, and Fig. 2(b) shows the mask with the white
color standing for the observed area. Fig. 2(c-g) represent the
reconstruction results with different methods. In the enlarged
area marked in the yellow rectangle, it can be easily observed
that AWTC, TVMF and TTSGD failed to restore the image
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Fig. 1. Experimental results on simulated data. The first row presents the color images composed of hyperspectral band 16, 17
and 20 before and after reconstruction. The second row shows the sixth time node image of time series images.

Fig. 2. Comparison of cloud removal results for the eighth time node image of real data. The red, green and blue bands are
used for the color composite.

in the most area. TRALS can more or less recover the cloudy
image. However, it also remained large areas to not be re-
covered. To sum all, the proposed TVTRC achieved the best
results from the visual perspective.

4. CONCLUSION

In this paper, we introduced the TR decomposition into
the remote sensing image reconstruction and proposed a
total-variation-regularized tensor ring completion method
(TVTRC). The TR decomposition is used to explore the spa-
tial, spectral and temporal information simultaneously, and
the total variation is adopted to further explore the spatial
smoothness in RS images. The proposed TVTRC had been
proved to achieve the best performance compared to other
tensor completion based methods. Despite the good perfor-
mance achieved by TVTRC, it still faces some drawbacks for
future research. Firstly, the rank of the TR decomposition
has much influence for the performance and computational
efficiency. How to automatically estimate the rank is a key
problem. Secondly, the calculation of TR decomposition is
extremely expensive. How to improve the efficiency of TR
decomposition is another key problem.
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