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ABSTRACT
Dementia in the elderly has recently become the most usual
cause of cognitive decline. The proliferation of demen-
tia cases in aging societies creates a remarkable economic
as well as medical problems in many communities world-
wide. A recently published report by The World Health
Organization (WHO) estimates that about 47 million people
are suffering from dementia-related neurocognitive declines
worldwide. The number of dementia cases is predicted by
2050 to triple, which requires the creation of an AI-based
technology application to support interventions with early
screening for subsequent mental wellbeing checking as well
as preservation with digital–pharma (the so-called beyond
a pill) therapeutical approaches. We present an attempt and
exploratory results of brain signal (EEG) classification to es-
tablish digital biomarkers for dementia stage elucidation. We
discuss a comparison of various machine learning approaches
for automatic event-related potentials (ERPs) classification of
a high and low task–load sound stimulus recognition. These
ERPs are similar to those in dementia. The proposed win-
ning method using tensor-based machine learning in a deep
fully connected neural network setting is a step forward to
develop AI-based approaches for a subsequent application for
subjective– and mild–cognitive impairment (SCI and MCI)
diagnostics.

Index Terms— EEG, ERP, tensor machine learning, de-
mentia, digital biomarker

1. INTRODUCTION

Currently, dementia is one of the most significant global
challenges for healthcare and social services. Worldwide,
mainly for above 65 years old people, dementia statistics and
associated costs are increasing due to enhanced longevity [1].
Cabinet Office in Japan, to address the problem, publishes
annual reports on aging society [2]. United Nations Sus-
tainable Development Goal number three – “Good Health
and Wellbeing” focus, for all at all ages, on healthy lives
and it supports well-being. We propose a method utilizing

AI–related machine learning (ML) for automatic classifica-
tion of anomalous EEG brain signals, which shall lead to
digital biomarkers development for the task–load as well
as dementia progress elucidation. The current dementia di-
agnostic methods rely on standard psychometric subjective
tests, more recent behavioral assessments using cognitive
behavioral therapy (CBT) methodologies (a co–imagination
technique [3], etc.) or the very recent multimodal interven-
tions [4]. We propose to use a human noninvasive brain
signal monitoring (EEG) technique (namely, event-related
potentials - ERPs derived from responses to natural stimuli
within modern, comfortable recording [5, 6, 7, 8]. Methods
presented in this paper and developed by our lab, establish a
machine learning (ML) or AI application allowing for near
future a home monitoring of the mental decline (dementia)
and the task–load elucidation with employment of digital
biomarkers. Recent neuroscience research findings have
shown that dementia decline was related to abnormal amy-
loid and tau disposals that modified post– and presynaptic
neuronal mechanisms, which resulted in high neuronal cal-
cium influxes leading to neuronal loss, increased excitability
and finally modified brain rhythmic patterns [9, 10]. The
synaptic plasticity is necessary for various cognitive func-
tions (e.g., memory formation, abstract thinking, learning,
etc.). Dementia and especially Alzheimer’s disease (AD) has
been recently identified from contemporary neurophysiolog-
ical and pathological studies as impaired synaptic plastic-
ity [10]. The above mentioned age-related brain atrophy has
also been named as network disconnection disease called “an
oscillopathy” [9]. Recently, various approaches to AD and
dementia diagnostics created a necessity to establish person-
alized therapies using not only traditional pharmacological
interventions but also the necessary lifestyle alternations [1]
as well as the very popular cognitive training [3]. The usual
pharmacological as well as the modern digital–pharma (be-
yond a pill) healthcare approaches call for robust biomarkers.
The biomarkers need not only to elucidate the cognitive loss
from resting-state– digital brain biomarkers [11] but must
allow for simple home monitoring. We evaluate the so-called
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work– task–load paradigm for dementia-related brain re-
sponses’ classification in natural auditory stimulus settings.
In this paper we report on the evaluation of EEG classification
methods using dementia–modeling ERPs [9, 10] in spatial
auditory and task–load controlled brain-computer interface
(BCI) experimental settings and from healthy subjects [6].
The spatial auditory BCI paradigm developed in [6] allows
for the task–load modulation by incorporating real and vir-
tual spatial source sounds, which are easy or hard to localize
spatially. The users are instructed to focus their attention
on spatial targets (resulting with P300 responses) and ignore
distractors (a classical oddball paradigm) [6, 7, 8]. Averaged
results with abnormal and normal (varying task–load set-
tings to model dementia responses [9, 10]) ERPs are depicted
in Figure 1. We propose a framework, using the AI–based
neurotechnology, which employs ML together with data–
driven preprocessing techniques utilizing a wavelet–synchro–
squeezing–transform (WSST) [7, 12], Riemmanian geometry
(RG) [13] and tensor–train–layer (TT–layer) [14, 15] classifi-
cation methods.

From now on the paper is organized as follows. In the
next section, we introduce EEG signal processing and ma-
chine learning methods. Results and conclusions with future
research guidelines summarize the paper.

2. METHODS

The brain responses, which model EEG–derived digital
biomarkers in our study, were collected from nine healthy
subjects in a spatial auditory BCI former project [6] reviewed
by The Ethical Committee of Faculty of Engineering, Infor-
mation and Systems at the University of Tsukuba, Tsukuba,
Japan. The data collection details were described in [6].
The currently discussed EEG brain signal post-processing
project was approved by The Ethical Committee of RIKEN,
Wako–shi, Japan. At the EEG preprocessing filtering steps
we utilize a wavelet–synchro–squeezing–transform (WSST)
method previously published by the authors for sleep stages’
and BCI commands’ classification [12, 7]. The WSST ap-
plication follows precisely the cased discussed in [7]. At
the next step of EEG processing pipeline we assume that
x(t) ∈ RN is a zero–mean data sample captured from eight
(denoted by N ) EEG electrodes at discrete time t. In such
a case, let xc,i ∈ RN be the ERP event i representing a
response to a spatial auditory stimulus c ∈ {1, 2} of M sam-
ples (1.5 seconds in our case). Assuming a a zero mean, a
sample covariance matrix of a single trial xc,i belonging to a
class c is given by Cc,i = 1

M−1xc,ix
T
c,i, as proposed by [13].

Assuming that a noise in EEG recordings could be modeled
by multivariate Gaussian distributions, a covariance matrix
characterizing ERP features could be considered as the only
unique parameter for dementia stages (task–load). Features
representing stimulus in segmented ERPs c ∈ {1, 2} are ob-
tained as xc,i and calculated as covariance matrices Cc,i for

Fig. 1. Grand mean averaged ERPs from nine healthy
subjects performing spatial auditory BCI oddball experi-
ments [6]. All EEG channels, as in classical 10/20–
system [5], are presented as bandpass filtered and averaged
traces with 95–percentile ranges. Green traces represent easy
(low task–load) ERPs to identified spatial targets with clear
P300 responses [5, 6]. The orange ERPs to the difficult vir-
tual cases (high task–load), which model dementia decline
signals [10].
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a subsequent input to ML, as discussed in following sections.

2.1. Shallow Learning Classifiers

In a classifier training phase [13], a geometric mean covari-
ance matrix Cc, characterizing each ERP class c, is com-
puted, using all EEG channels as inputs. In order to measure a
distance of a newly captured ERP to the class–characterizing
mean matrix, the RG techniques are used. A geodesic travers-
ing two points Ci and Cj is the shortest path curve that con-
nects them. It has a minimum length. A Riemannian distance
between covariance matrices is obtained as follows,

δR =
∣∣∣∣ln(C−1

i Cj)
∣∣∣∣
F

=

√∑
n

[ln(wn)]2, (1)

where || · ||F denotes a Frobenius norm and w1, . . . , wn the
eigenvalues of C−1

i Cj , respectively [13]. The geometric
mean of L covariance matrices characterizing an ERP class
is obtained as,

D(C1, · · · ,Cl) = arg min
C

L∑
l=1

δ2R(C,Cl). (2)

On a manifold, the geodesic, according to the RG princi-
ples [13] is calculated from,

Γ(Ci,Cj , τ) = C
1
2
i

(
C

− 1
2

i CjC
− 1

2
i

)τ
C

1
2
i , (3)

where τ ∈ {0, 1} is a scalar. A very frequently utilized clas-
sification approach for RG–related features has been based
on a distance evaluation among ERP features and mean (class
characterizing) covariance matrices [13]. A a minimum
distance to mean (MDM) classifier [13] satisfies the above
criterium. The MDM approach is easy to apply as well as
very generic. We compare it with previously reported by our
group in [16] classical vectorized (vect) time domain derived
ERP features [7]; spatial filter xDAWN preprocessing [17];
tangent space (TS) mapping of RG features [13]; using lin-
ear regression (LR); regularized linear discriminant analysis
(rLDA); linear and sigmoid kernel support vector machine
(SVM), as well as with below to be introduced TT-layer–
based (TT) methods as shown in Figure 2.

2.2. Tensor–train–layer–based Neural Network Classi-
fiers

Deep neural networks recently started to gain attention in
EEG community especially for the end–to–end processing
setups [18]. For our approach, we are interested in compact-
ing machine learning architectures with possible application
to wearable devices with limited computing powers. Tensor–
train factorization (TTF) approaches have demonstrated an
advantage of scaling multidimensional matrices to an arbi-
trary number of dimensions [14, 15] with a subsequent possi-
bility to reshape a fully connected neural network layer into

a tensor and then factorize it [19]. The methodology as men-
tioned earlier is applied to compress large weight matrices
of deep neural models within an entire end–to–end training.
Using a trick from [19] it is possible to tensor–train–factorize
a weight matrix W of a fully connected neural network as a
d−dimensional double–indexed tensor represented as

Ŵ ((i1, j1), (i2, j2), . . . , (id, jd)) =

= G∗1 (i1, j1)G∗2 (i2, j2) . . .G∗d(id, jd), (4)

where G∗k ∈ Rmk×nk×rk−1×rk are the so–called core tensors
uniquely represented by indices (ik, jk) [19]. It is possible
to compress the weight matrix W of size

∏d
k=1mk · nk in a

form of TT–formated low–rank tensors, approximately recon-
structing the original W, of size

∑d
k=1mk ·nk ·rk−1 ·rk.We

consider a two–layered neural network with 64 hidden units
in each layer and replace both fully-connected layers by the
TT–layers with all the TT–ranks in the network set to 4 and ac-
tivation functions to ReLU. For an output of a fully connected
final layer with sotfmax activations we choose two units. In
order to prevent overfitting we train and test (using “unseen”
during the training samples) the model with 50%/50% bal-
anced datasets. We also evaluate a recurrent neural network
with LSTM units as a classifier with TT–layers applied to gat-
ing units [20]. In this case the network has again 64 input
LSTM units and TT–ranks set also to 4. A fully connected
output layer with sotfmax activations also has two units in
this case.

3. RESULTS

The discussed neurotechnology approach utilizing AI/ML
technique for the task–load elucidation, which has been pro-
posed as a model for demented brain cognitive responses
quantification, resulted in a particular classification increase.
We compared the information geometry principle using shal-
low learning and TT–layer classification methods introduced
in the previous section. A solid, as well as statistically sig-
nificant, the boost of the automatic task–load–dependent
ERP classification was achieved in the presented project.
The project goal has been to automatically discriminate the
EEG signals modulated by two tasks–load–dependent cog-
nitive levels, comprising of ordinary (easy) and anomalous
(difficult) spatial auditory localization tasks. We obtained
results from the nine subjects–based dataset with classifiers
trained using all participant class–balanced, to avoid overfit-
ting, training sets. Subsequently, we tested classifiers with
respective testing utterances. The results were summarized in
the form of classification accuracy distribution plots in Fig-
ure 2. The best results among the shallow learning classifiers
(see Section 2.1) with an average of 68%, which has been
considered already as satisfactory for BCI applications, were
obtained for the tangent space (TC) mapping with the linear
regression (LR), the regularized LDA (rLDA) and support
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Fig. 2. Median classification accuracy results (white dots within percentile ranges) depicted together with result distributions
(a chance level of 0.5 representing 50% of binary classification cases depicted with bold gray line).

vector machine (SVM) cases, comparing to the minimum
distance to mean (MDM) and to the simple vectorized time
domain ERP features. The differences were statistically sig-
nificant in all comparisons as evaluated with non–parametric
pairwise Wilcoxon method. RG approaches scored signifi-
cantly better comparing to the classical vectorized (vect) and
xDAWN–based results with p � 0.01. Also the RG tangent
space (TS) mapping–based results were significantly better,
with p < 0.05, than RG–based MDM classifier accuracy
results, respectively. The shallow learning results confirmed
our previous findings reported in [16].

On the other hand, using the TT–layer–based LSTM (see
Section 2.2), we have achieved median accuracy of 68% for
two task–load cases with significant differences (p � 0.01)
compared to all other shallow learning classifiers (see Fig-
ure 2 with accuracy comparisons), as evaluated with non–
parametric Wilcoxon pairwise tests.

Finally, the results achieved with TT-layer fully connected
neural network (details also in Section 2.2) had a median ac-
curacy of 78% for two task–load cases with significant differ-
ences (p � 0.01) compared to all other tested in this paper
classifiers (see Figure 2), as also calculated using Wilcoxon
pairwise comparisons.

4. CONCLUSIONS

The presented project confirmed our hypothesis of a possible
application of TT–layer neural model–based task–load eluci-
dation approach as tested with nine subjects. The proposed
approach resulted with a satisfactory classification (78% on
average) of binary task–load cases, namely the ’easy real’
versus the ’difficult virtual’ sound localization paradigms, as
shown as averaged ERPs in Figure 1, and the obtained clas-
sification accuracy boost results in Figure 2. The discussed
EEG–task–load classification results offer a step forward in
the establishment of novel dementia-related biomarkers for
improving the lives of seniors and reducing health-related
costs. The task–load responses (EPRs) were very similar
to EEG modulations in dementia. As for following steps in
our project we plan to test the discussed method with elderly
healthy and mild cognitive impairment (MCI), dementia, etc.,
subjects. We also plan to collect more data to further train and
evaluate deep learning models in order to achieve improve-
ments in the proposed approach towards the final application
in the real–world healthcare settings. Further research on
the presented TT–layer neural model interpretability and a
practical computational cost are also planned.
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