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ABSTRACT

In this paper, we propose a novel method for generating high-
granularity three-dimensional (3D) seismic data from low-
granularity data based on tensor sparse coding, which jointly
trains a high-granularity dictionary and a low-granularity dic-
tionary. First, considering the high-dimensional properties of
seismic data, we introduce tensor sparse coding to seismic data
interpolation. Second, we propose that the dictionary pairs
trained by low-granularity seismic data and high-granularity
seismic data have the same sparse representation, which are
used to recover high-granularity data with the high-granularity
dictionary. Finally, experiments on the seismic data of an ac-
tual field show that the proposed method effectively perform
seismic trace interpolation and can improve the resolution of
seismic data imaging.

Index Terms— Tensor super-resolution, seismic data in-
terpolation, tensor sparse coding.

1. INTRODUCTION

Seismic data are generally sparsely sampled in spatial di-
rections, resulting in poor lateral resolution of the seismic
record [1]. For high resolution seismic data imaging, seismic
trace interpolation is an important task.

There are a considerable number of conventional meth-
ods for seismic trace interpolation. Spitz [1] implemented
an interpolation method based on predictive filtering in the
f-x domain. Claerbout [2] studied the prediction error fil-
tering seismic interpolation method in the t-x domain, and
achieved data reconstruction with false frequency. Sacchi [3]
implemented five-dimensional interpolation under the idea
of inversion. Recently, Jia [4] proposed a machine learning
interpolation method for seismic data. However, these meth-
ods ignore structural characteristics of three-dimensional (3D)
seismic data.

Super-resolution (SR) is a classic issue in image signal pro-
cessing, and there are promising methods based on dictionary
learning to generate high-resolution data [5, 6, 7]. Recently,
Christian [8] proposed to use generative adversarial networks
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(GAN) for image SR. Considering that formation parameters
have lateral continuity and seismic data located in different
traces have similarities, a sparse dictionary can be extracted
from seismic data [9], and namely the seismic data have sparse
representation. Compressed sensing theory has been used for
seismic data [10]. However, these proposed SR methods
convert data into vectors which ignore spatial correlation of
multi-dimensional data [11, 12], which carry rich geophysics
information [13] that can help us obtain higher resolution.

In order to capture spatial correlation of the multi-
dimensional data, we propose a seismic trace interpolation
method based on tensor sparse coding [14, 15] for 3D seismic
data, which trains a high-granularity and low-granularity
dictionary pair. First, we introduce tensor sparse coding for
seismic data. Second, since structural features are approxi-
mately revealed in the collected low-granularity seismic data
and high-granularity seismic data, we propose that the data
pairs have the same sparse representation, and the sparse
coefficients of the low-granularity data are combined with
the high-granularity dictionary to recover the high-granularity
data. Finally, experiments on the seismic data of an actual
field show that the proposed method promotes the resolution
of seismic data imaging.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the notations and preliminary used in our
paper. The system model and problem formulation are given
in Section 3. Section 4 presents the solution algorithm and
generates the high-granularity seismic data of an actual field
in Section 5.

2. NOTATION AND PRELIMINARY

A third-order tensor is denoted as X ∈ RN1×N2×N3 . The
expansion of X along the third dimension is represented as
X =

[
X (1);X (2); · · · ;X (N3)

]
. The transpose of tensor X

is denoted as X †, where X †(1) = X (1)T , and X †(k) =

X (N3+2−k)T , 2 ≤ k ≤ N3, and the superscript "T " repre-
sents the transpose of matrices. The discrete Fourier transform
(DFT) along the third dimension of X is denoted as X̃ . Let
[N ] denote the set {1, 2, · · · , N}.

The Frobenius and `1-norm norms of tensors are de-

noted as ‖X‖F =
(∑

i,j,k |X (i, j, k)|2
)(1/2)

, and ‖X‖1 =
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∑
i,j,k |X (i, j, k)|, respectively.
Furthermore, we introduce the following definitions.

Definition 1. (t-product) [16] The tensor-product between
D ∈ RN1×r×N3 and Z ∈ Rr×N2×N3 is a tensor X ∈
RN1×N2×N3 , where X (i, j, :) =

∑r
q=1D(i, q, :) ∗ Z(q, j, :),

and ∗ denotes the circular convolution operation.

Remark 1. The t-product X = D ∗ Z can be efficiently com-
puted in the frequency domain as:

X̃ (k) = D̃(k)Z̃(k), k ∈ [N3] . (1)

Lemma 1. [16] The t-product X = D ∗ Z has an equivalent
matrix-multiplication form as follows:

X = DcZ, (2)

where Dc is the circular matrix of D defined as follows:

Dc =


D(1) D(N3) · · · D(2)

D(2) D(1) · · · · · ·
· · · · · · · · · D(N3)

D(N3) D(N3−1) · · · D(1)

 . (3)

3. PROBLEM STATEMENT

Instead of transforming data into vectors, we represent 3D
seismic data with a tensor X ∈ RN1×N2×N3 to train a tensor
dictionary. The tensor dictionary learning model is as follows:

min
D,Z

1

2
‖X − D ∗ Z‖2F + λ′ ‖Z‖1 ,

s.t. ‖D(:, j, :)‖2F ≤ 1, j ∈ [r] ,

(4)

where D ∈ RN1×r×N3 is the tensor dictionary, and each lat-
eral slice D(:, j, :) is a basis, while Z ∈ Rr×N2×N3 represent
the tensor coefficients. The parameter λ′ balances the approx-
imation error and the sparsity of tensor coefficients, and r is
the number of atoms.

The deposition of the underground layers is often relatively
stable, so the seismic responses of the same field usually have
a certain degree of consistency and lateral continuity [9]. The
observed low-granularity seismic data Yl and high-granularity
seismic data Xh from the same field are sparse and approxi-
mate. Based on this prior, we jointly train two dictionaries Dh
and Dl by Yl and Xh, named high-granularity dictionary and
low-granularity dictionary, respectively. Dh and Dl enforce
Xh and Yl to share the same sparse representation Z . The
joint dictionaries model is as follows:

Dh = argmin
Dh,Z

‖Xh −Dh ∗ Z‖2F + λ′ ‖Z‖1 , (5)

Dl = argmin
Dl,Z

‖Yl −Dl ∗ Z‖2F + λ′ ‖Z‖1 , (6)

Fig. 1. Constructing low- and high-granularity seismic data
training pairs.

where Dh is the high-granularity dictionary and Dl is the low-
granularity dictionary. Yl and Xh are the low-granularity and
high-granularity seismic data, which are constructed via the
following method.

Combining (5) and (6) to force the training pairs sharing
the same sparse representation , we get:

min
Dh,Dl,Z

1

P
‖Xh −Dh ∗ Z‖2F +

1

Q
‖Yl −Dl ∗ Z‖2F

+λ′(
1

P
+

1

Q
) ‖Z‖1 ,

(7)

where P and Q represent the numbers of the first dimension
of Xh and Yl. 1/P and 1/Q balance the two cost terms of (5)
and (6).

Equation (7) can be converted to the following form:

min
D,Z
‖X − D ∗ Z‖2F + λ ‖Z‖1 , (8)

where

X =

[
1√
P
Xh

1√
Q
Yl

]
, D =

[
1√
P
Dh

1√
Q
Dl

]
, λ = λ′(

1

P
+

1

Q
). (9)

The problem is solved efficiently by alternately optimizing
D and Z directly in tensor space, then (8) can be decomposed
into the following two sub-problems: (i) solving the tensor
sparse coefficients, which is solved by the iterative shrinkage
threshold algorithm based on the tensor product; (ii) updating
the tensor dictionary, which is solved by Lagrange dual method.
The solution process is detailed in Section 4.

4. OUR SOLUTION

In order to solve problem (8), we alternately optimized the
tensor dictionary D and the coefficients Z while fixing the
other one.
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(a) (b)

Fig. 2. Dictionaries learned from high-granularity and low-
granularity seismic data. (a) is part of the high-granularity
tensor dictionary with each atom of size 9× 9, and (b) is the
low-granularity tensor dictionary.

4.1. Tensor coefficients learning

In order to solve the tensor sparse coefficients, we fix D ∈
RN1×r×N3 and use the tensor-based iterative shrinkage thresh-
old algorithm [14] to solve the tensor sparse representations
Z ∈ Rr×N2×N3 of seismic data X ∈ RN1×N2×N3 . Problem
(8) is converted to the following problem:

min
Z∈Rr×N2×N3

1

2
‖X − D ∗ Z‖2F + λ ‖Z‖1 . (10)

For convenience of the computation, (10) can be trans-
formed to matrix-product by Lemma 1:

min
Z∈RrN2×N3

1

2
‖X − DcZ‖2F + λ ‖Z‖1 . (11)

We apply the iterative shrinkage thresholding algorithm
based on tensor-product (ISTA-T) [14] to solve (10) directly.
We first rewrite (10) as:

min
Z

f(Z) + λg(Z), (12)

where f(Z) stands for 1
2 ‖X − D ∗ Z‖

2
F which is continuous

with the Lipschitz constant L =
∥∥∥(D† ∗ D)

c
∥∥∥2
F

[14], namely

L =
∑N3

k=1

∥∥∥D̃(k)H D̃(k)
∥∥∥2
F

, and g(Z) stands for the sparsity

constraint term ‖Z‖1. Z is solved by iteration, and (12) can be
rewritten as a linearized function around the previous estima-
tion Zp with the proximal regularization and the nonsmooth
regularization. Thus, at the (p + 1)-th iteration, Zp+1 is up-
dated by

Zp+1 = argmin
Z

f(Zp) + 〈∇f(Zp),Z − Zp〉

+
L

2
‖Z − Zp‖2F + λg(Z),

(13)

where ∇f(Z) is the gradient defined in tensor space. Then
(13) is equivalent to

Zp+1 = argmin
Z

1

2

∥∥∥∥Z − (Zp −
1

L
∇f(Zp))

∥∥∥∥2
F

+
λ

L
‖Z‖1 ,

(14)

Lastly, (14) can be solved by the proximal operator
Proxβ(Zp− 1

L∇f(Zp)), where Proxβ is the soft-thresholding
operator Proxτ (·) → sign(·)max(| · | − τ, 0) [17]. To speed
up the ISTA-T, an extrapolation operator was adopted [18].

4.2. Tensor dictionary learning

For learning the dictionaryD whileZ is fixed, the optimization
problem is:

min
D∈RN1×r×N3

1

2
‖X − D ∗ Z‖2F ,

s.t. ‖D(:, j, :)‖2F ≤ 1, [j] ∈ r,
(15)

where atoms are coupled together due to the ∗ operation.
Therefore, we transform (15) into the frequency domain by
DTF which is decomposed into k nearly-independent prob-
lems (that are coupled only through the norm constraint) as
follows:

min
D̃(k),k∈[N3]

N3∑
k=1

∥∥∥X̃ (k) − D̃(k)Z̃(k)
∥∥∥2
F
,

s.t.

N3∑
k=1

∥∥∥D̃(k)(:, j)
∥∥∥2
F
≤ N3, [j] ∈ r.

(16)

Then, we adopted the Lagrange dual [19] method for solv-
ing (16) in frequency domain. First, we transform (16) into
the following Lagrangian:

L(D̃,Λ) =

N3∑
k=1

∥∥∥X̃ (k) − D̃(k)Z̃(k)
∥∥∥2
F

+

r∑
j=1

λj

(
N3∑
k=1

∥∥∥D̃(k)(:, j)
∥∥∥2
F
−N3

)
,

(17)

where λj ≥ 0, j ∈ [r] is a dual variable, and Λ = diag(λ).
Second, minimizing over D̃ analytically, we obtain the

optimal formulation of D̃:

D̃(k) =
(
X̃ (k)Z̃(k)H

)(
Z̃(k)Z̃(k)H + Λ

)−1
, k ∈ [N3].

(18)
Substituting (18) into the Lagrangian L(D̂,Λ), we obtain

the Lagrange dual function D(Λ):

D(Λ) = −
N3∑
k=1

Tr
(
D̃(k)H X̃ (k)Z̃(k)H

)
−N3

r∑
j=1

λj , (19)
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Fig. 3. (a) Original high-granularity seismic data. (b) Low-granularity seismic data. (c) Generated high-granularity seismic data
by our method, and (d) generated by GAN. (e) Single trace seismic data reconstructed by our method and GAN.

which was solved by Newton’s method. Once the dual vari-
ables was obtained, the dictionary can be recovered by Equa-
tion (18).

5. EVALUATION

In this section, we apply the proposed method to the seismic
data of an actual field.

For the low-granularity seismic data to be reconstructed,
collect a high-granularity 3D seismic data setX ∈ R100×20×100

in the same field. Then, one-half sampling is applied to get
the low-granularity seismic data Y ∈ R50×20×50. For the
low-granularity seismic data set, a feature extraction operator
fr is used to extract the gradient and curvature features in three
directions of Y , where r = 1, 2, · · · , 6. With the convolution
of fr and Y along 6 directions, we obtain the low-granularity
training data Yl. As the low- and high-granularity data sets are
divided into 10000 cubes size of R3×3×3, respectively. And
those cubes can be reshaped into Xh ∈ R9×10000×81. Then,
Yl ∈ R54×10000×81 can be constructed in the same way. The
specific sample construction method is shown in Fig. 1.

Then, we trained a high-granularity dictionary Dh ∈
R9×512×81 with the high-granularity seismic data Xh and a
low-granularity dictionary Dl ∈ R54×512×81 with the low-
granularity seismic data Yl which formed by extracting 6
features, showing in Fig. 2. The structures of two dictionary
are very similar, except that the high-granularity dictionary
has more concise features.

Seismic data were from the actual field to verify the pro-
posed seismic trace interpolation algorithm. We selected a
section to display and showed the interpolation results. Figure.

3(a) is the low-granularity seismic data, which are sampled at
interval in space and time directions from the original high-
granularity seismic data, which are shown in Fig. 3(b). Figure.
3(c) shows the result of the generated data by our method. In
comparison, the high-resolution seismic data are generated
using a GAN [8] generator. The generated data can reveal a
weak reflector, which is important for seismic interpretation.
The single trace waveform reconstruction by our method and
the GAN [8] are shown in Figure. 3(e), where both results are
shown reconstruction errors for high frequency parts.

6. CONCLUSION

In this paper, we proposed a tensor joint sparse coding method
and applied it to 3D seismic trace interpolation. This method
extends two-dimensional dictionary learning to three dimen-
sions via tensor product, which effectively utilizes the spatial
information of seismic data. Then, tensor sparse coefficients
and tensor dictionary are alternately optimized by ISTA-T and
Lagrange dual method. The ISTA-T is used to solve the tensor
sparse coefficients, and the Lagrangian dual method is used to
solve the tensor dictionary. Finally, experiments on the seismic
data of the actual field showed that the proposed method could
effectively perform seismic trace reconstruction and improve
the resolution of seismic data.
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