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ABSTRACT

In this paper, we optimize the computations of third-order
low-tubal-rank tensor operations on many-core GPUs. Ten-
sor operations are compute-intensive and existing studies op-
timize such operations in a case-by-case manner, which can
be inefficient and error-prone. We develop and optimize a
BLAS-like library for the low-tubal-rank tensor model called
cuTensor-tubal, which includes efficient GPU primitives for
tensor operations and key processes. We compute tensor op-
erations in the frequency domain and fully exploit tube-wise
and slice-wise parallelisms. We design, implement, and opti-
mize four key tensor operations namely t-FFT, inverse t-FFT,
t-product, and t-SVD. For t-product and t-SVD, cuTensor-
tubal demonstrates significant speedups: maximum 29.16×,
6.72× speedups over the non-optimized GPU counterparts,
and maximum 16.91× and 27.03× speedups over the CPU
implementations running on dual 10-core Xeon CPUs.

Index Terms— Low-tubal-rank tensor model, GPU,
cuTensor-tubal library, tensor product, tensor SVD

1. INTRODUCTION

Real-world data are often modeled as sparse or low-rank ten-
sors [1, 2, 3, 4]. The low-tubal-rank tensor model [5, 6] gen-
eralizes classical matrix algorithms to a tensor space, includ-
ing SVD (Singular Value Decomposition), QR decomposi-
tion, multiplication, normalization and power method. This
model has been used for data completion [7, 8], MRI imaging
[9], tensor sparse coding [10], indoor localization for smart-
phones [11], seismic data processing [12], and wireless tomo-
graphic imaging [13].

However, tensor algorithmic workloads are compute-
intensive because their complexity grows exponentially with
the order of tensors. Existing works exploit GPUs to ac-
celerate tensor operations, applying different approaches to
optimize specific tensor operations such as tensor contrac-
tion [14, 15], factorization [16, 17], transpose [18, 19] and
tensor-matrix multiplication [20, 21]. In contrast, we provide
an optimized library of common tensor operations and key
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Fig. 1. System architecture of the cuTensor-tubal library.

processes for the low-tubal-rank tensor model on GPUs, in
order to efficiently support a wide range of applications.

The primary challenges associated with the optimization
of tensor operations on GPUs include the following: 1) ob-
taining suitable parallelization schemes for tensor operations
exhibiting data-dependent and data-independent computation
patterns on GPUs; 2) designing efficient data transfer and
memory access to facilitate computations; and 3) fully uti-
lizing hardware resources, particularly on-board and in-chip
memories. We propose several optimization methods for low-
tubal-rank tensor operations to address these challenges. We
encapsulate these high-performance tensor operations and
key processes into an open-source library called cuTensor-
tubal, whose system architecture is shown in Fig. 1. Evalua-
tion results show that the library achieves good performance.
For t-product and t-SVD, cuTensor-tubal demonstrates sig-
nificant speedups: maximum 29.16×, 6.72× speedups over
the non-optimized GPU counterparts, and maximum 16.91×
and 27.03× speedups over the CPU implementations running
on dual 10-core Xeon CPUs. The cuTensor-tubal library is
available at: http://www.tensorlet.com.

2. THIRD-ORDER LOW-TUBAL-RANK TENSOR
MODEL

The low-tubal-rank model was initially proposed in [5, 6].
We briefly summarize key concepts and operations, while de-
tailed information can be found in [8].
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Fig. 2. t-SVD of an m× n× k tensor of tubal-rank r.

2.1. Notations

We use uppercase calligraphic letters to denote third-order
tensors, e.g., X ∈ Rm×n×k. For tensor T ∈ Rm×n×k, the
(i, j, `)-th entry is T (i, j, `), or concisely represented as Tij`.
Let [n] denote the set {1, ..., n}.

2.2. Tensor Operations

Tubes/fibers, and slices: A tube/fiber is a 1-D section by fix-
ing all indices except one, while a slice is a 2-D section by
fixing all except two indices. We use T (:, j, `), T (i, :, `),
T (i, j, :) to denote the mode-1, mode-2, mode-3 tubes that
are vectors, and T (:, :, `), T (:, j, :), T (i, :, :) to denote the
frontal, lateral, horizontal slices that are matrices. For easy
representation, we denote T (`) = T (:, :, `).

t-transpose: T † is obtained by transposing each frontal
slice and then reversing the order of transposed frontal slices 2
through k. That is, T †(:, :, 1) = (T (:, :, 1))H and for 2 ≤ ` ≤
k, T †(:, :, `) = T †(`) = (T (:, :, k + 2 − `))H (the transpose
of matrix T (:, :, k + 2− `)).

t-FFT: we define T̃ as the frequency domain represen-
tation of T by taking the Fourier transform along the third
dimension of T , i.e., T̃ (i, j, :) = fft(T (i, j, :)). In MATLAB
notations, T̃ = fft(T , [ ], 3), and one can also compute T
from T̃ via T = ifft(T̃ , [ ], 3).

t-product: For two tubes/vectors of the same size, say
a,b ∈ Rk, let a ∗ b denote the circular convolution that
preserves the dimension. Then, the t-product C = A ∗ B
of A ∈ Rn1×n2×k and B ∈ Rn2×n3×k is a tensor of size
n1 × n3 × k, where C(i, j, :) =

∑n2

s=1A(i, s, :) ∗ B(s, j, :),
for i ∈ [n1] and j ∈ [n3].

t-SVD: For T ∈ Rm×n×k, the t-SVD of T is given by
T = U ∗ Θ ∗ V† as shown in Fig. 2, where U and V are
orthogonal tensors of sizes m×m×k and n×n×k, respec-
tively; and Θ is an f-diagonal tensor of size m×n×k and the
tubes are called the eigentubes of T . The tensor tubal-rank
of a third-order tensor T is the number of non-zero tubes in
Θ, denoted as r. Suppose T has tubal-rank r, then the re-
duced t-SVD of T is T = U ∗ Θ ∗ V†, where U ∈ Rm×r×k

and V ∈ Rn×r×k satisfying U† ∗ U = I, V† ∗ V = I, and Θ
is a f-diagonal tensor of size r × r × k. This reduced version
of t-SVD will be used throughout the paper.

2.3. Operations in Frequency Domain

Recall the Convolution Theorem that circular convolution
in the time domain corresponds to point-wise multiplication
in the frequency domain, thus tensor operations of the low-
tubal-rank tensor model can be efficiently computed in the
frequency domain as in [8, 22]. As shown in Alg. 1, to
compute C = A ∗ B, we could compute Ã and B̃, then per-
form front-slice-wise matrix multiplications (denoted as ·§)
of these two tensors in the frequency domain to derive C̃, and
finally obtain C by applying the inverse FFT on C̃.

ALGORITHM 1: Computing t-product in the fre-
quency domain

1: Input: Tensors A ∈ Rm×p×k, B ∈ Rp×n×k.
2: Output: C ∈ Rm×n×k

3: Ã = fft(A, [ ], 3);
4: B̃ = fft(B, [ ], 3);
5: C̃ = Ã · § B̃; % perform front-slice-wise matrix multiplication
6: C = ifft(C̃, [ ], 3);

3. EFFICIENT PARALLEL TENSOR OPERATIONS

We present a novel unified computation flow for the third-
order low-tubal-rank tensor model:

• 1) obtain the frequency domain representation of the
input tensor by performing Fourier transform along the
third-dimension (tube-wise DFT), called the t-FFT;

• 2) in the frequency domain, the tensor operations are
separated into multiple independent (complex) matrix
operations that possess strong parallelism. We provide
batch mode for these (complex) matrix operations on
many-core GPU architectures;

• 3) converting the frequency domain results back to the
time domain, called the inverse t-FFT.

3.1. Overview of the cuTensor-tubal Library

The system architecture of cuTensor-tubal is presented in Fig.
1. cuTensor-tubal runs on top of the hardware, CUDA and
third-party libraries such as MAGMA. To improve perfor-
mance, cuTensor-tubal utilizes highly optimized single and
batched matrix routines from the cuBLAS and MAGMA li-
braries. The cuTensor-tubal library is divided into five layers.
The lowest layer consists of two modules: the data transfer
module handles the data transfer between the CPU and the
GPU; the memory manager is in charge of the allocation and
release of the GPU memory. The second layer comprises the
memory access operators for efficient fetching and storing of
tubes or slices. The third layer contains library routines im-
plemented in cuTensor-tubal. The fourth layer consists of two
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Fig. 3. Tensors are stored as an 1D array in memory.

parallelization schemes. The highest layer contains four ten-
sor operations implemented using the routines and modules
below them.

3.2. Efficient Data Transfer

Tensor operations are data-intensive and their input and out-
put data increase rapidly with the size of tensors, leading to
a significant time overhead for transferring data between the
CPU and GPU. From Sec. 2, we observe that t-product takes
two input tensors while t-SVD outputs three tensors. We ex-
ploit this feature to overlap computation with data transfer.
For t-product, we overlap the Fourier transform ofA with the
data transfer of B. For t-SVD, we overlap the inverse Fourier
transform of Θ̃ with the data transfer of U , and overlap the
inverse Fourier transform of Ṽ with the data transfer of Θ.

3.3. Uniform Memory Access

Fig. 3 illustrates the memory layout of a tensor. We observe
that slice elements are stored contiguously while tube ele-
ments are stored separately. In the computation flow of tensor
operations, the t-FFT and inverse t-FFT operations fetch tubes
while the matrix operations fetch slices. We design four mem-
ory access operators to provide uniform and easy memory
accesses for all tensor operations: tube-strided-fetch, tube-
strided-store, slice-fetch and slice-store. The tube-strided-
fetch and the tube-strided-store operator are used for the t-
FFT and inverse t-FFT operations to fetch and store tubes
from the 1D data in memory. The slice-fetch and the slice-
store operator can be used by the matrix operators to fetch
and store slices in the memory.

3.4. Parallelization Schemes

We design two parallelization schemes for efficient t-FFT, in-
verse t-FFT, and complex matrix operations on the GPU.

GPU SMM0 SMM1
... SMMk

Kernel0

FFT, FFT, …,  FFT

Kernel0

Matrix computation, Matrix computation, …, 

Matrix computation

(a) Batched scheme. (b) Streamed scheme.
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Matrix 
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Streamk-1
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Kernel0
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Asynchronous

Matrix

computations

Fig. 4. Batched scheme and streamed scheme.

3.4.1. Batched Scheme

This scheme advocates the synchronous paradigm, which
is designed for tensor operations with data-independent
(i.e. regular) computation patterns such as t-product. In
this scheme, only one CUDA kernel is launched in each
step to compute multiple Fourier transforms, inverse Fourier
transforms or matrix computations. This scheme requires a
batched routine in each step of a tensor operation to perform
multiple computations synchronously, as shown in Fig. 4(a).

3.4.2. Streamed Scheme

This scheme advocates the asynchronous paradigm, which is
designed for tensor operations with data-dependent (i.e. irreg-
ular) computation patterns such as t-SVD. This scheme differs
from the batched scheme only in the matrix computation step,
in which it launches multiple CUDA streams to perform the
matrix computations. Each stream contains a CUDA kernel to
compute a single matrix computation, as shown in Fig. 4(b).
Therefore, the matrix computations in different streams are
executed asynchronously.

3.5. Exploit Conjugate Symmetry to Save Computation

The t-FFT has the conjugate symmetry property along the
third dimension. That is, for A ∈ Rm×n×k, we know that
Ã satisfies:

Ã(`) = conjugate(Ã(k−`+2)), ` =

⌈
k + 1

2

⌉
+ 1, ..., k,

where Ã(`) = Ã(:, :, `). We exploit this property in our im-
plementation that reduces the computational time. For exam-
ple, to compute a t-product C = A ∗ B, we only compute
for half the slices of A and B and for the rest slices, we take
conjugates.

4. EXPERIMENTAL RESULTS

We use a server as the experiment platform. The server
has two Intel Xeon E5-2640 V4 CPUs, each having 10
cores @2.4GHz supporting 20 hardware threads with hyper-
threading. There is a Tesla V100 GPU which consists of 5120
CUDA cores @1.53 GHz and 32 GB device memory. There
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Fig. 5. Running time and speedups of matrix multiplication
and SVD on Tesla V100 GPU and two 10-core CPUs, respec-
tively.
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Fig. 6. Running time and speedups of t-product.

are 80 GB DDR4 memories @2.133 GHz on the server. We
show the speedups of tensor operations on the Tesla V100
GPU versus dual 10-core CPUs. The speedup is defined as:
(CPU running time)/(GPU running time).

Fig. 5 shows the running time and speedups of matrix
multiplication and SVD on the GPU and two CPUs, respec-
tively. Compared to the CPU implementations, the GPU
matrix multiplication achieves an average of 7.37× and up
to 19.27× speedups, and matrix SVD achieves an average
of 6.02× and up to 17.91× speedups, respectively. These
speedups are the baseline reference to understand the relative
computation power of the Tesla V100 GPU and two CPUs.

Fig. 6 shows the running time and speedups of t-product
on different hardware and tensor sizes. Compared to t-product
running on two CPUs, the GPU batched and streamed t-
product achieves an average of 8.54× and 4.28×, and up to
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Fig. 7. Running time and speedups of t-SVD.

16.91× and 7.38× speedups, respectively. The parallelism
and GPU utilization grow with tensor sizes, which improves
GPU performance. The unoptimized GPU implementation
achieves average 0.34× and up to 0.58× speedups, which is
even slower than the CPU implementations. The unoptimized
GPU t-product employed none of the optimization techniques
presented in Section 3, especially the parallelization schemes.
As a result, it conducts single FFT, matrix multiplication or
inverse FFT instead of batched computations on the GPU,
leading to very low GPU utilizations and performance.

Fig. 7 shows the running time and speedups of t-SVD on
different hardware and tensor sizes. Compared to t-SVD run-
ning on two CPUs, the GPU batched and streamed t-SVD
achieves average 18.63× and 5.58×, and up to 27.03× and
7.80× speedups, respectively. The unoptimized GPU imple-
mentation achieves average 3.17× and up to 4.02× speedups,
which is slower than the streamed or batched implementa-
tions. This demonstrates the effectiveness of the optimization
techniques in Sec. 3.

5. CONCLUSIONS

In this paper, we have proposed a cuTensor-tubal library of
common tensor operations for the low-tubal-rank model. The
cuTensor-tubal library exploits the separability in the fre-
quency domain and maps the parallelism between tube-wise
Fourier transforms and slice-wise matrix operations onto
SIMT GPU architectures. Our library incorporates two paral-
lelization schemes and several optimizations. We compared
the running time and speedups of different GPU implementa-
tions and showed the effectiveness of our code optimizations.
In summary, tensor operations in cuTensor-tubal achieve a
maximum 27.03× speedup versus two 10-core CPUs. The
cuTensor-tubal library can be used to accelerate various ap-
plications.
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